
1CMSC 412 – S17 (lect7)

Announcements

� Program #1

– Due 2/15 at 5:00 pm

� Reading

– Finish scheduling

– Process Synchronization:

• Chapter 6 (8th Ed) or Chapter 7 (6th Ed)

2CMSC 412 – S17 (lect7)

Scheduling criteria
� Per processor, or system oriented

– CPU utilization

• maximize, to keep as busy as possible

– throughput

• maximize, number of processes completed per time unit

� Per process, or user oriented

– turnaround time

• minimize, time of submission to time of completion.

– waiting time

• minimize, time spent in ready queue - affected solely by
scheduling policy

– response time

• minimize, time to produce first output

• most important for interactive OS

3CMSC 412 – S17 (lect7)

Short-term scheduling algorithms

� First-Come, First-Served (FCFS, or FIFO)

– as process becomes ready, join Ready queue, scheduler
always selects process that has been in queue longest

– better for long processes than short ones

– favors CPU-bound over I/O-bound processes

– need priorities, on uniprocessor, to make it effective

4CMSC 412 – S17 (lect7)

Algorithms (cont.)

� Round-Robin (RR)
– use preemption, based on clock - time slicing

• generate interrupt at periodic intervals

– when interrupt occurs, place running process in Ready
queue, select next process to run using FCFS

– what’s the length of a time slice

• short means short processes move through quickly, but
high overhead to deal with clock interrupts and
scheduling

• guideline is time slice should be slightly greater than time
of “typical job” CPU burst

– problem dealing with CPU and I/O bound processes

5CMSC 412 – S17 (lect7)

Priority Based Scheduling

� Priorities

– assign each process a priority, and scheduler always
chooses process of higher priority over one of lower priority

� More than one ready queue, ordered by priorities
RQ0

CPU

RQ1

RQn

Blocked queue

...Admit

Event

Occurs

Event Wait

Preemption

Dispatch Release

6CMSC 412 – S17 (lect7)

Priority Algorithms

� Fixed Queues

– processes are statically assigned to a queue

– sample queues: system, foreground, background

� Multilevel Feedback

– processes are dynamically assigned to queues

– penalize jobs that have been running longer

– preemptive, with dynamic priority

– have N ready queues (RQ0-RQN),

• start process in RQ0

• if quantum expires, moved to i + 1 queue

7CMSC 412 – S17 (lect7)

Feedback scheduling (cont.)

– problem: turnaround time for longer processes

• can increase greatly, even starve them, if new short jobs
regularly enter system

– solution1: vary preemption times according to queue

• processes in lower priority queues have longer time slices

– solution2: promote a process to higher priority queue

• after it spends a certain amount of time waiting for service in its
current queue, it moves up

– solution3: allocate fixed share of CPU time to jobs

• if a process doesn’t use its share, give it to other processes

• variation on this idea: lottery scheduling

– assign a process “tickets” (# of tickets is share)

– pick random number and run the process with the winning
ticket.

8CMSC 412 – S17 (lect7)

UNIX System V

� Multilevel feedback, with
– RR within each priority queue

– 10ms second preemption

– priority based on process type and execution history, lower
value is higher priority

� priority recomputed once per second, and scheduler
selects new process to run

� For process j, P(i) = Base + CPU(i-1)/2 + nice
– P(i) is priority of process j at interval i

– Base is base priority of process j

– CPU(i) = U(i)/2 + CPU(i-1)/2

• U(i) is CPU use of process j in interval i

• exponentially weighted average CPU use of process j
through interval i

– nice is user-controllable adjustment factor

9CMSC 412 – S17 (lect7)

UNIX (cont.)

� Base priority divides all processes into (non-

overlapping) fixed bands of decreasing priority levels

– swapper, block I/O device control, file manipulation,
character I/O device control, user processes

� bands optimize access to block devices (disk), allow

OS to respond quickly to system calls

� penalizes CPU-bound processes w.r.t. I/O bound

� targets general-purpose time sharing environment

10CMSC 412 – S17 (lect7)

Example: Windows NT/XP

� Target:
– single user, in highly interactive environment

– a server

� preemptive scheduler with multiple priority levels

� flexible system of priorities, RR within each, plus
dynamic variation on basis of current thread activity
for some levels

� 2 priority bands, real-time and variable, each with 16
levels
– real-time ones have higher priority, since require immediate

attention(e.g. communication, real-time task)

11CMSC 412 – S17 (lect7)

Windows NT/XP (cont.)

