
1CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Announcements

� Project #6

– Clarifications & corrections available on web

� Reading Chapter 15 (Networks)

2CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Viruses

� Most common on systems with little security

– easy to write to boot blocks, system software

– never run untrusted software with special privileges

– Don’t perform daily operations with root/system privileges

� Possible to write system independent viruses

– MS Word virus

• uses macros to call into the OS

– HTML (javascript)

– Flash

3CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Project #6 Notes

� Uid

– First process has uid of 0

– Spawned processes

• Inherit uid of parent

• Unless setuid bit is set on program to run, then the uid of
the owner of that file is used

� ACLs

– First ACL entry is owner

– Others are for other users

• Can delete these entires with setACl(file, uid, 0)

– Uid 0 can open any file regardless of ACLs

4CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Access Matrix

� Abstraction of protection for objects in a system.
– Rows are domains (users or groups of users)

– Columns are objects (files, printers, etc.)

– Items are methods permitted by a domain on an objects

• read, write, execute, print, delete, …

� Representing the Table
– simple representation (dense matrix) is large

– sparse representation possible: each non-zero in the matrix

– observation: same column used frequently

• represent groups of users with a name and just store that

– create a default policy for some objects without a value

� Revocation of access
– when are access rights checked?

– selective revocation vs. global

5CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Access Matrix

F1 F2 F3 Laser Printer

D1 read execute

D2 execute print

D3 read, write execute

D4 execute

D5 delete

� Rows represent users or groups of users

� Columns represent files, printers, etc.

6CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Capabilities

� Un-forgeable Key to access something

� Implementation: a string

– I.e. a long numeric sequence for a copier

� Implementation: A protected memory region

• tag memory (or procedures) with access rights

– example - x86 call gate abstraction

• permit rights amplification

7CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Monitoring

� Record (log) significant events

– attempts to login to the system

– changes to selected files or directories

� Possible to compromise the log

– the user or software breaking in could delete all or part of the logs

– could record logs to non-erasable storage

• have a line printer attached to the machine

• use DVD-ROM drives

– send data to a secure remote host

8CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Tripwire

� Compute a set of expectorations about system

– Hash of file contents

– Dates on files

� Store database of values

– On read-only media

– Offline

� Periodically

– Compare database to current system

– Report any differences

9CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Encryption: protecting info from being read
� Given a message m

– use a key k, and function Ek to compute Ek(m)

– store or send only Ek(m)

– use a second second key k and function Dk’ such that

• Dk’(Ek(m)) = m

– Ek and Dk’ need not be kept a secrete

� If k=k’ it’s called private key encryption
– need to keep k secret

– example AES-256

� if k != k’, it’s called public key encryption
– need only keep one of them secret

– if k’ is secret, anyone can send a private message

– if k is secret, it is possible to “sign” a message

– still need a way to authenticate k or k’ for a user

– example RSA

10CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Public Key Encryption

� Split into public and private keys
– public key used to encrypt messages

• publish this key widely

– private key used to decrypt messages

• keep this key a secret

� RSA
– algorithm for computing public/private key pairs

– based on problems involved in factoring large primes

– for an n bit message P, C = (Pe mod n), and P = (Cd mod n)

� Other Public Key Algorithms
– knapsack

• given a large collection of objects with different weights

• public key is the total weight of a subset of the objects

• private key is the list of objects

11CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

One Time Pad

� Key Idea: randomness in key

� Create a random string as long as the message

– each party has the pad

– xor each bit of the message with the a bit of the key

� Almost impossible to break

� Some practical problems

– need to ensure key is not captured

– a one bit drop will corrupt the rest of the message

12CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Secure Socket Layer

� Goal:

– Provide secure access to remote services

– Authenticate remote servers to local users

– Allow remote systems to authenticate users

– Permit encrypted communication

� Approach

– Public Key Cryptography

• Certificates (signed by certificate authorities)

– Sever sends:

• Certificate (signed use CA’s private key)

• Certificate contains server’s public key

• Client responds by encrypting reply using servers pub
key

• Server checks response with private key

13CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Sending Data

� Data is split into packets

– limited size units of sending information

– can be

• fixed sized (ATM)

• variable size (Ethernet)

� Need to provide a destination for the packet

– need to identify two levels of information

• machine to send data to

• comm abstraction (e.g. process) to get data

– address may be:

• a globally unique destination

– for example every host has a unique id

• may unique between hops

– unique id between two switches

14CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

TCP/IP Protocol
� Name for a family of Network and Transport layers

– can run over many link layers:

• Arpanet, Ethernet, Token Ring, SLIP/PPP, T1/T3, etc.

