
1CMSC 412 – S17 (lect8)

Announcements

� Program #1

– Scores posted (re-grade requests due in a week)

� Program #2

– Due next Thursday (3/2/17)

2CMSC 412 – S17 (lect8)

Using Semaphores
� critical section

repeat

P(mutex);

// critical section

V(mutex);

// non-critical section

until false;

� Require that Process 2 begin statement S2 after
Process 1 has completed statement S1:
semaphore synch = 0;

Process 1

S1

V(synch)

Process 2

P(synch)

S2

3CMSC 412 – S17 (lect8)

Implementing semaphores

� Busy waiting implementations

� Instead of busy waiting, process can block itself

– place process into queue associated with semaphore

– state of process switched to waiting state

– transfer control to CPU scheduler

– process gets restarted when some other process executes a
signal operations

4CMSC 412 – S17 (lect8)

Implementing Semaphores
� declaration

type semaphore = record

value: integer = 1;

L: FIFO list of process;

end;

� P(S): S.value = S.value -1

if S.value < 0 then {

add this process to S.L

block;

};

� V(S): S.value = S.value+1

if S.value <= 0 then {

remove process P from S.L

wakeup(P);

}

Can be neg, if so, indicates

how many waiting

Bounded waiting!!

5CMSC 412 – S17 (lect8)

Writers Have Priority

reader
repeat

P(z);

P(rsem);

P(x);

readcount++;

if (readcount == 1) then

P(wsem);

V(x);

V(rsem);

V(z);

readunit;

P(x);

readcount- -;

if readcount == 0 then

V (wsem)

V(x)

forever

writer
repeat

P(y);

writecount++:

if writecount == 1 then

P(rsem);

V(y);

P(wsem);

writeunit

V(wsem);

P(y);

writecount--;

if (writecount == 0) then

V(rsem);

V(y);

forever;

6CMSC 412 – S17 (lect8)

Notes on readers/writers with writers
getting priority

P(z);
P(rsem);
P(x);

readcount++;
if (readcount==1) then

P(wsem);
V(x);
V(rsem);

V(z);

readers queue up on semaphore

z; this way only a single reader

queues on rsem. When a writer

signals rsem, only a single

reader is allowed through

Semaphores x,y,z,wsem,rsem are initialized to 1

7CMSC 412 – S17 (lect8)

Sample Synchronization Problem

� Class Exercise:

– CMSC 412 Midterm #1 (Spring 1998) Q#3

� Solve a variation of the readers-writers problem, in which
multiple writers can write at the same time. Specifically, there
are readers and writers. Up to 5 reads at the same time are
allowed, but only one write at the same time are allowed. A read
and a write at the same time is not allowed. Provide a solution
using semaphores with the following properties:

– no busy waiting.

– starvation-free (i.e. a continuous stream of readers does not starve writers,

and vice versa) is desirable but not compulsory (but you will lose some

points).

– you cannot use process ids and you cannot have a separate semaphore for

every process.

8CMSC 412 – S17 (lect8)

Students Work

� Reviewed examples of student work from last time

� Common theme:

– Missed the need to keep track of how many processes are
waiting

