
1CMSC 412 – S14 (lect6)

Announcements

 Program #1
– Due Today at 5:00 pm

 Reading
– Continue scheduling

2CMSC 412 – S14 (lect6)

In Class Exercise

 Give each group 15 minutes
– to finish up their scheduling algorithm.
– The algorithm should take a list of runnable processes and

pick one to run next
– Any criteria can be used
– May keep data about processes, but need to describe what it

is

 Have each group describe their algorithm
– Ask the others if it does what they claim it does
– Offer your own critiques of the algorithm
– If one of the groups repeats another, still have them describe

it
• Look for any differences in how it achieves its goal

3CMSC 412 – S14 (lect6)

Scheduling criteria
 Per processor, or system oriented

– CPU utilization
• maximize, to keep as busy as possible

– throughput
• maximize, number of processes completed per time unit

 Per process, or user oriented
– turnaround time

• minimize, time of submission to time of completion.
– waiting time

• minimize, time spent in ready queue - affected solely by
scheduling policy

– response time
• minimize, time to produce first output
• most important for interactive OS

4CMSC 412 – S14 (lect6)

Short-term scheduling algorithms

 First-Come, First-Served (FCFS, or FIFO)
– as process becomes ready, join Ready queue, scheduler

always selects process that has been in queue longest
– better for long processes than short ones
– favors CPU-bound over I/O-bound processes
– need priorities, on uniprocessor, to make it effective

5CMSC 412 – S14 (lect6)

Algorithms (cont.)

 Round-Robin (RR)
– use preemption, based on clock - time slicing

• generate interrupt at periodic intervals
– when interrupt occurs, place running process in Ready

queue, select next process to run using FCFS
– what’s the length of a time slice

• short means short processes move through quickly, but
high overhead to deal with clock interrupts and
scheduling

• guideline is time slice should be slightly greater than time
of “typical job” CPU burst

– problem dealing with CPU and I/O bound processes

6CMSC 412 – S14 (lect6)

Priority Based Scheduling
 Priorities

– assign each process a priority, and scheduler always
chooses process of higher priority over one of lower priority

 More than one ready queue, ordered by priorities
RQ0

CPU
RQ1

RQn

Blocked queue

...Admit

Event
Occurs

Event Wait

Preemption

Dispatch Release

7CMSC 412 – S14 (lect6)

Priority Algorithms

 Fixed Queues
– processes are statically assigned to a queue
– sample queues: system, foreground, background

 Multilevel Feedback
– processes are dynamically assigned to queues
– penalize jobs that have been running longer
– preemptive, with dynamic priority
– have N ready queues (RQ0-RQN),

• start process in RQ0
• if quantum expires, moved to i + 1 queue

8CMSC 412 – S14 (lect6)

Feedback scheduling (cont.)

– problem: turnaround time for longer processes
• can increase greatly, even starve them, if new short jobs

regularly enter system
– solution1: vary preemption times according to queue

• processes in lower priority queues have longer time slices
– solution2: promote a process to higher priority queue

• after it spends a certain amount of time waiting for service in its
current queue, it moves up

– solution3: allocate fixed share of CPU time to jobs
• if a process doesn’t use its share, give it to other processes
• variation on this idea: lottery scheduling

– assign a process “tickets” (# of tickets is share)
– pick random number and run the process with the winning

ticket.

9CMSC 412 – S14 (lect6)

UNIX System V
 Multilevel feedback, with

– RR within each priority queue
– 10ms second preemption
– priority based on process type and execution history, lower

value is higher priority
 priority recomputed once per second, and scheduler

selects new process to run
 For process j, P(i) = Base + CPU(i-1)/2 + nice

– P(i) is priority of process j at interval i
– Base is base priority of process j
– CPU(i) = U(i)/2 + CPU(i-1)/2

• U(i) is CPU use of process j in interval i
• exponentially weighted average CPU use of process j

through interval i
– nice is user-controllable adjustment factor

10CMSC 412 – S14 (lect6)

UNIX (cont.)

 Base priority divides all processes into (non-
overlapping) fixed bands of decreasing priority levels
– swapper, block I/O device control, file manipulation,

character I/O device control, user processes

 bands optimize access to block devices (disk), allow
OS to respond quickly to system calls

 penalizes CPU-bound processes w.r.t. I/O bound
 targets general-purpose time sharing environment

11CMSC 412 – S14 (lect6)

Example: Windows NT/XP

 Target:
– single user, in highly interactive environment
– a server

 preemptive scheduler with multiple priority levels
 flexible system of priorities, RR within each, plus

dynamic variation on basis of current thread activity
for some levels

 2 priority bands, real-time and variable, each with 16
levels
– real-time ones have higher priority, since require immediate

attention(e.g. communication, real-time task)

12CMSC 412 – S14 (lect6)

Windows NT/XP (cont.)

 In real-time class, all threads have fixed priority that
never changes

 In variable class, priority begins at an initial value,
and can change, up or down
– FIFO queue at each level, but thread can switch queues

 Dynamic priority for a thread can be from 2 to 15
– if thread interrupted because time slice is up, priority lowered
– if interrupted to wait on I/O event, priority raised
– favors I/O-bound over CPU-bound threads
– for I/O bound threads, priority raised more for interactive

waits (e.g. keyboard, display) than for other I/O (e.g. disk)

13CMSC 412 – S14 (lect6)

Multi-Processor Scheduling

 Multiple processes need to be scheduled together
– Called gang-scheduling
– Allowing communicating processes to interact w/o/ waiting

 Try to schedule processes back to same processor
– Called affinity scheduling

• Maintain a small ready queue per processor
• Go to global queue if nothing local is ready

