Announcements

- **Program #0**
 - Due on Friday
 - Limit should return 0 when called with correct parameters
 - Calling limit resets the counter, so a Limit(0,4) will be killed on the 5th system call after Limit.

- **Reading**
 - Today: Processes - Chapter 3 (ch 4, 6th Ed)
 - Thursday: Threads - Chapter 4 (ch 5, 6th Ed)

Hardware Protection

- **Need to protect programs from each other**

- **Processor has modes**
 - user mode and supervisor (monitor, privileged)
 - operations permitted in user mode are a subset of supervisor mode

- **Memory Protection**
 - control access to memory
 - only part of the memory is available
 - can be done with base/bound registers

- **I/O Protection**
 - I/O devices can only be accessed in supervisor mode

- **Processor Protection**
 - Periodic timer returns processor to supervisor mode
Operating System Structure

- **Simple Structure (or no structure)**
 - any part of the system may use the functionality of the rest of the system
 - MS-DOS (user programs can call low level I/O routines)

- **Layered Structure**
 - layer n can only see the functionality that layer n-1 exports
 - provides good abstraction from the lower level details
 - new hardware can be added if it provides the interface required of a particular layer
 - system call interface is an example of layering
 - can be slow if there are too many layers

- **Hybrid Approach**
 - most real systems fall somewhere in the middle

Policy vs. Mechanism

- **Policy - what to do**
 - users should not be able to read other users files

- **Mechanism - how to accomplish the goal**
 - file protection properties are checked on open system call

- **Want to be able to change policy without having to change mechanism**
 - change default file protection

- **Extreme examples of each:**
 - micro-kernel OS - all mechanism, no policy
 - MACOS - policy and mechanism are bound together
Multi-programming

- Systems that permit more than one process at once
 - virtually all computers today
- Permits more efficient use of resources
 - while one process is waiting another can run
- Provides natural abstraction of different activities
 - windowing system
 - editor
 - mail daemon
- Preemptive vs. non-preemptive multi-programming
 - preemptive means that a process can be forced off the processor by the OS
 - provides processor protection

Process State Transitions

- new
- ready
- dispatch
- running
- exit
- waiting
- I/O request or event wait
- Kill
- admitted
- interrupt
- I/O request or event wait done
Components of a Process

- **Memory Segments**
 - Program - often called the text segment
 - Data - global variables
 - Stack - contains activation records

- **Processor Registers**
 - program counter - next instruction to execute
 - general purpose CPU registers
 - processor status word
 - results of compare operations
 - floating point registers

Process Control Block

- **Stores all of the information about a process**
- **PCB contains**
 - process state: new, ready, etc.
 - processor registers
 - Memory Management Information
 - page tables, and limit registers for segments
 - CPU scheduling information
 - process priority
 - pointers to process queues
 - Accounting information
 - time used (and limits)
 - files used
 - program owner
 - I/O status information
 - list of open files
 - pending I/O operations