
CMSC 412 Project #5
File System

Due Friday, April 28 at 5:00pm

Introduction

The purpose of this project is to add a new filesystem to GeekOS, as well as the standard operations for

file management.

This project will be done in teams, but the teams will be different than they were for project #4.

Also there are different variations of the project for each team. Make sure to get your team

specific variation (it will be emailed to you).

CFS - Chameleon FileSystem

The main part of this project is to develop a new filesystem for the GeekOS. This filesystem will reside

on the second IDE disk drive in the QEMU emulator. This will allow you to continue to use your

existing PFAT drive to load user programs while you test your filesystem. The second IDE disk's image

is called diskd.img.

CFS will provide a filesystem that includes multiple directories and long file name support.

The Mount system call allows you to associate a filesystem with a place in the file name hierarchy. The

Mount call is implemented as part of the VFS code we supply.

Then you can mount the CFS file system on drive 1 onto /d, for instance.

VFS and file operations

Since GEEKOS will have two types of filesystems (PFAT and CFS), it has a virtual filesystem layer

(VFS) to handle sending requests to an appropriate filesystem (see figure below). We have provided an

implementation of the VFS layer in the file vfs.c. The VFS layer will call the appropriate CFS routines

when a file operation refers a file in the CFS filesystem.

Most of the System Call layer is already implemented in syscall.c and the PFAT in pfat.c. Thus the

only component you need to take care of is the CFS one.

Each user space process will have a file descriptor table that keeps track of which files that process can

currently read and write. Any user process should be able to have up to 10 files open at once. The file

descriptors for a user process are kept in the files[MAX_OPEN_FILES] array in struct

User_Context. Note that not all the entries in the files are open files, since usually a process has

less than 10 files open at once. If the field openFile.fsType == FS_TYPE_NONE that represents a free

slot (file descriptor not used). But the good news is that file descriptor management is already

implemented for you (see Open() function in vfs.c).

Your filesystem should support fixed length filenames (at most 64 bytes, including a null at the end for a

file/directory name). A full path to a file will be no more than 1024 characters.

You should keep track of free disk blocks using a bit vector (as described in class). A library called

bitset is provided (see bitset.h and bitset.c) that manages a set of bits and provides functions to find

bits that are 0 (i.e. correspond to free disk blocks).

All disk allocations will be in units of 4KB (i.e. 8 physical disk blocks). Thus one bit in a bitset

corresponds to a 4KB block. A bitset that is 8192 bits (1024 bytes) large will obviously keep track of

8192 * 4KB = 32 MB of data.

Directory Structure

See the recitation slides for details on directory structure. Each directory in CFS takes up a single disk

block. The structure of the directory is defined in cfs.h. A directory is an array of CFSfileNode (55

elements, since they have to fit in a single 4KB block). Each filenode can represent either a file in the

directory or a subdirectory.

Each file also has an inode (CFSiNode) associated with it. The inode for a directory is distinguished by

the isDirectory bit. The location of the block that holds the data for the directory will be stored in the

first entry in the blocks array of the directory's filenode (hence entries blocks[1]..blocks[7] are

unused).

Files

Unlike directories, that have a fixed size of one blocks (irrespective of how many files the hold), files

can take up an arbitrary number of disk blocks. You will use a version of indexed allocation to represent

the data blocks of your filesystem. The blocks field (CFSiNode, cfs.h) keeps track of data blocks for a

file. The first eight 4KB-blocks are direct blocks, the ninth points to a single indirect block, the tenth to a

double indirect block. See the recitation slides for a detailed layout.

New System Calls

You have to implement the semantics of the new system calls as described below. As you see, the

semantics is very similar to the UNIX one.

• All of these functions vector through the VFS layer before you implement them at the CFS level. So

the functions names are all of the form CFS_<function>. So the Mount call you implement is

CFS_Mount in cfs.c

• You can look in pfat.c to see how a complete implementation of a filesystem using the VFS layer

works. Be sure to look at the use of VFS functionality such as Allocate_File, which will be critical

to use.

