
1CMSC 412 – S16 (lect 13)

Announcements

� Midterm #1 was returned

� Project #3 is due Friday

� Project #4 will be on the web later this week

– It’s a team project (will email partners)

2CMSC 412 – S16 (lect 13)

Midterm #1 Summary

Question Min Max Mean

1 7 20 17.8

2 3 20 14.2

3 6 16 12.5

4 4 12 8.2

5 0 18 12.9

6 4 14 10.5

Overall 52 94 76.1

Standard Dev: 11.5

3CMSC 412 – S16 (lect 13)

Page State (hardware view)
� Page frame number (location in memory or on disk)

� Valid Bit
– indicates if a page is present in memory or stored on disk

� A modify or dirty bit
– set by hardware on write to a page

– indicates whether the contents of a page have been modified
since the page was last loaded into main memory

– if a page has not been modified, the page does not have to
be written to disk before the page frame can be reused

� Reference bit
– set by the hardware on read/write

– cleared by OS

– can be used to approximate LRU page replacement

� Protection attributes
– read, write, execute

4CMSC 412 – S16 (lect 13)

Inverted Page Tables
� Solution to the page table size problem

� One entry per page frame of physical memory

<process-id, page-number>

– each entry lists process associated with the page and the page
number

– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted page
table is searched (usually with the help of a hashing
mechanism)

• if a match is found in entry i in the inverted page table, the
physical address <i,offset> is generated

– The inverted page table does not store information about pages
that are not in memory

• page tables are used to maintain this information

• page table need only be consulted when a page is brought in
from disk

5CMSC 412 – S16 (lect 13)

X86 Segmentation + Paging

Offset

+

selector

directory offsetpage

Page Directory Page Table Page Frame

Seg Descriptor

Page Table
Entry

Stored in

Segment Register Virtual Address

6CMSC 412 – S16 (lect 13)

64 bit processors

� Problem: 2 level page tables are too small

� Solution 1:
– Use more levels & larger page size

• Alpha:

– 3 level

– variable size pages

– w8KB pages

– 43 bits of virtual address

– 13 bits page offset

– 3x10=30 bits in page tables

– w64KB pages

– 55 bits of virtual address

– 16 bits page offset

– 3x13 = 39 bits in page tables

7CMSC 412 – S16 (lect 13)

Sparc & IBM Power 64 bit processors

� Ultra Sparc 64 bit MMU

– 8KB, 16KB, 512KB, 4MB pages supported

– Software TLB miss handler

– 44 bit virtual address

� Power 4

– Variable sized pages up to 16MB

– Inverted page tables

– TLB

• 1024 entry 4-way set associate

– TLB cache

• Called ERAT

– 128 entry 2-way set associative

8CMSC 412 – S16 (lect 13)

Other 64-bit Designs

� AMD-64

– 54 bit physical memory

– With 4KB pages

• 48 bits of virtual address are used

• 4KB pages

– 12 bits page

– 4x9 = 36 bits via 4-level page tables

• 2MB pages

– 21 bits page

– 3x9 = 27 bits via 3-level page tables

9CMSC 412 – S16 (lect 13)

Access Large Memory

� Problem:

– Even with Super pages, limited TLB reach

� Solution:

– Add one extra large segment in addition to VM

– Can be any sized contiguous region of memory

– Can map into any part of a processes address space

– Consists of three fields:

• Virtual base (starting addr in virtual memory, page aligned)

• Physical base (starting addr in physical memory, page aligned)

• Length (in multiple of machine’s page size)

– Hardware always consults this mapping regardless of TLB

10CMSC 412 – S16 (lect 13)

Inverted Page Table Example (PPC)

Virtual Address

Page

Table

(variable size)

one per system
Main

Memory
+

16

Segment

Registers

(per process)

4 16

24
Virtual Segment ID

Page Table Group

8 page table entries

Hash Function

12

VS ID (40)
Physical page (20)

Status bits

Page Table Entry (PTE)

Page # ByteSeg

40

