Announcements

- Reading Chapter 19 (Security)
- Project #5 is due Friday
- Project #6 is posted on the web
Security

- **security vs. protection**
 - protection provides a mechanism to control access to resources
 - security also includes external features such as users

- **security requires precluding unauthorized**
 - access to data
 - modification of data
 - destruction of data

- **several major types of security**
 - physical: must protect access to resource itself
 - if you have physical access to a machine, you can break security.
 - users: if a user gives away access (or info) computer security if useless
 - software: OS and system software must provide protection
Who do you trust?

- It’s easy to get paranoid
- Do I trust a login prompt?
- Do I trust the OS that I got from the vendor?
- Do I trust the system staff?
 - should I encrypt all my files?
- Networking
 - do you trust the network provider?
 - do you trust the phone company?
- How do you bootstrap security?
 - always need one “out of band” transfer to get going
Computer Threat Model

- must consider acceptable risks
 - value of item to be protected
 - $2,000 of computer time to steal 50 cents of data
 • this is a sufficient deter someone
 • but computers keep getting faster

- Basic Ideas:
 - confine access to only the highest level needed
 • run programs as root only if needed
 • don’t give system access to all users
Authentication

- How does the computer know who is using it?
 - need to exchange some information to verify the user
 - types of information exchanged:
 - pins
 - numeric passwords
 - too short to be secure in most cases
 - passwords
 - a string of letters and numbers
 - often easy to guess
 - challenge/response pairs
 - user needs to be apply to apply a specific algorithm
 - often involve use of a calculator like device
 - can be combined with passwords
 - unique attributes of the person
 - i.e. signature, thumb print, DNA?
 - sometimes these features can change during life
Authentication (cont.)

- How does a user know what computer they are using?
- Need to have *mutual authentication*
 - computer presents some information that only it could contain
 - example: Windows <ctrl>-<alt>- to login
 - user software can’t trap that information
 - assumes that the kernel itself is secure
- telephone example:
 - never give banking/credit card info over the phone unless you placed the phone call
 - i.e. you use the telco namespace for authentication
- ATM example:
 - How do you know you are putting your card into a valid ATM?
Example (UNIX passwords)

- **use a function that is hard to invert**
 - “easy” to compute $f(x)$ given x
 - hard to compute x given $f(x)$
 - the function used is a variation on the DES, MD5 SHA1 algorithms
 - changes selected items in the transformation matrix to prevent hardware attacks
 - store only $f(x)$ in the filesystem

- **to login:**
 - user supplies a password x'
 - compute $f(x')$ and compare to $f(x)$

- **salt**
 - add an extra two characters to x so that the same x will produce different values on different machines
 - need to store salt along with password

- **dictionary attach**
 - if it's too easy to compute $f(x)$
 - can “guess” many passwords and try them out
 - salt makes this much harder
Types of Software Threats (Malware)

- **Trojan Horse**
 - a program that looks like a normal program
 - for example a login program written by a user
 - UNIX example: never put "." early in your path

- **Trap door**
 - hole left by the programmers to let them into the system
 - “system” password set to a default value by the vendor

- **Worms**
 - programs that clone themselves and use resources
 - Internet worm:

 - exploited several bugs and “features” in UNIX
 - .rhosts files
 - bug in finger command (overwrite strings)
 - sendmail “debug” mode to run commands
Viruses

- **Most common on systems with little security**
 - easy to write to boot blocks, system software
 - never run untrusted software with special privileges
 - Don’t perform daily operations with root/system privileges

- **Possible to write system independent malware**
 - MS Word virus
 - uses macros to call into the OS
 - HTML (javascript)
 - Flash
 - Google Apps Script (javascript)