System Call

User Function

Return

on

success

Return

on

failure

Reasons for failure Comment

SYS_MOUNT

Mount(char *dev, char

*prefix, char *fstype)

0 -1

• a filesystem

already mounted

under name

• illegal value for

one of the

parameters

Your Mount function should not "validate" the

filesystem settings except for magic and version

fields, and that block size is support-able (a

multiple of 512, or 512/1024/4096 at least). Other

items, e.g., the number and start location of

inodes and the total number of blocks, can be

arbitrary.

SYS_OPEN

Open(char *name, int

permissions)

new file

descriptor

number

-1

• name does not

exist (if

permissions don't

include O_CREATE)

• path to name
does not exist (if
permissions

include O_CREATE)

• there's no create syscall, so setting

O_CREATE will create the file. If the file

exists, the call succeeds (return >= 0) but its

data contents is not affected.

• Should NOT create directories recursively

if needed (unless O_RECURSIVE is

supplied and you have been assigned this

option), e.g. Open("/d/d1/d2/d3/xFile",

• O_WRITE and

O_CREATE not

allowed for

directories, use
CreateDirectory
instead

O_CREATE), will NOT create d1 inside of d,

d2 inside of d1, etc. if they don't exist

already. If the leading path /d/d1/d2/d3 does

not exist, the syscall fails, returning -1

• The permissions values are flags and may

be or'ed together in a call. For example:

• O_CREATE|O_READ

• O_READ|O_WRITE

• O_CREATE|O_READ|O_WRITE

SYS_OPEN_DIRECTORY

Open_Directory(char

*name)

New file

descriptor

number

-1

• name does not

exist

• name is not a

directory

SYS_CLOSE

Close(int fd)
0 -1

• fd not within 0-9

• fd is not an open

file

SYS_DELETE

Delete(char *name)
0 -1

• name does not

exist

• name is a non-

empty directory

if Delete(file) is called and file is still

open in other threads or even in the thread

that called Delete(), all the subsequent

operations on that file (except Close())

should fail

SYS_READ

Read(int fd, char *buffer,

int length)

number

of bytes

read

-1

• fd not within 0-9

• fd is not an open

file

• fd was not open

with O_READ flag

• it's OK if return value < length, for

instance reading close to end of file

• increase the filePos, if successful

There is special behavior when SYS_READ

is called on a directory:

• The data put into the buffer should be

formatted as an array of dirEntry

structs.

• The length argument specifies the

number of dirEntries to return

• The return value equals the number of

dirEntries read

dirEntry is defined in fileio.h

SYS_READ_ENTRY

Read_Entry(int fd, struct

VFS_Dir_Entry *dirent)

0 -1

• fd is not a

directory

• file pointer is at

end of directory

SYS_WRITE

Write(int fd, char *buffer,

int length)

number

of bytes

written

-1

• fd not within 0-9

• fd is not an open

file

• fd was not open

with O_WRITE flag

• fd is a directory

• disk is full

• increases filePos is successful

• "Grow on write"- allocate blocks "on the

fly" if past end of file

SYS_STAT

Stat(char *file, fileStat

*stat)

0 -1
 • file is not

found, readable

SYS_FSTAT

Stat(int fd, fileStat *stat)
0 -1

• fd not within 0-9

• fd is not an open

file

SYS_SEEK

Seek(int fd, int offset)
0 -1

• fd not within 0-9

• fd is not an open

file

• offset >
fileSize

offset is an absolute position; could be

equal to fileSize, then Write appends, see

above. A seek on a directory is in units of

directory entries not bytes.

SYS_CREATEDIR

CreateDirectory(char

*name)

0 -1

• name already

exists, as file or

directory

• regular file

encountered on the

path to name

• Directory

full

Should create directories recursively if

needed, e.g.

