
1CMSC 412 – S13 (lect 2)

Announcements
 Program #0

– its due next Friday

 Reading
– Chapter 2
– Chapter 3 (for Tuesday)

2CMSC 412 – S13 (lect 2)

System Calls

 Provide the interface between application programs
and the kernel

 Are like procedure calls
– take parameters
– calling routine waits for response

 Permit application programs to access protected
resources

load r0, x
system call 10

User Program Operating System
(kernel)

Code for
sys call 10

register r0

3CMSC 412 – S13 (lect 2)

System Call Mechanism

 Use numbers to indicate what call is made
 Parameters are passed in registers or on the stack
 Why do we use indirection of system call numbers

rather than directly calling a kernel subroutine?
– provides protection since the only routines available are

those that are export
– permits changing the size and location of system call

implementations without having to re-link application
programs

4CMSC 412 – S13 (lect 2)

Types of System Calls
 File Related

– open, create
– read, write
– close, delete
– get or set file attributes

 Information
– get time
– set system data (OS parameters)
– get process information (id, time used)

 Communication
– establish a connection
– send, receive messages
– terminate a connection

 Process control
– create/terminate a process (including self)

5CMSC 412 – S13 (lect 2)

Computer Systems

 Computers have many different devices
– I/O Devices
– Memory

• volatile storage
– Processor(s)

Processor Memory

Mem. Controller

I/O Bus Controller
Memory Bus (Front Side)

I/O Bus (PCI)

Display AdapterUSB Adapter

Peripheral Bus (USB)

Disk Drives Keyboard DVD Drive

Network Adapter

Network (Ethernet)

Disk Controller
Disk Bus (SCSI)

6CMSC 412 – S13 (lect 2)

I/O Systems

 Many different types of devices
– disks
– networks
– displays
– mouse
– keyboard
– tapes

 Each have a different expectation for performance
– bandwidth

• rate at which data can be moved
– latency

• time from request to first data back

7CMSC 412 – S13 (lect 2)

Different Requirements lead to Multiple
Buses

 Processor Bus (on chip)
– Many Gigabytes/sec

 Memory Bus (on processor board)
– Up to 100 Gigabyte per second

 I/O Bus (PCI & PCI-E)
– ~1s gigabytes per second
– buses are more complex than we saw in class

• show PCI spec.

 Device Bus (SCSI, USB)
– tens of megabytes per second

8CMSC 412 – S13 (lect 2)

Issues In Busses

 Performance
– increase the data bus width
– have separate address and data busses
– block transfers

• move multiple words in a single request

 Who controls the bus?
– one or more bus masters

• a bus master is a device that can initiate a bus request
– need to arbitrate who is the bus master

• assign priority to different devices
• use a protocol to select the highest priority item

– daisy chained
– central control

9CMSC 412 – S13 (lect 2)

Disks

 Several types:
– Hard Disks - rigid surface with magnetic coating
– Floppy disks - flexible surface with magnetic coating
– Optical (CDs and DVDs) - read only, write once, multi-write
– Solid State (Flash) – fast seek times, limited number of writes

 Hard Disk Drives:
– collection of platters
– platters contain concentric rings called tracks
– tracks are divided into fixed sized units called sectors
– a cylinder is a collection of all tracks equal distant from the center of

disk
– Current Performance:

• capacity: gigabytes to terabytes
• throughput: sustained < 20 megabytes/sec
• latency: mili-seconds

10CMSC 412 – S13 (lect 2)

I/O Interfaces
 Need to adapt Devices to CPU speeds
 Moving the data

– Programmed I/O
• Special instructions for I/O

– Mapped I/O
• looks like memory only slower

– DMA (direct memory access)
• device controller can write to memory
• processor is not required to be involved
• can grab bus bandwidth which can slow the processor

down

11CMSC 412 – S13 (lect 2)

I/O Interrupts

 Interrupt defined
– indication of an event
– can be caused by hardware devices

• indicates data present or hardware free
– can be caused by software

• system call (or trap)
– CPU stops what it is doing and executes a handler function

• saves state about what was happening
• returns where it left off when the interrupt is done

 Need to know what device interrupted
– could ask each device (slow!)
– instead use an interrupt vector

• array of pointers to functions to handle a specific interrupt