� In real-time class, all threads have fixed priority that

never changes

� In variable class, priority begins at an initial value,

and can change, up or down

– FIFO queue at each level, but thread can switch queues

� Dynamic priority for a thread can be from 2 to 15

– if thread interrupted because time slice is up, priority lowered

– if interrupted to wait on I/O event, priority raised

– favors I/O-bound over CPU-bound threads

– for I/O bound threads, priority raised more for interactive
waits (e.g. keyboard, display) than for other I/O (e.g. disk)

12CMSC 412 – S17 (lect7)

Multi-Processor Scheduling

� Multiple processes need to be scheduled together

– Called gang-scheduling

– Allowing communicating processes to interact w/o/ waiting

� Try to schedule processes back to same processor

– Called affinity scheduling

• Maintain a small ready queue per processor

• Go to global queue if nothing local is ready

13CMSC 412 – S17 (lect7)

Medium vs. Short Term Scheduling

� Medium-term scheduling

– Part of swapping function between main memory and disk

• based on how many processes the OS wants available
at any one time

• must consider memory management if no virtual memory
(VM), so look at memory requirements of swapped out
processes

� Short-term scheduling (dispatcher)

– Executes most frequently, to decide which process to
execute next

– Invoked whenever event occurs that interrupts current
process or provides an opportunity to preempt current one in
favor of another

– Events: clock interrupt, I/O interrupt, OS call, signal

14CMSC 412 – S17 (lect7)

Long-term scheduling

� Determine which programs admitted to system for
processing - controls degree of multiprogramming

� Once admitted, program becomes a process, either:
– added to queue for short-term scheduler

– swapped out (to disk), so added to queue for medium-term
scheduler

� Batch Jobs
– Can system take a new process?

• more processes implies less time for each existing one

• add job(s) when a process terminates, or if percentage of
processor idle time is greater than some threshold

– Which job to turn into a process

• first-come, first-serve (FCFS), or to manage overall
system performance (e.g. based on priority, expected
execution time, I/O requirements, etc.)

15CMSC 412 – S17 (lect7)

Process State Transitions

New

Exit

Ready,

suspend
Ready Running

Blocked
Blocked,

suspend

Long-term scheduling

Medium-

term

scheduling

Short-

term

scheduling

Event

wait

16CMSC 412 – S17 (lect7)

Cooperating Processes

� Often need to share information between processes

– information: a shared file

– computational speedup:

• break the problem into several tasks that can be run on
different processors

• requires several processors to actually get speedup

– modularity: separate processes for different functions

• compiler driver, compiler, assembler, linker

– convenience:

• editing, printing, and compiling all at once

17CMSC 412 – S17 (lect7)

Interprocess Communication

� Communicating processes establish a link

– can more than two processes use a link?

– are links one way or two way?

– how to establish a link

• how do processes name other processes to talk to

– use the process id (signals work this way)

– use a name in the filesystem (UNIX domain sockets)

– indirectly via mailboxes (a separate object)

� Use send/receive functions to communicate

– send(dest, message)

– receive(dest, message)

18CMSC 412 – S17 (lect7)

Producer-consumer pair

� producer creates data and sends it to the consumer

� consumer read the data and uses it

� examples: compiler and assembler can be used as a

producer consumer pair

� Buffering

– processes may not produce and consume items one by one

– need a place to store produced items for the consumer

• called a buffer

– could be fixed size (bounded buffer) or unlimited (un-
bounded buffer)

19CMSC 412 – S17 (lect7)

Message Passing
� What happens when a message is sent?

– sender blocks waiting for receiver to receive

– sender blocks until the message is on the wire

– sender blocks until the OS has a copy of the message

– sender blocks until the receiver responds to the message

• sort of like a procedure call

• could be expanded into a remote procedure call (RPC) system

� Error cases
– a process terminates:

• receiver could wait forever

• sender could wait or continue (depending on semantics)

– a message is lost in transit

• who detects this? could be OS or the applications

� Special case: if 2 messages are buffered, drop the older one
– useful for real-time info systems

