
1CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Announcements

● Reading 8 (8.1-8.2, 8.5-8.6)
● Project #3 was handed out in section

– proc2.c is now available
– will need to produce a short paper writeup for this

assignment

2CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Priority Algorithms

● Fixed Queues
– processes are statically assigned to a queue
– sample queues: system, foreground, background

● Multilevel Feedback
– processes are dynamically assigned to queues
– penalize jobs that have been running longer
– preemptive, with dynamic priority
– have N ready queues (RQ0-RQN),

• start process in RQ0
• if quantum expires, moved to i + 1 queue

3CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Feedback scheduling (cont.)

– problem: turnaround time for longer processes
• can increase greatly, even starve them, if new short jobs

regularly enter system
• solution1: vary preemption times according to queue

– processes in lower priority queues have longer time
slices

• solution2: promote a process to higher priority queue
– after it spends a certain amount of time waiting for

service in its current queue, it moves up

4CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

UNIX System V
● Multilevel feedback, with

– RR within each priority queue
– 10ms second preemption
– priority based on process type and execution history, lower

value is higher priority

● priority recomputed once per second, and scheduler
selects new process to run

● For process j, P(i) = Base + CPU(i-1)/2 + nice
– P(i) is priority of process j at interval i
– Base is base priority of process j
– CPU(i) = U(i)/2 + CPU(i-1)/2

• U(i) is CPU use of process j in interval i
• exponentially weighted average CPU use of process j

through interval i
– nice is user-controllable adjustment factor

5CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

UNIX (cont.)

● Base priority divides all processes into (non-
overlapping) fixed bands of decreasing priority levels
– swapper, block I/O device control, file manipulation,

character I/O device control, user processes

● bands optimize access to block devices (disk), allow
OS to respond quickly to system calls

● penalizes CPU-bound processes w.r.t. I/O bound
● targets general-purpose time sharing environment

6CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Windows NT

● Target:
– single user, in highly interactive environment
– a server

● preemptive scheduler with multiple priority levels
● flexible system of priorities, RR within each, plus

dynamic variation on basis of current thread activity
for some levels

● 2 priority bands, real-time and variable, each with 16
levels
– real-time ones have higher priority, since require immediate

attention(e.g. communication, real-time task)

7CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Windows NT (cont.)

● In real-time class, all threads have fixed priority that
never changes

● In variable class, priority begins at an initial value,
and can change, up or down
– FIFO queue at each level, but thread can switch queues

● Dynamic priority for a thread can be from 2 to 15
– if thread interrupted because time slice is up, priority lowered
– if interrupted to wait on I/O event, priority raised
– favors I/O-bound over CPU-bound threads
– for I/O bound threads, priority raised more for interactive

waits (e.g. keyboard, display) than for other I/O (e.g. disk)

8CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Managing Memory

● Main memory is big, but what if we run out
– use virtual memory
– keep part of memory on disk

• bigger than main memory
• slower than main memory

● Want to have several program in memory at once
– keeps processor busy while one process waits for I/O
– need to protect processes from each other
– have several tasks running at once

• compiler, editor, debugger
• word processing, spreadsheet, drawing program

● Use virtual addresses
– look like normal addresses
– hardware translates them to physical addresses

9CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Advantages of Virtual Addressing

● Can assign non-contiguous regions of physical
memory to programs

● A program can only gain access to its mapped pages
● Can have more virtual pages than the size of physical

memory
– pages that are not in memory can be stored on disk

● Every program can start at (virtual) address 0

10CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Paging
● Divide physical memory into fixed sized chunks

called pages
– typical pages are 512 bytes to 64k bytes
– When a process is to be executed, load the pages that are

actually used into memory

● Have a table to map virtual pages to physical pages
● Consider a 32 bit addresses

– 4096 byte pages (12 bits for the page)
– 20 bits for the page number

Page
Table Main

Memory
+

Virtual Address Location Present Rd/Write

20 bits

12 bits

11CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Problems with Page Tables

● One page table can get very big
– 220 entries (for most programs, most items are empty)

● solution1: use a hierarchy of page tables

Page Table
Main

Memory
+

Virtual Address

10 bits

12 bits

Page
Directory

10 bits

Pg Tbl Ptr

Physical Page #

12CMSC 412 - S96 (lect 11) copyright 1996 Jeffrey K. Hollingsworth

Inverted Page Tables
● Solution to the page table size problem
● One entry per page frame of physical memory

 <process-id, page-number>
– each entry lists process associated with the page and the

page number
– when a memory reference:

• <process-id,page-number,offset> occurs, the inverted
page table is searched (usually with the help of a
hashing mechanism)

• if a match is found in entry i in the inverted page table,
the physical address <i,offset> is generated

– The inverted page table does not store information about
pages that are not in memory

• page tables are used to maintain this information
• page table need only be consulted when a page is

brought in from disk

