
1CMSC 412 – S17 (lect 16)

Announcements

� Should be done with identity mapping on P4

� Reading Chapter 11 (8th ed)

2CMSC 412 – S17 (lect 16)

File Operations

� Files are an abstract data type

– interface (this lecture)

– implementation (next lecture)

� create a file

– assign it a name

– check permissions

� open

– check permissions

– check that the file exists

– lock the file (if we don’t want to permit other users at the
same time)

3CMSC 412 – S17 (lect 16)

File Protection

� How to give access to some users and not others?

� Access types:
– read, write, execute, append, delete, list

– rename: often based on protection of directory

– copy: usually the same as read

� Degree of control
– access lists

• list for each user and file the permitted operations

– groups

• enumerate users in a list called a group

• provide same protection to all members of the group

• depending on system:

– files may be in one or many groups

– users may be in one or many groups

– per file passwords (tedious and a security problem)

4CMSC 412 – S17 (lect 16)

File Protection Example (UNIX)

� Each file has three classifications

– user: the user who owns the file

– group: a named group of other users

– world: all others

� Each file has three access types:

– read, write, execute

� Directory protection

– read: list the files in the sub dir

– write: delete or create a file

– execute: see the attributes of the files in the subdir

– sticky bit: contents can only be modified by root user, folder
owner, or file owner

5CMSC 412 – S17 (lect 16)

Unix File Protection (cont)

� Files have 12 bits of protection

– 9 bits are user, group, and world for:

• read: list the files in the sub dir

• write: delete or create a file

• execute: see the attributes of the files in the subdir

– sticky bit: contents can only be modified by root user, folder
owner, or file owner

– setuid: run the program with the uid of the file’s owner

• used to provide extra privilege to some processes

– example: passwd command

– setgid: run the program with the group id of the file’s owner

6CMSC 412 – S17 (lect 16)

UNIX File Protection Example

stuff

foo

Stuff is a directory:

user hollings has r/w/x on the dir

foo is a file:

user hollings has r, but

not write on this file

hollings can still write the file!

stuff

footemp

(1) copy foo into a

new file called temp
stuff

foofoo

(2) delete foo

(3) rename temp

to foo

7CMSC 412 – S17 (lect 16)

File Protection Example (AFS)

� Each Directory has an ACL

– protection information applies to all files in a directory

– file access types are:

• lookup, insert, delete, administer, read, write, lock (k)

– an ACL may be for a user or a group

– ACL may contain negative rights

• everyone but Joe Smith may read this file

� Groups

– are collections of users

– each user can create up to a fixed number of groups

• users can administer their own groups

� Cells

– collections of computers (e.g., csic, wam)

8CMSC 412 – S17 (lect 16)

File Operations (cont)
� write

– indicate what file to write (either name or handle)

– provide data to write

– specify where to write the data within the file

• generally this is implicit (file pointer)

• could be explicit (direct access)

� read
– indicate what file to read (either name or handle)

– provide place to put information read

– indicate how much to read

– specify where to write the data within the file

• usually implicit (sequential access via file pointer)

• could be explicit (direct access)

� fsync (synchronize disk version with in-core version)
– ensure any previous writes to the file are stored on disk

9CMSC 412 – S17 (lect 16)

File Operations (cont)
� seek

– move the implicit file pointer to a new offset in the file

� delete
– remove named file

� truncate
– remove the data in the file from the current position to end

� close
– unlock the file (if open locked it)

– update metadata about time

– free system resources (file descriptors, buffers)

� read metadata
– get file size, time, owner, etc.

� update metadata
– change file size, time owner, etc.

10CMSC 412 – S17 (lect 16)

Simple Directory Structures
� One directory

– having all of the files in one namespace is awkward

– lots of files to sort through

– users have to coordinate file names

– each file has to have a unique name

� Two level directory

– top level is users

– second level is files per user

system hollings user1 user2 user3

vi gdb one tocc x y a b

11CMSC 412 – S17 (lect 16)

Tree Directories
� Create a tree of files

� Each directory can contain files or directory entries

� Each process has a current directory

– can name files relative to that directory

– can change directories as needed

a b

hollings user1 user2

vi gdb one tocc x y

system users mail

z

12CMSC 412 – S17 (lect 16)

OS Folder Structures (Unix)

� / (root)
– bin (system executables)

– etc (system-wide settings)

– home

• hollings

• lam

– lib (shared object libraries)

– mnt

• usbdrive

– opt (third-party software)

– proc (virtual – info about processes)

– usr

• bin (applications)

• lib (libraries)

– var (files that change often)

13CMSC 412 – S17 (lect 16)

OS Folder Structures (Mac)

� / (root)

– Applications

– Library (settings and shared object files)

– Users

• hollings

• lam

– Volumes

• usbdrive

– bin

– etc

– opt

– usr

– var

14CMSC 412 – S17 (lect 16)

OS Folder Structures (Windows)

� C:\

– Program Files

– Users (previously “Documents and Settings”)

• Hollingsworth

• Lam

– Windows

� D:\

– usbdrive files

15CMSC 412 – S17 (lect 16)

Acylic Graph Directories

� Permit users to share subdirectories

a b

hollings user1 user2

vi gdb one tocc x y

system users mail

z

16CMSC 412 – S17 (lect 16)

Issues for Acylic Graph Directories

� Same file may have several names

– absolute path name is different, but the file is the same

– similar to variable aliases in programming languages

� Deletion

– if one user deletes a file does it vanish for other users?

• yes, it should since the directory is shared

– what if one user deletes their entry for the shared directory

• no, only the last user to delete it should delete it

• maintain a reference count to the file

� Programs to walk the DAG need to be aware

– disk usage utilities

– backup utilities

17CMSC 412 – S17 (lect 16)

Alternative: Linking

� Symbolic link (shortcut)

a b

hollings user1 user2

vi gdb one tocc x y

system users mail

z

18CMSC 412 – S17 (lect 16)

Does the OS know what is stored in a file?

� Needs to know about some types of files

– directories

– executables

� Should other file types be visible to the OS?

– Example: word processing file vs. spreadsheet

– Advantages:

• OS knows what application to run

• Automatic make (tops-20)

– if source changed, re-compile before running

– Problems:

• to add new type, need to extend OS

• OS vs. application features are blurred

• what if a file is several types

– consider a compressed postscript file

19CMSC 412 – S17 (lect 16)

Example of File Types

� Macintosh

– has a file type that is part of file meta-data

• Older: four-byte pseudo-ASCII codes (e.g., “APPL”)

• Newer: Uniform Type Identifier (e.g., “com.apple.application”)

– also has an application associated with each file type

� Windows

– has a file type in the extension of the file name (e.g., “.exe”)

– has a table (per user) to map extensions to applications

� Unix

– can use last part of filename like an extension (e.g., “.sh”)

– applications can decide what (if anything) to do with it

– look at first few bytes of file content for “magic number”

• For example, ELF binaries begin with 7F 45 4C 46

