
1CMSC 412 – F14 (lect 9)

Announcements

 Reading
– Today

• 8.1-8.3, 8.6 (6th Ed)
• 7.1-7.3, 7.6 (8th Ed)

 Project #2 is due next Tuesday at 5:00 PM (3/4/14)
 Midterm #1 is next Thursday (3/6/16) in class
 P1 grading – still working on a fix for the submit bug

– Will email those who lost style points soon

2CMSC 412 – F14 (lect 9)

Sample Synchronization Problem

 Class Exercise:
– CMSC 412 Midterm #1 (Spring 1998) Q#3

 Went over master solution

 Variables:
Semaphore mutex = 1
Semaphore writer = 0
Semaphore reader = 0
int nReader = 0
int nWriter = 0
int wReader = 0
int wWriter = 0

3CMSC 412 – F14 (lect 9)

 Writers execute this code:
while (1) {

P(mutex);
if (nReader + wReader + nWriter == 0) {

nWriter++;
V(mutex);

} else {
wWriter++;
V(mutex);
P(writer);

}
// Write operation;

P(mutex);
NWriter = 0;
If (wReaders > 0) {

Temp = min(wReaders,5)
for i = 1 to temp {

V(readers)
nReaders++;
wReaders--;

}
} else if (wWriters > 0) {

wWriters--;
nWriters++; V(writer);

} V(mutex);
}

 Readers execute this code:
while (1) {

P(mutex)
if (nWriters + wWriter == 0 & nReader < 5) {

nReaders++;
V(mutex);

} else {
wReaders++;
V(mutex);
P(reader);

}
// Read operation;
P(mutex);
nReaders--;
if (wWriters > 0 & nReaders == 0) {

wWriters--;
nWriters++;
V(writer);

} else if (wReaders > 0 & wWriters == 0) {
nReaders++;
wReaders--;
V(reader);

}
V(mutex);

}

4CMSC 412 – F14 (lect 9)

Deadlocks

 System contains finite set of resources
– memory space
– printer
– tape
– file
– access to non-reentrant code

 Process requests resource before using it,
must release resource after use

 Process is in a deadlock state when every
process in the set is waiting for an event that
can be caused only by another process in the
set

5CMSC 412 – F14 (lect 9)

Formal Deadlocks

 4 necessary deadlock conditions:
– Mutual exclusion - at least one resource must be

held in a non-sharable mode, that is, only a single
process at a time can use the resource. If another
process requests that resource, the requesting
process must be delayed until the resource is
released

– Hold and wait - There must exist a process that is
holding at least one resource and is waiting to
acquire additional resources that are currently
held by other processors

6CMSC 412 – F14 (lect 9)

Formal Deadlocks

– No preemption: Resources cannot be preempted;
a resource can be released only voluntarily by the
process holding it, after that process has
completed its task

– Circular wait: There must exist a set {P0,...,Pn} of
waiting processes such that P0 is waiting for a
resource that is held by P1, P1 is waiting for a
resource held by P2 etc.

 Note that these are not sufficient conditions

7CMSC 412 – F14 (lect 9)

Detecting Deadlock
Work is a vector of length m (resources)
Finish is a vector of length n (processes)
 Allocation is an n x m matrix indicating the number of

each resource type held by each process
 Request is an m x n matrix indicating the number of

additional resources requested by each process
1. Work = Available;

if Allocation[i] != 0 Finish = false else Finish = true;
2. Find an i such that Finish[i] = false and Requesti <=

Work if no such i, go to 4
3. Work += Allocation ; Finish[i] = true; goto step 2
4. If Finish[i] = false for some i, system is in deadlock
Note: this requires m x n2 steps

This is the difference from the
Banker’s algorithm.

8CMSC 412 – F14 (lect 9)

Recovery from deadlock

 Must free up resources by some means
 Process termination

– kill all deadlocked processes
– select one process and kill it

• must re-run deadlock detection algorithm again to see if it
is freed.

 Resource Preemption
– select a process, resource and de-allocate it
– rollback the process

• needs to be reset the process to a safe state
• this requires additional state

– starvation
• what prevents a process from never finishing?

9CMSC 412 – F14 (lect 9)

Deadlock Prevention
 Ensure that one (or more) of the necessary

conditions for deadlock do not hold
 Hold and wait

– guarantee that when a process requests a
resource, it does not hold any other resources

– Each process could be allocated all needed
resources before beginning execution

– Alternately, process might only be allowed to wait
for a new resource when it is not currently holding
any resource

10CMSC 412 – F14 (lect 9)

Deadlock Prevention

 Mutual exclusion
– Sharable resources do not require mutually

exclusive access and cannot be involved in a
deadlock.

 Circular wait
– Impose a total ordering on all resource types and make sure

that each process claims all resources in increasing order of
resource type enumeration

 No Premption
– virutalize resources and permit them to be prempted. For

example, CPU can be prempted.

11CMSC 412 – F14 (lect 9)

Deadlock Avoidance

 Require additional information about how resources
are to be requested - decide to approve or
disapprove requests on the fly

 Assume that each process lets us know its maximum
resource request

 Safe state:
– system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock
– A system is in a safe state if there exists a safe sequence

12CMSC 412 – F14 (lect 9)

Safe Sequence

 Sequence of processes <P1, .. Pn> is a safe
sequence if for each Pi, the resources that Pi can
request can be satisfied by the currently available
resources plus the resources held by all Pj, j<i

 If the necessary resources are not immediately
available, Pi can always wait until all Pj, j<i have
completed

13CMSC 412 – F14 (lect 9)

Banker’s Algorithm
 Each process must declare the maximum number of

instances of each resource type it may need
 Maximum can’t exceed resources available to system
 Variables:

n is the number of processes
m is the number of resource types
– Available - vector of length m indicating the number of available

resources of each type
– Max - n by m matrix defining the maximum demand of each

process
– Allocation - n by m matrix defining number of resources of each

type currently allocated to each process
– Need: n by m matrix indicating remaining resource needs of

each process

14CMSC 412 – F14 (lect 9)

 Work is a vector of length m (resources)
 Finish is a vector of length n (processes)
1. Work = Available; Finish = false
2. Find an i such that Finish[i] = false and Needi <=

Work if no such i, go to 4
3. Work += Allocationi; Finish[i] = true; goto step 2
4. If Finish[i] = true for all i, system is in a safe state

Note this requires m x n2 steps

all elements
in the vector
are <=

