
CMSC 412, Spring 2017

Project 0

Due: Friday, February 3rd, 2017 5:00 pm

• Download Project Source:

git clone https://gitlab.cs.umd.edu/cmsc412_sp2017/spring2017.git

 use your directory id and password

Introduction

In this course we will implement a big project in subsequent phases. In each project we will be adding some new functionality to

GeekOS. GeekOS is a tiny operating system kernel for x86 PCs. Its main purpose is to serve as a simple but realistic example of an

OS kernel running on real hardware. To run our OS, we need to either use an actual machine (which must be an x86 machine) or the

other (simpler) idea is to use an emulator; we will use QEMU.

The purpose of this assignment (project0) is to get you familiar with the GeekOS development environment, including the QEMU x86

emulator and the debugger gdb. The assignment is to modify GeekOS to impose resource limits on GeekOS processes in two simple

ways:

• Only permit N user processes from being active at any given time (for some given N). An attempt to Spawn the N+1st

process will result in failure.

• Only permit a given user process from performing M system calls (for some given M). When a process attempts to perform

the M+1st system call, it should exit (i.e., the M+1st system call should be treated as an Exit system call).

Background

Running GeekOS

To compile GeekOS, untar the project source, change your directory to build, and execute make. To run the OS in the emulator

execute make run.

Once you have started up GeekOS, you will be taken to the GeekOS shell prompt. That is, the first program that GeekOS runs is

shell.exe, which takes commands for you to run just like the UNIX shell program. The GeekOS file system is set up so that a number

of user programs are installed in the directory /c. The source code for these programs is in the directory src/user in the

distribution. The programs b.exe, null.exe, and long.exe are three such programs. The first program simply prints all of its

arguments. The second is an infinite loop. The third is a long, but not infinite loop. You can run the programs as you would expect.

For example, to run the b.exe program, you could do

 $ /c/b.exe 1 2 3 4

And it would print out the four arguments that you provided. The shell also takes a number of directives. For example, typing exit

will terminate the shell (and your interaction with the OS). Look at src/user/shell.c to understand the other features of the

shell.

You can easily add your own user programs by adding a file to src/user.

Debugging GeekOS

Start the emulator in debug mode with make dbgrun, then in another terminal run gdb with make dbg; the debugger will attach to

the operating system. The symbols for user programs will not be loaded. We will fix this problem for project 1. In debug mode the

system starts paused, so you can enter breakpoints before execution. To begin execution enter continue into the debugger.

Now we'll talk about how GeekOS works.

User processes vs. the kernel processes

In writing an operating system, you want to make a distinction between the activities that operating systems code are allowed to do

and the activities user programs are allowed to do. The goal is to protect the system from incorrect or malicious code that a user may

try to run. Bad things a program could do include:

• Making the operating system and/or other user programs crash

• Looking at data that belong to the system or to other programs

• Circumventing access control

• Using hardware incorrectly, with all the negative consequences that result e.g. machine crash or data corruption

Preventing these sorts of mistakes or attacks is accomplished by controlling the parts of memory that can be accessed when user code

is running and limiting the set of machine operations that the user code can execute. The x86 processor provides the operating system

with facilities to support these controls. A program that is running in this sort of controlled way is said to be running in user mode.

Anatomy of a User Process

In GeekOS, there is a distinction between Kernel Threads and User Threads. As you would expect, kernel activities (that is,

processes) run as kernel threads, while user programs (or rather, user processes) run in user threads. A kernel thread is represented by

a Kernel_Thread structure (in include/geekos/kthread.h)

struct Kernel_Thread {

 ulong_t esp; /* offset 0 */

 volatile ulong_t numTicks; /* offset 4 */

 int priority;

 DEFINE_LINK(Thread_Queue, Kernel_Thread);

 void* stackPage;

 struct User_Context* userContext;

 struct Kernel_Thread* owner;

 int refCount;

 ...

}

The kernel thread contains all of the mechanisms necessary to run and schedule a process. In order to represent user processes,

GeekOS includes an extra field in the Kernel_Thread structure that points to a User_Context structure. In a thread representing a

kernel process, the User_Context will be NULL. The User_Context is defined in include/geekos/user.h:

struct User_Context {

 /* We need one LDT entry each for user code and data segments. */

#define NUM_USER_LDT_ENTRIES 2

 /*

 * Each user context contains a local descriptor table with

 * just enough room for one code and one data segment

 * describing the process's memory.

 */

 struct Segment_Descriptor ldt[NUM_USER_LDT_ENTRIES];

 struct Segment_Descriptor* ldtDescriptor;

 /* The memory space used by the process. */

 char* memory;

 ulong_t size;

 /* Selector for the LDT's descriptor in the GDT */

 ushort_t ldtSelector;

 ...