CreateDirectory("/d/d1/d2/d3/d4"),

will create d1 inside of d, d2 inside of d1, etc.

if they don't exist already. This operation

should be atomic, in the sense that either the

whole directory chain is created or no

directory is created.

SYS_FORMAT

Format(int drive)
0 -1

• illegal value for

drive (it must work

with 1, higher is

optional)

• drive is in use,

i.e. mounted

formats a drive with CFS; don't need to

support formatting with PFAT ; don't need to

format in init code; so you can save your data

between sessions

SYS_RENAME

Rename(char *old, char

*new)

0 -1

• Old file does not

exist

• New file does

exist

Renames a file form old to new. The names

will be within the same file system (i.e. we

will not rename form /c/myfile to /d/myfile).

SYS_LINK

Link(char *old, char *new)
0 -1

• Old file does not

exist

• New file does

exist

Creates a hard link from one old to new.

Hard links have separate directory entries but

share the same inode. Hard links are only

within a partition/filesystem.

SYS_SYMLINK

SymLink(old, new)
0 -1

• Old file does not

exist

Creates a symbolic link from old to new.

The contents of the new file are the name of

• New file does

exist

the old file. Symbolic links may span

multiple partitions/filesystems.

SYS_SYNC

Sync()
0 -1

• Error in writing

data to disk

Upon return, all data should be flushed to disk (if

you are doing the version with the buffer cache,

you will need to make sure the buffer cache is

flushed too).

Disk Layout

Number of Blocks (8 512 bye sectors) Purpose

1 Superblock

Disk size/(4096*8) Free blocks

(numInodes*sizeof(CFSiNode))/4096 Inodes

Rest of disk files

A guideline is provided above. First block (0) is called SUPERBLOCK (defined in cfs.h as cfsHeader),

and contains filesystem housekeeping data. Blocks >= 1 contain files and directories. It contains:

• The Magic number at the very beginning should be 0x20140000. This tells you that the disk has a

CFS filesystem on it. If you try to mount a drive and you don't find the magic signature, return

error.

• Size is the size of the disk, in 4KB blocks. (32M / 4K = 8K for the example above)

• numInodes indicates the number of inodes that are on the disk (determined when the file

system is formatted, must be at least 512 – probably much more)

• firstInodeBlock indicates the block number where the first inode is stored

(numInodes follow in the block(s) right after that)

• firstFreeInode indicates the inode number of the first free inode on the disk.

When you do a Format() , you make a raw disk usable with CFS. That is:

1. Get drive's size, convert it in # of blocks. IDE_getNumBlocks() in ide.c tells you that.

2. Figure out Free Blocks Bitmap size, mark them all free.

3. Create a valid, but empty directory. That will be the root directory (inode #0)

4. Mark superblock, inodes, freemap, and block for root directory as used in the Free Blocks
Bitmap

5. If everything went OK, write the Magic. Now the disk is ready to be mounted and used.

Notes

You do not need to consider situations where two processes have the same file open. You do not need to

consider situations where one process opens the same file twice without closing it in between.

Too allow you to cache information, the VFS layer includes a Sync function. When the Sync function is

called, all changed state needs to be saved to disk (i.e. the machine can be rebooted after it). You may

choose to make all operations synchronous, in that case sync will be a no-op.

If a read() is called on a directory, the data returned should be in the form of an array of dirEntry

structures. The length argument and the return value will indicate the number of entries to read and the

number of entries that were read, rather than the number of bytes.

Project Variants

There are five a/b variants of the project. For each variant, your team will be assigned a specific option (a or b)

that you will implement. The options are:

Case Sensitive File Names/Lower Case File Names

In the A option all file names are case sensitive.

In the B option all file names should be converted to lower case before being used.

