
1CMSC 412 – S17 (lect 2)

Announcements

� Program #0

– its due Friday

– There was an update to the handout on Monday

� Reading

– Chapter 2

– Chapter 3 (for Tuesday)

2CMSC 412 – S17 (lect 2)

System Calls

� Provide the interface between application programs

and the kernel

� Are like procedure calls

– take parameters

– calling routine waits for response

� Permit application programs to access protected

resources

load r0, x

system call 10

User Program Operating System

(kernel)

Code for

sys call 10

register r0

3CMSC 412 – S17 (lect 2)

System Call Mechanism

� Use numbers to indicate what call is made

� Parameters are passed in registers or on the stack

� Why do we use indirection of system call numbers

rather than directly calling a kernel subroutine?

– provides protection since the only routines available are
those that are export

– permits changing the size and location of system call
implementations without having to re-link application
programs

4CMSC 412 – S17 (lect 2)

Types of System Calls
� File Related

– open, create

– read, write

– close, delete

– get or set file attributes

� Information

– get time

– set system data (OS parameters)

– get process information (id, time used)

� Communication

– establish a connection

– send, receive messages

– terminate a connection

� Process control

– create/terminate a process (including self)

– Get/set process meta data (i.e. Limit system call for project #0)

5CMSC 412 – S17 (lect 2)

Computer Systems

� Computers have many different devices

– I/O Devices

– Memory

• volatile storage

– Processor(s)

Processor Memory

Mem. Controller

I/O Bus Controller

Memory Bus (Front Side)

I/O Bus (PCI)

Display AdapterUSB Adapter

Peripheral Bus (USB)

Disk Drives Keyboard DVD Drive

Network Adapter

Network (Ethernet)

Disk Controller

Disk Bus (SATA)

Processor

6CMSC 412 – S17 (lect 2)

I/O Systems

� Many different types of devices

– disks

– networks

– displays

– mouse

– keyboard

– tapes

� Each have a different expectation for performance

– bandwidth

• rate at which data can be moved

– latency

• time from request to first data back

7CMSC 412 – S17 (lect 2)

Different Requirements lead to Multiple
Buses

� Processor Bus (on chip)

– Many Gigabytes/sec

� Memory Bus (on processor board)

– Up to 100 Gigabyte per second

� I/O Bus (PCI & PCI-E)

– ~1s gigabytes per second

– buses are more complex than we saw in class

• show PCI spec.

� Device Bus (SCSI, USB)

– tens of megabytes per second

8CMSC 412 – S17 (lect 2)

Issues In Busses

� Performance

– increase the data bus width

– have separate address and data busses

– block transfers

• move multiple words in a single request

� Who controls the bus?

– one or more bus masters

• a bus master is a device that can initiate a bus request

– need to arbitrate who is the bus master

• assign priority to different devices

• use a protocol to select the highest priority item

– daisy chained

– central control

9CMSC 412 – S17 (lect 2)

Disks

� Several types:

– Hard Disks - rigid surface with magnetic coating

– Floppy disks - flexible surface with magnetic coating

– Optical (CDs and DVDs) - read only, write once, multi-write

– Solid State (Flash) – fast seek times, limited number of writes

� Hard Disk Drives:

– collection of platters

– platters contain concentric rings called tracks

– tracks are divided into fixed sized units called sectors

– a cylinder is a collection of all tracks equal distant from the center of

disk

– Current Performance:

• capacity: gigabytes to terabytes

• throughput: sustained < 20 megabytes/sec

• latency: mili-seconds

10CMSC 412 – S17 (lect 2)

I/O Interfaces

� Need to adapt Devices to CPU speeds

� Moving the data

– Programmed I/O

• Special instructions for I/O

– Mapped I/O

• looks like memory only slower

– DMA (direct memory access)

• device controller can write to memory

• processor is not required to be involved

• can grab bus bandwidth which can slow the processor
down

11CMSC 412 – S17 (lect 2)

I/O Interrupts

� Interrupt defined

– indication of an event

– can be caused by hardware devices

• indicates data present or hardware free

– can be caused by software

• system call (or trap)

– CPU stops what it is doing and executes a handler function

• saves state about what was happening

• returns where it left off when the interrupt is done

� Need to know what device interrupted

– could ask each device (slow!)

– instead use an interrupt vector

• array of pointers to functions to handle a specific interrupt

12CMSC 412 – S17 (lect 2)

Hardware Protection

� Need to protect programs from each other

� Processor has modes

– user mode and supervisor (monitor, privileged)

– operations permitted in user mode are a subset of supervisor
mode

� Memory Protection

– control access to memory

– only part of the memory is available

• can be done with base/bound registers

� I/O Protection

– I/O devices can only be accessed in supervisor mode

� Processor Protection

– Periodic timer returns processor to supervisor mode

13CMSC 412 – S17 (lect 2)

Operating System Structure

� Simple Structure (or no structure)

– any part of the system may use the functionality of the rest of
the system

– MS-DOS (user programs can call low level I/O routines)

� Layered Structure

– layer n can only see the functionality that layer n-1 exports

– provides good abstraction from the lower level details

• new hardware can be added if it provides the interface
required of a particular layer

– system call interface is an example of layering

– can be slow if there are too many layers

� Hybrid Approach

– most real systems fall somewhere in the middle

14CMSC 412 – S17 (lect 2)

Policy vs. Mechanism

� Policy - what to do

– users should not be able to read other users files

� Mechanism- how to accomplish the goal

– file protection properties are checked on open system call

� Want to be able to change policy without having to

change mechanism

– change default file protection

� Extreme examples of each:

– micro-kernel OS - all mechanism, no policy

– MACOS - policy and mechanism are bound together

