
1CMSC 412 – S16 (lect8)

Announcements

� Program #2

– Due next Thursday (3/3/16)

2CMSC 412 – S16 (lect8)

Writers Have Priority

reader
repeat

P(z);

P(rsem);

P(x);

readcount++;

if (readcount == 1) then

P(wsem);

V(x);

V(rsem);

V(z);

readunit;

P(x);

readcount- -;

if readcount == 0 then

V (wsem)

V(x)

forever

writer
repeat

P(y);

writecount++:

if writecount == 1 then

P(rsem);

V(y);

P(wsem);

writeunit

V(wsem);

P(y);

writecount--;

if (writecount == 0) then

V(rsem);

V(y);

forever;

3CMSC 412 – S16 (lect8)

Notes on readers/writers with writers
getting priority

P(z);
P(rsem);
P(x);

readcount++;
if (readcount==1) then

P(wsem);
V(x);
V(rsem);

V(z);

readers queue up on semaphore

z; this way only a single reader

queues on rsem. When a writer

signals rsem, only a single

reader is allowed through

Semaphores x,y,z,wsem,rsem are initialized to 1

4CMSC 412 – S16 (lect8)

Sample Synchronization Problem

� Class Exercise:

– CMSC 412 Midterm #1 (Spring 1998) Q#3

� Went over master solution

� Variables:

Semaphore mutex = 1

Semaphore writer = 0

Semaphore reader = 0

int nReader = 0

int nWriter = 0

int wReader = 0

int wWriter = 0

5CMSC 412 – S16 (lect8)

Sample Synchronization Problem

� Class Exercise:

– CMSC 412 Midterm #1 (Spring 1998) Q#3

� Solve a variation of the readers-writers problem, in which
multiple writers can write at the same time. Specifically, there
are readers and writers. Up to 5 reads at the same time are
allowed, but only one write at the same time are allowed. A read
and a write at the same time is not allowed. Provide a solution
using semaphores with the following properties:

– no busy waiting.

– starvation-free (i.e. a continuous stream of readers does not starve writers,

and vice versa) is desirable but not compulsory (but you will lose some

points).

– you cannot use process ids and you cannot have a separate semaphore for

every process.