Buffer Cache/No Buffer Cache

In the A option you will use the Buffer Cache API to access the disk drive. The relevant functions are:

struct FS_Buffer_Cache *Create_FS_Buffer_Cache(struct Block_Device *dev, uint_t

fsBlockSize);

int Sync_FS_Buffer_Cache(struct FS_Buffer_Cache *cache);

int Destroy_FS_Buffer_Cache(struct FS_Buffer_Cache *cache);

int Get_FS_Buffer(struct FS_Buffer_Cache *cache, ulong_t fsBlockNum, struct FS_Buffer

**pBuf);

void Modify_FS_Buffer(struct FS_Buffer_Cache *cache, struct FS_Buffer *buf);

int Sync_FS_Buffer(struct FS_Buffer_Cache *cache, struct FS_Buffer *buf);

int Release_FS_Buffer(struct FS_Buffer_Cache *cache, struct FS_Buffer *buf);

In the B option, use the raw IDE functions to access the disk drive. The relevant functions are:

 int Block_Read(struct Block_Device *dev, int blockNum, void *buf);

int Block_Write(struct Block_Device *dev, int blockNum, void *buf);

int Get_Num_Blocks(struct Block_Device *dev);

Trash Can/Backup File

In the A option, when a file is deleted, it is moved into the directory /TRASH (which you should create

as part of formatting the disk drive). If there is already a file with that name in the trash, the older one

should be deleted and the newly deleted file placed in trash. The trash can does not have sub-directories

so if the file /d/dir/oldFile is deleted, it should end up as /TRASH/oldFile). You can not

delete the /TRASH directory.

In the B option, when a file (but not a directory) is opened for writing and it already exists, a backup

copy of the file should be made in the same directory with the suffix .BU added to the file name. If

there is already a file with the .BU suffix, it should be deleted and then the copy made of the file being

opened. All file names we will use will have enough room for the .BU suffix to be added.

Symbolic Links/Hard Links

In the A option, you will add the system call SymLink to the file system. SymLink will create symbolic

links to a file. The contents of a symbolic link file is the name of the file to symbolically link to. The

file system knows it is a symbolic link since the isSymbolicLink field is set in the inode. When you

open a file (or directory), you will check if it is a symbolic link and if so, read the contents of the file

(the name of the linked file) and open that instead. This process can iterate several times until a non-

symbolically linked file is reached.

In the B option, you will add the system call Link to the file system. The Link call creates a hard link to

the file. In a hard link, each file has a directory entry but the point to a single shared inode. To

correctly handle deleting inodes, you will need to maintain a reference count in the inode (the refCount

field is provided for that purpose).

Recursive Directory Creation/Recursive File Deletion

In the A option, you will add a new mode to the Open system call (O_RECURSIVE). If this mode is set,

and an attempt is made to create a file in a directory that does not exist, you will create the directory

before opening the file. This call is recursive so on an empy file system and open of /d/dir1/dir2/file will

first create /d/dir1 and then /d/dir1/dir2 before creating the file.

In the B option, you will implement the recursive option to the Delete system call. When true is passed

to this option, a delete of a directory will recursively delete all the files in that directory before deleting

the directory.

In both options, createDirectory should recursively create directories as described above.

Requirements

• Make sure your Mount() works well, so that we can test your project. If we cannot Mount() a CFS,

we cannot grade your project.

• You might also want to mount "/d" (dee) automatically in Main() to speed up your testing, but the

code you submit should not mount "/d" automatically. "/c" (cee) should be mounted automatically in

Main() though.

• You should support disk sizes of at least 32 MB. More than 32 MB is optional. Following the

procedure described in the "How to create an arbitrary size big diskd.img" section above, in your

submitted project, when someone types gmake, a 32 MB file should be created.

• You should support file sizes of at least 5 MB (double indirect threshold crossed, yes). More than 5

MB is optional.

Testing

As you saw at the top, in src/user there are some programs that can be used to test your file

management syscalls: rm.c, cp,c, ls.c, mkdir.c, mount.c, nsp5test.c.

