Announcements

e Reading
— Project #1 — due in 1 week at 5:00 pm
— Scheduling
« Chapter 6 (6" ed) or Chapter 5 (8" ed)

CMSC 412 —S14 (lect5)




Relationship between Kernel mod and
User Mode

User Process

User Process

System Calls

$ Initial Thread

R

o

Unique: _
Program Unique:
Program
Stack Kernel Mode thread of J
Heap A Stack
user process Heap

$ Idle Thread

Kernel Threads:
Each has own stack (separate from user mode)
Share heap with other kernel threads

Run same program (kernel) as other kernel threads
CMSC 412 — S14 (lect 5) 2




Threads

e processes can be a heavy (expensive) object

e threads are like processes but generally a collection
of threads will share
— memory (except stack)
— open files (and buffered data)
— signals

e can be user or system level
— user level: kernel sees one process
+ easy to implement by users
- 1/O management is difficult
- In an multi-processor can’t get parallelism
— system level: kernel schedules threads

CMSC 412 —S14 (lect5)




Important Terms

e Threads

— An execution context sharing an address space
e Kernel Threads

— Threads running with kernel privileges
e User Threads

— Threads running in user space

e Processes

— An execution context with an address space
— Visible to and scheduled by the kernel

e Light-Weight Processes
— An execution context sharing an address space
— Visible to and scheduled by the kernel

CMSC 412 —S14 (lect5)




Dispatcher

e The inner most part of the OS that runs processes

e Responsible for:
— saving state into PCB when switching to a new process
— selecting a process to run (from the ready queue)
— loading state of another process

e Sometimes called the short term scheduler
— but does more than schedule

e Switching between processes is called context
switching

e One of the most time critical parts of the OS

e Almost never can be written completely in a high
level language

CMSC 412 —S14 (lect5)




Selecting a process to run

e called scheduling

e can simply pick the first item in the queue
— called round-robin scheduling
— Is round-robin scheduling fair?

e can use more complex schemes
— we will study these in the future

e use alarm interrupts to switch between processes

— when time Is up, a process is put back on the end of the
ready queue

— frequency of these interrupts is an important parameter
 typically 3-10ms on modern systems

* need to balance overhead of switching vs.
responsiveness

CMSC 412 —S14 (lect5)




CPU Scheduling

e Manage CPU to achieve several objectives:
— maximize CPU utilization
— minimize response time
— maximize throughput
— minimize turnaround time

e Multiprogrammed OS
— multiple processes in executable state at same time

— scheduling picks the one that will run at any give time (on a
uniprocessor)

e Processes use the CPU in bursts
— may be short or long depending on the job

CMSC 412 —S14 (lect5)




Types of Scheduling

e At least 4 types:
— long-term - add to pool of processes to be executed

— medium-term - add to number of processes partially or fully
IN main memory

— short-term - which available process will be executed by the
processor

— 1/O - which process’s pending I/O request will be handled by
an available 1/0O device

e Scheduling changes the state of a process

CMSC 412 —S14 (lect5)




Scheduling criteria

e Per processor, or system oriented
— CPU utilization
e maximize, to keep as busy as possible
— throughput
* maximize, number of processes completed per time unit

e Per process, or user oriented

— turnaround time
* minimize, time of submission to time of completion.

— waiting time
* minimize, time spent in ready queue - affected solely by

scheduling policy

— response time
* minimize, time to produce first output
e most important for interactive OS

CMSC 412 —S14 (lect5)




Scheduling criteria
non-performance related

e Per process
— predictability
 job should run in about the same amount of time,
regardless of total system load
e Per processor
— fairness
o don’t starve any processes, treat them all the same
— enforce priorities
 favor higher priority processes
— balance resources
» keep all resources busy

CMSC 412 —S14 (lect5)

10




Medium vs. Short Term Scheduling

e Medium-term scheduling
— Part of swapping function between main memory and disk

e based on how many processes the OS wants available
at any one time

 must consider memory management if no virtual memory
(VM), so look at memory requirements of swapped out
processes
e Short-term scheduling (dispatcher)

— Executes most frequently, to decide which process to
execute next

— Invoked whenever event occurs that interrupts current
process or provides an opportunity to preempt current one in
favor of another

— Events:

CMSC 412 —S14 (lect5)

11




Long-term scheduling

e Determine which programs admitted to system for
processing - controls degree of multiprogramming

e Once admitted, program becomes a process, either:

— added to queue for short-term scheduler

— swapped out (to disk), so added to queue for medium-term
scheduler

e Batch Jobs
— Can system take a new process?
 more processes implies less time for each existing one
e add job(s) when a process terminates, or if percentage of
processor idle time is greater than some threshold
— Which job to turn into a process

o first-come, first-serve (FCFS), or to manage overall
system performance (e.g. based on priority, expected
execution time, 1/O requirements, etc.)

CMSC 412 —S14 (lect5) 12




Process State Transitions

Loy%erm scheduling

.scheduling >

Medium- : )
term : _~"Event

scheduling. 7 wait
;/

CMSC 412 —S14 (lect5) 13




