Announcements

- Program #1
 - Due February 16th
- Reading
 - Threads Chapter 4 (ch 5, 6th Ed)

Process State Transitions

CMSC 412 - S16 (lect 4)

2

Components of a Process

Memory Segments

- Program often called the text segment
- Data global variables
- Stack contains activation records

Processor Registers

- program counter next instruction to execute
- general purpose CPU registers
- processor status word
 - results of compare operations
- floating point registers

Process Control Block

- Stores all of the information about a process
- PCB contains
 - process state: new, ready, etc.
 - processor registers
 - Memory Management Information
 - page tables, and limit registers for segments
 - CPU scheduling information
 - process priority
 - pointers to process queues
 - Accounting information
 - time used (and limits)
 - files used
 - program owner
 - I/O status information
 - list of open files
 - pending I/O operations

Storing PCBs

- Need to keep track of the different processes in the system
- Collection of PCBs is called a process table
- How to store the process table?
- First Option:

P1	P2	P2	P3	P4	P5
Ready	Waiting	New	Term	Waiting	Ready

- Problems with Option 1:
 - hard to find processes
 - how to fairly select a process

Queues of Processes

• Store processes in queues based on state

forking a new process

- create a PCB for the new process
 - copy most entries from the parent
 - clear accounting fields
 - buffered pending I/O
 - allocate a pid (process id for the new process)
- allocate memory for it
 - could require copying all of the parents segments
 - however, text segment usually doesn't change so that could be shared
 - might be able to use memory mapping hardware to help
 - will talk more about this in the memory management part of the class
- add it to the ready queue

Variations on Creating a Process

- Fork() [often used with exec too]
 - Create a new process with new address space
 - Parent address space copied into child
 - Child resumes at return of fork
- Spawn(program)
 - Create a new process with a new address space
 - Child starting running the passed program
 - Parent returns from spawn and continues executionn
- Clone(func, stack)
 - Creates a new process that shares parents address space
 - Child starts running func using the passed stack for locals
 - Parent returns from clone and continues execution

Process Termination

- Process can terminate self
 - via the exit system call
- One process can terminate another process
 - use the kill system call
 - can any process kill any other process?
 - No, that would be bad.
 - Normally an ancestor can terminate a descendant
- OS kernel can terminate a process
 - exceeds resource limits
 - tries to perform an illegal operation
- What if a parent terminates before the child
 - called an orphan process
 - in UNIX becomes child of the root process
 - in VMS causes all descendants to be killed

Termination (cont.) - UNIX example

Kernel

- frees memory used by the process
- moved process control block to the terminated queue

Terminated process

- signals parent of its death (SIGCHILD)
- is called a zombie in UNIX
- remains around waiting to be reclaimed

parent process

- wait system call retrieves info about the dead process
 - exit status
 - accounting information
- signal handler is generally called the reaper
 - since its job is to collect the dead processes

Relationship between Kernel mod and User Mode

Kernel Threads:

Each has own stack (separate from user mode)
Share heap with other kernel threads
Run same program (kernel) as other kernel threads

CMSC 412 - S16 (lect 4)

Threads

- processes can be a heavy (expensive) object
- threads are like processes but generally a collection of threads will share
 - memory (except stack)
 - open files (and buffered data)
 - signals
- can be user or system level
 - user level: kernel sees one process
 - + easy to implement by users
 - I/O management is difficult
 - in an multi-processor can't get parallelism
 - system level: kernel schedules threads

Important Terms

- Threads
 - An execution context sharing an address space
- Kernel Threads
 - Threads running with kernel privileges
- User Threads
 - Threads running in user space
- Processes
 - An execution context with an address space
 - Visible to and scheduled by the kernel
- Light-Weight Processes
 - An execution context sharing an address space
 - Visible to and scheduled by the kernel