Announcements

® Reading 9.6-9.7

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth




Page Replacement Algorithms

e FIFO
— Replace the page that was brought in longest ago
— However
» old pages may be great pages (frequently used)
* number of page faults may increase when one increases
number of page frames (discouraging!)

— called belady’s anomaly
-1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

® Optimal
— Replace the page that will be used furthest in the future
— Good algorithm(!) but requires knowledge of the future

— With good compiler assistance, knowledge of the future is
sometimes possible

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth




Page Replacement Algorithms

e LRU

— Replace the page that was actually used longest ago
— Implementation of LRU can be a bit expensive

e e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

e maintain a time stamp associated with each page
® Approximate LRU algorithms

— maintain reference bit(s) which are set whenever a page is
used

— at the end of a given time period, reference bits are cleared

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth




FIFO Example (3 frames)

— Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
e access1l- (1) fault
e access 2 - (1,2) fault
e access 3- (1,2,3) fault
» access 4 - (2,3,4) fault, replacement
» access 1 - (3,4,1) fault, replacement
e access 2 - (4,1,2) fault, replacement
» access 5 - (1,2,5) fault, replacement
e access 1- (1,2,5)
e access 2-(1,2,5)
» access 3 - (2,5,3) fault, replacement
» access 4 - (5,3,4) fault, replacement
e access 5-(5,3,4)

— 9 page faults

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth




LRU Example (3 frames)

— Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
e access1l- (1) fault
e access 2 - (1,2) fault
e access 3- (1,2,3) fault
» access 4 - (2,3,4) fault, replacement
» access 1 - (3,4,1) fault, replacement
e access 2 - (4,1,2) fault, replacement
» access 5 - (1,2,5) fault, replacement
e access 1- (2,5,1)
e access 2-(5,1,2)
» access 3 - (1,2,3) fault, replacement
e access 4 - (2,3,4) fault, replacement
» access 5 - (3,4,5) fault, replacement

— 10 page faults

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth




LRU Example (4 frames)

— Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
e access1l-(1) fault
e access 2 - (1,2) fault
e access 3- (1,2,3) fault
e access 4 - (1,2,3,4) fault, replacement
e« access1-(2,34,1)
e access2-(3,4,1,2)
e access5-(4,1,2,5) fault, replacement
e access 1- (4,2,5,1)
e access2-(4,51,2)
e access 3 - (5,1,2,3) fault, replacement
e access 4 - (1,2,3,4) fault, replacement
e access 5-(2,3,4,5) fault, replacement

— 8 faults

CMSC 412 - S98 (lect 13)

copyright 1996 Jeffrey K. Hollingsworth




FIFO Example (4 frames)

— Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

access 1-(1) fault

access 2 - (1,2) fault

access 3- (1,2,3) fault

access 4 - (1,2,3,4) fault, replacement
access 1-(1,2,3,4)

access 2 -(1,2,3,4)

access 5 - (2,3,4,5) fault, replacement
access 1- (3,4,5,1) fault, replacement
access 2 - (4,5,1,2) fault, replacement
access 3 - (5,1,2,3) fault, replacement
access 4 - (1,2,3,4) fault, replacement
access 5 - (2,3,4,5) fault, replacement

— 10 Page faults

CMSC 412 - S98 (lect 13)

copyright 1996 Jeffrey K. Hollingsworth




Thrashing

® Virtual memory is not “free”

— can allocate so much virtual memory that the system spends
all its time getting pages

— the situation is called thrashing

— need to select one or more processes to swap out
® Swapping

— write all of the memory of a process out to disk

— don’t run the process for a period of time
— part of medium term scheduling

® How do we know when we are thrashing?
— check CPU utilization?
— check paging rate?
— Answer: need to look at both
 low CPU utilization plus high paging rate --> thrashing

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth




Working Sets and Page Replacement

® Programs usually display reference locality
— temporal locality
* repeated access to the same memory location
— spatial locality

e consecutive memory locations access nearby memory
locations

— memory hierarchy design relies heavily on locality reference
» sequence of nested storage media
® \Working set
— set of pages referenced in the last delta references

Working Set Size

A e—

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth




Preventing Threashing

® Need to ensure that we can keep the working set in

memory

— iIf the working sets of the processes in memory exceed total
page frames, then we need to swap a process out

® How do we compute the working set?
— can approximate it using a reference bit

CMSC 412 - S98 (lect 13)

copyright 1996 Jeffrey K. Hollingsworth

10




Implementation Issues

® How big should a page be?
— want to trade cost of fault vs. fragmentation
» cost of fault is: trap + seek + latency + transfer
— Does the OS page size have to equal the HW page size?
* NO, just needs to be a multiple of it

® How does I/O relate to paging
— If we request I/O for a process, need to lock the page
* if not, the 1/O device can overwrite the page

® Can the kernel be paged?
— most of it can be.
— what about the code for the page fault handler?

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth 11




Segmentation

® Segmentation is used to give each program several
Independent protected address spaces
— each segment is an independent protected address space

— access to segments is controlled by data which describes
Size, privilege level required to access, protection (whether
segment is read-only etc)

— segments may or may not overlap

 disjoint segments can be used to protect against
programming errors

» separate code, data stack segments

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

12




— Disjoint Segments can be used to exploit expanded address
space
* In 16 bit architectures e.g. (8086 and 80x86 in V86
mode) each segment has only 16 bits of address space

 In distributed networks consisting of multiple 32 bit
machines, segmentation can be used to support single
huge address space

— Segments can span identical regions of address space - flat
model

 Windows NT and Windows ‘95 use 4 Gbyte code
segments, stack segments, data segments

CMSC 412 - S98 (lect 13) copyright 1996 Jeffrey K. Hollingsworth 13




