Announcements

• Reading

- Last time : Chapter 8.1-8.5 (8th Ed)
- Today: 8.6-8.8, 9.1-9.4
- Midterm #1
 - Thursday
- Project #3
 - Is on the web

CMSC 412 – S17 (lect 12)

Paging

- Divide physical memory into fixed sized chunks called *pages*
 - typical pages are 512 bytes to a few megabytes
 - When a process is to be executed, load the pages that are actually used into memory
- Have a table to map virtual pages to physical pages
- Consider a 32 bit addresses
 - 4096 byte pages (12 bits for the page)
 - 20 bits for the page number

Faster Mapping from Virtual to Physical Addresses

- need hardware to map between physical and virtual addresses
 - can require multiple memory references
 - this can be slow
- answer: build a cache of these mappings
 - called a translation look-aside buffer (TLB)
 - associative table of virtual to physical mappings
 - typically 16-64 entries

Super Pages

• TLB Entries

- Tend to be limited in number
- Can only refer to one page

• Idea

- Create bigger pages
- 4MB instead of 4KB
- One TLB entry covers more memory

Sharing Memory

• Pages can be shared

- several processes may share the same code or data
- several pages can be associated with the same page frame
- given read-only data, sharing is always safe
- when writes occur, decide if processes share data
 - operating systems often implement "copy on write" pages are shared until a process carries out a write
 - when a shared page is written, a new page frame is allocated
 - writing process owns the modified page
 - all other sharing processes own the original page
 - page could be shared
 - processes use semaphores or other means to coordinate access

What Happens when a virtual address has no physical address?

- called a *page fault*
 - a trap into the operating system from the hardware
- caused by: the first use of a page
 - called demand paging
 - the operating system allocates a physical page and the process continues
 - read code from disk or init data page to zero
- caused by: a reference to an address that is not valid
 - program is terminated with a "segmentation violation"
- caused by: a page that is currently on disk
 - read page from disk and load it into a physical page, and continue the program
- causde by: a copy on write page

OS Protection attributes (Win32)

- NOACCESS: attempts to read, write or execute will cause an access violation
- READONLY: attempts to write or execute memory in this region cause an access violation
- READWRITE: attempts to execute memory in this region cause an access violation
- EXECUTE: Attempts to read or write memory in this region cause an access violation
- EXECUTE_READ: Attempts to write to memory in this region cause an access violation
- EXECUTE_READ_WRITE: Do anything to this page
- WRITE_COPY: Attempts to write will cause the system to give a process its own copy of the page. Attempts to execute cause access violation
- EXECUTE_WRITE_COPY: Attempts to write will cause the system to give a process its own copy of a page. Can't cause an access violation

Handling a page fault

- 1) Check if the reference is valid
 - if not, terminate the process
- 2) Find a page frame to allocate for the new process
 - for now we assume there is a free page frame.
- 3) Schedule a read operation to load the page from disk
 - we can run other processes while waiting for this to complete
- 4) Modify the page table entry to the page
- 5) Restart the faulting instruction
 - hardware normally will abort the instruction so we just return from the trap to the correct location.