� IP - Internet Protocol

– network level packet oriented protocol

– 32 bit host addresses (dotted quad 128.8.128.84)

– 8 bit protocol field (e.g. TCP, UDP, ICMP)

� TCP - Transmission Control Protocol

– transport protocol

– end-to-end reliable byte streams

– provides ports for application specific end-points

� UDP- user datagram protocol

– transport protocol

– unreliable packet service

– provides ports for application specific end-points

15CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

TCP/IP History

� Arpanet was the origin of today’s Internet

– started in 1969 to connect universities and DoD sites

– early example of packet switched network

– original links were 64kbps and 9.6kpbs

� TCP/IP v4

– started in use Jan 1, 1983

– This was a flag day

• all systems had to change to the new protocol at once

• with the modern Internet this would be hard to do

� TCP/IP v6

– Moves to 128 bit addresses

– Simplified packet header

16CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Subnet Addressing

� Single site which has many physical networks

– Only local routers know about all the physical nets

– Site chooses part of address that distinguishes between physical

networks

� subnet mask: splits the IP address into two parts

– /xx notation defines boundary where xx is the number of bits in part 1

– First part is network mask

– Second part is address within that network

� Common /24 site mask 255.255.255.0

– use 24 bits represent physical net

– Final 8 bits represent host

17CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Routing
� How does a packet find its destination?

– problem is called routing

� Several options:
– source routing

• end points know how to get everywhere
• each packet is given a list of hops before it is sent

– hop-by-hop
• each host knows for each destination how to get one

more hop in the right direction

� Can route packets:
– per session

• each packet in a connection takes same path
– per packet

• packets may take different routes
• possible to have out of order delivery

18CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Routing IP Datagrams

� Direct Delivery:

– a machine on a physical network can send a physical frame
directly to another

– transmission of an IP datagram between two machines on a
single physical network does not involve routers.

• Sender encapsulates datagram into a physical frame,
maps destination IP address to a physical address and
sends frame directly to destination

– Sender knows that a machine is on a directly connected
network

• compare network portion of destination ID with own ID - if
these match, the datagram can be sent directly

– Direct delivery can be viewed as the final step in any
datagram transmission

19CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Routing Datagrams (cont.)

� Indirect Delivery

– sender must identify a router to which a datagram can be
sent

– sending processor can reach a router on the sending
processor’s physical network (otherwise the network is
isolated!)

– when frame reaches router, router extracts encapsulated
datagram and IP software selects the next router

• datagram is placed in a frame and sent off to the next
router

20CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Table Driven Routing

� Routing tables on each machine store information about
possible destinations and how to reach them

� Routing tables only need to contain network prefixes, not
full IP addresses
– No need to include information about specific hosts

� Each entry in a routing table points to a router that can be
reached across a single network

� Hosts and routers decide
– can packet be directly sent?
– which router should be responsible for a packet (if there is

more than one on physical net)

21CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Routing (w/ subnets)

21

Network
128.1.0.0/

16

Network
192.4.10.0/

24

Q R
Network
40.0.0.0/

8

Network
30.0.0.0/

8

S

30.0.0.7 128.1.0.940.0.0.8

40.0.0.7 128.1.0.8 192.4.10.9

To reach hosts

on network
Mask* Next Hop

30.0.0.0 255.0.0.0 40.0.0.7

40.0.0.0 255.0.0.0 <DIRECT>

128.1.0.0 255.255.0.0 <DIRECT>

192.4.10.0 255.255.255.0 128.1.0.9

Consider a datagram destined for address 192.4.10.3

and the datagram arrives at router R

Mask field is used to extract the network part of an address

during lookup.

If((Mask[i] & D) == Destination[i]) forward to nextHop[i]

Extract destination IP address, D from datagram

and compute network prefix N

255.0.0.0&192.4.10.3 is not equal to 30.0.0.0

<same for entry 2 and 3>

255.255.255.0&192.4.10.3=192.4.10.0

� send to 128.1.0.9

Example from Comer book: Internetworking with TCP/IP: volume 1 [Third Edition]

22CMSC 412 – S16 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

22

Algorithm: RouteDatagram (Datagram, RoutingTable)

Extract destination IP address, D, from datagram

and compute network prefix N

If N matches any directly connected network

address

[Direct delivery]

Else if the table contains a host-specific route for D

[send datagram to next-hop specified in table]

Else if the table contains a route for network N

[send datagram to next-hop specified in table]

Else if the table contains a default route

[send the datagram to the default route]

Else declare a routing error

Algorithm from Comer book: Internetworking with TCP/IP: volume 1 [Third Edition]

