
1CMSC 412 – F11 (lect 11)

Announcements
 Reading:

– Today: Chapter 8.4-8.6 (8th Ed)

 Midterm #1:
– Was returned

Midterm #1 Results
Q1 Q2 Q3 Q4 Q5 Q6 Total

Minimum 2.00 0.00 7.00 6.00 0.00 0.00 29.00

Maximum 20 20 16 12 12 20 93.00

Mean 13.38 15.82 14.16 11.87 6.73 12.38 74.33

Std Dev 3.60 5.60 2.39 0.89 3.21 4.15 12.03

2CMSC 412 – F11 (lect 11)

Managing Memory
 Main memory is big, but what if we run out

– use virtual memory
– keep part of memory on disk

• bigger than main memory
• slower than main memory

 Want to have several program in memory at once
– keeps processor busy while one process waits for I/O
– need to protect processes from each other
– have several tasks running at once

• compiler, editor, debugger
• word processing, spreadsheet, drawing program

 Use virtual addresses
– look like normal addresses
– hardware translates them to physical addresses

3CMSC 412 – F11 (lect 11)

Advantages of Virtual Addressing

 Can assign non-contiguous regions of physical
memory to programs

 A program can only gain access to its mapped pages
 Can have more virtual pages than the size of physical

memory
– pages that are not in memory can be stored on disk

 Every program can start at (virtual) address 0

4CMSC 412 – F11 (lect 11)

Paging
 Divide physical memory into fixed sized chunks

called pages
– typical pages are 512 bytes to 64KB bytes
– When a process is to be executed, load the pages that are

actually used into memory

 Have a table to map virtual pages to physical pages
 Consider a 32 bit addresses

– 4096 byte pages (12 bits for the page)
– 20 bits for the page number

Page
Table Main

Memory
+

Virtual Address Location Present Rd/Write

20 bits

12 bits

5CMSC 412 – F11 (lect 11)

Problems with Page Tables

 One page table can get very big
– 220 entries (for most programs, most items are empty)

 solution1: use a hierarchy of page tables

Page Table
Main

Memory+

Virtual Address

10 bits

12 bits

Page
Directory

10 bits

Pg Tbl Ptr

Physical Page #

6CMSC 412 – F11 (lect 11)

Faster Mapping from Virtual to Physical
Addresses

 need hardware to map between physical and virtual
addresses
– can require multiple memory references
– this can be slow

 answer: build a cache of these mappings
• called a translation look-aside buffer (TLB)
• associative table of virtual to physical mappings
• typically 16- 64 entries

Virtual Page Physical PageValid

20 bits 20 bits For Intel x86For Intel x86

7CMSC 412 – F11 (lect 11)

Super Pages

 TLB Entries
– Tend to be limited in number
– Can only refer to one page

 Idea
– Create bigger pages
– 4MB instead of 4KB
– One TLB entry covers more memory

8CMSC 412 – F11 (lect 11)

Inverted Page Tables
 Solution to the page table size problem
 One entry per page frame of physical memory

<process-id, page-number>
– each entry lists process associated with the page and the page

number
– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted page
table is searched (usually with the help of a hashing
mechanism)

• if a match is found in entry i in the inverted page table, the
physical address <i,offset> is generated

– The inverted page table does not store information about pages
that are not in memory

• page tables are used to maintain this information
• page table need only be consulted when a page is brought in

from disk

