
1CMSC 412 – S17 (lect 12)

Announcements

� Reading

– Last time : Chapter 8.1-8.5 (8th Ed)

– Today: 8.6-8.8, 9.1-9.4

� Midterm #1

– Thursday

� Project #3

– Is on the web

2CMSC 412 – S17 (lect 12)

Paging
� Divide physical memory into fixed sized chunks

called pages

– typical pages are 512 bytes to a few megabytes

– When a process is to be executed, load the pages that are

actually used into memory

� Have a table to map virtual pages to physical pages

� Consider a 32 bit addresses

– 4096 byte pages (12 bits for the page)

– 20 bits for the page number

Page

Table
Main

Memory
+

Virtual Address Location Present Rd/Write

20 bits

12 bits

3CMSC 412 – S17 (lect 12)

Problems with Page Tables

� One page table can get very big

– 220 entries (for most programs, most items are empty)

� solution1: use a hierarchy of page tables

Page Table

Main

Memory
+

Virtual Address

10 bits

12 bits

Page

Directory

10 bits

Pg Tbl Ptr

Physical Page #

4CMSC 412 – S17 (lect 12)

Faster Mapping from Virtual to Physical
Addresses

� need hardware to map between physical and virtual

addresses

– can require multiple memory references

– this can be slow

� answer: build a cache of these mappings

• called a translation look-aside buffer (TLB)

• associative table of virtual to physical mappings

• typically 16- 64 entries

Virtual Page Physical PageValid

20 bits 20 bits For Intel x86For Intel x86

5CMSC 412 – S17 (lect 12)

Super Pages

� TLB Entries

– Tend to be limited in number

– Can only refer to one page

� Idea

– Create bigger pages

– 4MB instead of 4KB

– One TLB entry covers more memory

6CMSC 412 – S17 (lect 12)

Sharing Memory

� Pages can be shared
– several processes may share the same code or data

– several pages can be associated with the same page frame

– given read-only data, sharing is always safe

� when writes occur, decide if processes share data
– operating systems often implement “copy on write” - pages

are shared until a process carries out a write

• when a shared page is written, a new page frame is
allocated

• writing process owns the modified page

• all other sharing processes own the original page

– page could be shared

• processes use semaphores or other means to coordinate
access

7CMSC 412 – S17 (lect 12)

Page Sharing

Page

Directory

Page

Directory
Page Table

Page

Frames
Page Table

P1 P2

Shared

Pages

8CMSC 412 – S17 (lect 12)

What Happens when a virtual address
has no physical address?

� called a page fault

– a trap into the operating system from the hardware

� caused by: the first use of a page

– called demand paging

– the operating system allocates a physical page and the
process continues

– read code from disk or init data page to zero

� caused by: a reference to an address that is not valid

– program is terminated with a “segmentation violation”

� caused by: a page that is currently on disk

– read page from disk and load it into a physical page, and
continue the program

� causde by: a copy on write page

9CMSC 412 – S17 (lect 12)

– NOACCESS: attempts to read, write or execute will cause an access
violation

– READONLY: attempts to write or execute memory in this region cause
an access violation

– READWRITE: attempts to execute memory in this region cause an
access violation

– EXECUTE: Attempts to read or write memory in this region cause an
access violation

– EXECUTE_READ: Attempts to write to memory in this region cause an
access violation

– EXECUTE_READ_WRITE: Do anything to this page

– WRITE_COPY: Attempts to write will cause the system to give a
process its own copy of the page. Attempts to execute cause access
violation

– EXECUTE_WRITE_COPY: Attempts to write will cause the system to
give a process its own copy of a page. Can’t cause an access violation

OS Protection attributes (Win32)

10CMSC 412 – S17 (lect 12)

Handling a page fault

1) Check if the reference is valid

– if not, terminate the process

2) Find a page frame to allocate for the new process

– for now we assume there is a free page frame.

3) Schedule a read operation to load the page from disk

– we can run other processes while waiting for this to complete

4) Modify the page table entry to the page

5) Restart the faulting instruction

– hardware normally will abort the instruction so we just return
from the trap to the correct location.

11CMSC 412 – S17 (lect 12)

Page Fault – Page is Paged out

Page

Directory
Page Table

Page

Frames

P1

Reference

To this page 1) Fault

2) Read from Disk

3) Make

Entry

4) Continue

