Announcements

e reading
— for Thursday 5.5

e Homework #1 (due 9/30/97 in class)

— chl, p.4 simple expression and explanation is fine
— ch 2, p14: just use dvision (assume mean is extact)

e Programming Project #1 will be returned on Th.
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Sending More Than one Signal At Once

e Called multiplexing
— original goal of Bell was to MUX multiple telegraph signals
e Time Division Multiplexing

— everyone gets whole bandwidth
— but only when its their turn

- 193 Bit frame (125 psec) >
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code channel
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figure copyright , 1996, Andrew S. Tanenbaum
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Frequency Division Multiplexing

Frequency Division
— everyone gets to talk at once
— but only in their own frequency
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ATM Switching

e Requirements
— be able to switch 360,000 cells/sec per input link
— switch cells with as low a discard rate as possible
— never reorder the cells on a virtual circuit

® [ssues
— multiple cells destined for the same output at once
* need to buffer one of them
e must ensure fairness is maintained
— head-of-line blocking

» possible that a blocked output is holding up cells that
could be delivered
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Switching Fabric (space division)

e Cross bars are great, but require O(n?) wires

e Can use a collection of smaller cross bar switches
— penalty: a request to connect may block
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Batcher-banyan Switching

e Banyan
— can do a “good” or “poor” job of switching due to collisions
— if the inputs are sorted, we get performance

e Batcher
— sorts traffic base on full address of destination

— compares two colliding packets and uses final destination to select
output port

— requires O(nlog?n) nodes (2x2 switching elements)

Batcher switch Banyan switch
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Introduction to Pthreads

e Often want multiple “threads of control”

— separate logical acctivity (processing different requests)
— can exploit multiple processors if they are available

e Threads
— multiple execution streams that share an address space
e premptive: each thread gets a timeslice
* non-premptive: threads only switch on a block or a yield
— similar to processes

e Need to share information
— different threads are working on the same problem
— goal: let them share all of their global and heap variables
— problem: coordinating access
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Producer-consumer: shared memory

e Consider the following code for a producer

repeat
produce an item into nextp

while counter == n;
buffer[in] = nextp;
in = (in+) % n;
counter++;

until false;

e Now consider the consumer

repeat
while counter == 0;
nextc = buffer[out];
out = (out + 1) % n;
counter--;
consume the item in nextc
until false;

e Does it work? Answer: NO!
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Problems with the Producer-Consumer
Shared Memory Solution

e Consider the three address code for the counter

Counter Increment
reg, = counter
reg, =reg, +1
counter = reg,

Counter Decrement
reg, = counter
reg,=reg, -1
counter = reg,,

e Now consider an ordering of these instructions
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consumer
producer
consumer
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reg, = counter {reg,=5}
reg,=reg, +1 {reg, =6}
reg, = counter {reg,=5}
reg,=reg,-1 {reg,=4}

counter =reg, {counter=06} This
counter =reg, {counter=4} -€&—should
be 5!
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Defintion of terms

e Race Condition

— Where the order of execution of instructions influences the
result produced

— Important cases for race detection are shared objects
e counters: in the last example
e queues: in your project
e Mutual exclusion
— only one process at a time can be updating shared objects

e Critical section
— region of code that updates or uses shared data

 to provide a consistent view of objects need to make
sure an update is not in progress when reading the data

— need to provide mutual exclusion for a critical section
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Critical Section Problem

® processes must
— request permission to enter the region
— notify when leaving the region

e protocol needs to
— provide mutual exclusion
» only one process at a time in the critical section
— ensure progress

* N0 process outside a critical section may block another
process

— guarantee bounded waiting time

 limited number of times other processes can enter the
critical section while another process is waiting

— not depend on number or speed of CPUs
» or other hardware resources
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Using Locks for the Critical Section

e Lock:
— if no thread has the lock mark it locked and return
— If another thread has the lock, wait
e Unlock:
— release the lock
— If other threads waiting, notify one or all of them
e Called mutexs in pthreads
— pthread_mutex is the data type
— pthread_mutex_init used to initialize it
— pthread_mutex_lock locks it
— pthread_mutex_unlock releases it
e Lock Grainularity
— want to lock enough to protect accesses
— don’'t want to lock too much to slow down the program
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