
1CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

Announcements

l Reading 8.7, 9.1-9.4
l Suggested problems

– 8.10, 8.12, 8.17

l Midterm #1 is on Tuesday

2CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

Problems with Page Tables

l One page table can get very big
– 220 entries (for most programs, most items are empty)

l solution1: use a hierarchy of page tables

Page Table
Main

Memory
+

Virtual Address

10 bits

12 bits

Page
Directory

10 bits

Pg Tbl Ptr

Physical Page #

3CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

Inverted Page Tables
l Solution to the page table size problem
l One entry per page frame of physical memory

 <process-id, page-number>
– each entry lists process associated with the page and the

page number
– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted
page table is searched (usually with the help of a
hashing mechanism)

• if a match is found in entry i in the inverted page table,
the physical address <i,offset> is generated

– The inverted page table does not store information about
pages that are not in memory

• page tables are used to maintain this information
• page table need only be consulted when a page is

brought in from disk

4CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

Inverted Page Table Example (PPC)

Virtual Address

Page
Table

(variable size)

one per system
Main

Memory
+

16
Segment
Registers

(per process)

4 16

24
Virtual Segment ID

Page Table Group
8 page table entries

Hash Function

12

VS ID (40)
Physical page (20)

Status bits

Page Table Entry (PTE)

Page # ByteSeg

40

5CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

Faster Mapping from Virtual to Physical
Addresses

l need hardware to map between physical and virtual
addresses
– can require multiple memory references
– this can be slow

l answer: build a cache of these mappings
• called a translation look-aside buffer (TLB)
• associative table of virtual to physical mappings
• typically 16- 64 entries

Virtual Page Physical PageValid

20 bits 20 bits For Intel x86For Intel x86

6CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

Sharing Memory

l Pages can be shared
– several processes may share the same code or data
– several pages can be associated with the same page frame
– given read-only data, sharing is always safe

l when writes occur, decide if processes share data
– operating systems often implement “copy on write” - pages

are shared until a process carries out a write
• when a shared page is written, a new page frame is

allocated
• writing process owns the modified page
• all other sharing processes own the original page

– page could be shared
• processes use semaphores or other means to coordinate

access

7CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

What Happens when a virtual address
has no physical address?

l called a page fault
– a trap into the operating system from the hardware

l caused by: the first use of a page
– called demand paging
– the operating system allocates a physical page and the

process continues
– read code from disk or init data page to zero

l caused by: a reference to an address that is not valid
– program is terminated with a “segmentation violation”

l caused by: a page that is currently on disk
– read page from disk and load it into a physical page, and

continue the program

l causde by: a copy on write page

8CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

Page State (hardware view)
l Page frame number (location in memory or on disk)
l Valid Bit

– indicates if a page is present in memory or stored on disk

l A modify or dirty bit
– set by hardware on write to a page
– indicates whether the contents of a page have been modified

since the page was last loaded into main memory
– if a page has not been modified, the page does not have to

be written to disk before the page frame can be reused

l Reference bit
– set by the hardware on read/write
– cleared by OS
– can be used to approximate LRU page replacement

l Protection attributes
– read, write, execute

9CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

– NOACCESS: attempts to read, write or execute will cause an
access violation

– READONLY: attempts to write or execute memory in this region
cause an access violation

– READWRITE: attempts to execute memory in this region cause
an access violation

– EXECUTE: Attempts to read or write memory in this region
cause an access violation

– EXECUTE_READ: Attempts to write to memory in this region
cause an access violation

– EXECUTE_READ_WRITE: Do anything to this page
– WRITE_COPY: Attempts to write will cause the system to give a

process its own copy of the page. Attempts to execute cause
access violation

– EXECUTE_WRITE_COPY: Attempts to write will cause the
system to give a process its own copy of a page. Can’t cause an
access violation

OS Protection attributes (Win32)

10CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

Handling a page fault

1) Check if the reference is valid
– if not, terminate the process

2) Find a page frame to allocate for the new process
– for now we assume there is a free page frame.

3) Schedule a read operation to load the page from disk
– we can run other processes while waiting for this to complete

4) Modify the page table entry to the page
5) Restart the faulting instruction

– hardware normally will abort the instruction so we just return
from the trap to the correct location.

11CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

What happens when we fault and there
are no more physical pages?

l Need to remove a page from main memory
– if it is “dirty” we must store it to disk first.

• dirty pages have been modified since they were last
stored on disk.

l How to we pick a page?
– Need to choose an appropriate algorithm

• should it be global?
• should it be local (one owned by the faulting process)

12CMSC 412 - S98 (lect 12) copyright 1996 Jeffrey K. Hollingsworth

Page Replacement Algorithms
l FIFO

– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)
• number of page faults may increase when one increases

number of page frames (discouraging!)
– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

l Optimal
– Replace the page that will be used furthest in the future
– Good algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is

sometimes possible