};

Most of the information in the User_Context structure has to do with the memory layout for the process, and you don't need to

understand that for now. You will have to modify User_Context to contain some bookkeeping information as part of this project.

User threads are created using the routine Start_User_Thread. This takes as its first argument the User_Context to run

within that thread. This context is created by the Sys_Spawn system call. A system call is like a function call that a user program

makes to the OS kernel, to ask it to perform some service.

System Calls

The operating system kernel presents an interface to user processes for the services it will perform on their behalf. These are

essentially functions. However, rather than literally performing a function call to access them, user processes have to use a special

mechanism, called a system call. System calls are designed to protect the kernel's memory from malicious processes. On Intel's x86

processor, a user process issues a system call via a trap, which indicates that a system call is being requested; the identity of the

system call routine and/or the arguments to pass to it are stored in the processor registers. This mechanism is hidden from the typical C

programmer, since it is typically used only in the standard C library routines.

In GeekOS, when a user process issues a system call, the trap causes the routine Syscall_Handler in geekos/trap.c to be

invoked. This routine examines the current value in the register eax and calls the appropriate system routine to handle the syscall

request. The value in eax is called the Syscall Number. The routine that handles the syscall request is passed a copy of the caller's

context state, so the values in general registers (ebx, ecx, edx) can be used by the user program to pass parameters to the handler

routine and can be used to return values to the user program. This state is defined in the struct Interrupt_State, defined in

geekos/int.h.

The routines that implement GeekOS system calls are in geekos/syscall.c. The Sys_Spawn code is implemented here, along

with code for other system calls, like Sys_Exit for the system call used by a process to terminate itself. If you are curious how

system calls are invoked from user processes, take a look at src/user/shell.c in your project distribution; you'll be modifying

this program in your next project.

Creating User Processes - Sys_Spawn()

In order to create a user process, the Sys_Spawn syscall is used (defined in geekos/syscall.c). The function calls Spawn()

(defined in the file src/geekos/user.c) that is used to launch user programs. FYI, this Spawn() function does the following

(see the comments in user.c as well)

• Read_Fully() function to read an executable file from disk into memory

• Parse_ELF_Executable() function to populate an Exe_Format data structure.

• Load_User_Program() to set up the memory image for the new process and create a User_Context with the loaded

program

• Start_User_Thread() with the new User_Context

Sys_Spawn returns the process id (pid) of the new thread.

Project Requirements

The purpose of this assignment is to modify GeekOS to impose resource limits on GeekOS processes in two simple ways:

1. Only permit a user process to perform at most M system calls (for some M determined by the Limit system call).

2. Add a system call LIMIT to GeekOS to set the limit on the number of times system calls can be made by the calling process

(0..2*1024^3-1 are the valid ranges). A value of 0 as the limit means there is no limit on the number of systems calls that can

be made. The C library entry point to call this system call should be Limit(int resource, int limit); where resource is the

resource number (0 is system calls) and limit is the limit.

3. Add a default limit on the number of system calls per process to be 0 which means no limit.

Finally, you need to create a user-level process that spawns some other process a desired number of times. .

Limiting Number of Processes

To limit the number of processes, you should maintain a counter for the current number of (active) user processes. Then you must

determine whether a Spawn is allowed by checking the value of the counter. Follow the code through the Sys_Spawn system call

(defined in geekos/syscall.c) and make modifications as necessary in the kernel. If the limit has been reached then the process

should not be created and Sys_Spawn should fail by returning -1.

Limiting Number of System Calls

In order to limit the number of system calls, you need to modify the User_Context structure (defined in

include/geekos/user.h) to include a counter for the number of system calls the user process has performed. Then you should

modify the kernel to update this counter each time it performs a system call on this process's behalf. For the system call that exceeds

the limit (i.e., the N+1st system call), Sys_Exit should be called instead to kill the process.

Creating a user process to spawn a specified number of processes

Look at the code provided in src/user/* and specifically at shell.c to see how to spawn other processes using the system call

interface provided. Write a user-level process called spawn.exe that takes as its argument the number P and then spawns P

processes. Spawn the provided user-level program null.exe. Your spawn.exe program should display an error message

"Maximum number of processes reached" if spawn fails due to reaching the maximum number of spawned processes.

Grading Criteria

Unpack and compile correctly and we can see that you've made a good effort at the project 20
Limiting number of processes correctly 30
Limiting number of system calls correctly 30

Testing spawn.exe P (where P is the number of times to spawn null.exe) 20

Total 100

