
1CMSC 412 – S16 (lect 2)

Announcements

� Program #0 

– its due Wed

� Reading

– Chapter 2

– Chapter 3 (for Tuesday)



2CMSC 412 – S16 (lect 2)

System Calls

� Provide the interface between application programs 

and the kernel

� Are like procedure calls

– take parameters

– calling routine waits for response

� Permit application programs to access protected 

resources

load r0, x

system call 10

User Program Operating System

(kernel)

Code for

sys call 10

register r0



3CMSC 412 – S16 (lect 2)

System Call Mechanism

� Use numbers to indicate what call is made

� Parameters are passed in registers or on the stack

� Why do we use indirection of system call numbers 

rather than directly calling a kernel subroutine?

– provides protection since the only routines available are 
those that are export

– permits changing the size and location of system call 
implementations without having to re-link application 
programs



4CMSC 412 – S16 (lect 2)

Types of System Calls
� File Related

– open, create

– read, write

– close, delete

– get or set file attributes

� Information

– get time

– set system data (OS parameters)

– get process information (id, time used)

� Communication

– establish a connection

– send, receive messages

– terminate a connection

� Process control

– create/terminate a process (including self)

– Get/set process meta data (i.e. Limit system call for project #0)



5CMSC 412 – S16 (lect 2)

Why Study Operating Systems?

� They are large and complex programs

– good software engineering examples

� There is no perfect OS

– too many types of users

• real-time, desktop, server, etc...

– many different models and abstractions are possible

• OS researchers have been termed abstraction 
merchants

� Many levels of abstraction

– hardware details: where the bits really go and when

– high level concepts: deadlock, synchronization



6CMSC 412 – S16 (lect 2)

Why Study Operating Systems (cont.)

� Necessity

– reliability: when the OS is down, computer is down

– recovery: when the OS goes down it should not take all of 
your files with it.

� It’s fun

– the details are interesting (at least I think so :)

– thinking about concurrency makes you better at writing 
software for other areas



7CMSC 412 – S16 (lect 2)

Usability Goals

� Robustness

– accept all valid input

– detect and gracefully handle all invalid input

– should not be possible to crash the OS

� Consistency

– same operation should mean the same thing

• read from a file or a network should look the same

• a “-” flag should be the same in different commands

– conventions

• define the convention

• follow the convention when adding new items



8CMSC 412 – S16 (lect 2)

Usability Goals (cont)

� Proportionality

– simple, common cases are easy and fast

• good default values

– complex, rare cases are possible but more complex and 
slower

• “rm *” should give a warning

• formatting the disk should not be on the desktop next to 
the trash can



9CMSC 412 – S16 (lect 2)

Cost Goals

� Good Algorithms

– time/space tradeoff are important

– use special hardware where needed

• smart disk controllers, memory protection

� Low maintenance cost

– should not require constant attention 

� Maintainability

– most of cost in OS is in maintenance so make it easy to 
maintain the software base



10CMSC 412 – S16 (lect 2)

Adaptability Goals

� Tailored to the environment

– server vs. workstation vs. mobile

– multi-media vs. data entry

� Changes over time

– added memory

– new devices

� Extensible

– third parties can add new features

• database vendors often need custom features

– end customers can extend the system

• new devices

• new policies


