
1CMSC 412 – S17 (lect 3)

Announcements

� Program #0

– Due on Friday

– Limit should return 0 when called with correct parameters

– Calling limit resets the counter, so a Limit(0,4) will be killed
on the 5th system call after Limit.

� Reading

– Today: Processes - Chapter 3 (ch 4, 6th Ed)

– Thursday: Threads - Chapter 4 (ch 5, 6th Ed)

2CMSC 412 – S17 (lect 3)

Multi-programming

� Systems that permit more than one process at once

– virtually all computers today

� Permits more efficient use of resources

– while one process is waiting another can run

� Provides natural abstraction of different activities

– windowing system

– editor

– mail daemon

� Preemptive vs. non-preemptive muti-programming

– preemptive means that a process can be forced off the
processor by the OS

– provides processor protection

3CMSC 412 – S17 (lect 3)

Process State Transitions

new

readyready runningrunning

waitingwaiting

terminatedterminated

admitted

interrupt

dispatch

I/O request or event wait
I/O request or

event wait done

Kill

exit

4CMSC 412 – S17 (lect 3)

Components of a Process

� Memory Segments

– Program - often called the text segment

– Data - global variables

– Stack - contains activation records

� Processor Registers

– program counter - next instruction to execute

– general purpose CPU registers

– processor status word

• results of compare operations

– floating point registers

5CMSC 412 – S17 (lect 3)

Process Control Block

� Stores all of the information about a process

� PCB contains
– process state: new, ready, etc.

– processor registers

– Memory Management Information

• page tables, and limit registers for segments

– CPU scheduling information

• process priority

• pointers to process queues

– Accounting information

• time used (and limits)

• files used

• program owner

– I/O status information

• list of open files

• pending I/O operations

6CMSC 412 – S17 (lect 3)

Storing PCBs

� Need to keep track of the different processes in the

system

� Collection of PCBs is called a process table

� How to store the process table?

� First Option:

� Problems with Option 1:

– hard to find processes

– how to fairly select a process

P1 P2 P2 P3 P4 P5

Ready Waiting Waiting ReadyNew Term

7CMSC 412 – S17 (lect 3)

Queues of Processes

� Store processes in queues based on state

P1 P2
Ready

Queue

P3 P4
Disk

Queue

P5 P6
Network

Queue

8CMSC 412 – S17 (lect 3)

forking a new process

� create a PCB for the new process

– copy most entries from the parent

– clear accounting fields

– buffered pending I/O

– allocate a pid (process id for the new process)

� allocate memory for it

– could require copying all of the parents segments

– however, text segment usually doesn’t change so that could
be shared

– might be able to use memory mapping hardware to help

• will talk more about this in the memory management part
of the class

� add it to the ready queue

9CMSC 412 – S17 (lect 3)

Variations on Creating a Process

� Fork() [often used with exec too]

– Create a new process with new address space

– Parent address space copied into child

– Child resumes at return of fork

� Spawn(program)

– Create a new process with a new address space

– Child starting running the passed program

– Parent returns from spawn and continues executionn

� Clone(func, stack)

– Creates a new process that shares parents address space

– Child starts running func using the passed stack for locals

– Parent returns from clone and continues execution

10CMSC 412 – S17 (lect 3)

Process Termination
� Process can terminate self

– via the exit system call

� One process can terminate another process
– use the kill system call

– can any process kill any other process?

• No, that would be bad.

• Normally an ancestor can terminate a descendant

� OS kernel can terminate a process
– exceeds resource limits

– tries to perform an illegal operation

� What if a parent terminates before the child
– called an orphan process

– in UNIX becomes child of the root process

– in VMS - causes all descendants to be killed

11CMSC 412 – S17 (lect 3)

Termination (cont.) - UNIX example

� Kernel

– frees memory used by the process

– moved process control block to the terminated queue

� Terminated process

– signals parent of its death (SIGCHILD)

– is called a zombie in UNIX

– remains around waiting to be reclaimed

� parent process

– wait system call retrieves info about the dead process

• exit status

• accounting information

– signal handler is generally called the reaper

• since its job is to collect the dead processes

