Announcements

e reading
— for Thursday 5.5

e Homework #1 (due 9/30/97 in class)

— chl, p.4 simple expression and explanation is fine
— ch 2, p14: just use dvision (assume mean is extact)

e Programming Project #1 will be returned on Th.

CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Sending More Than one Signal At Once

e Called multiplexing
— original goal of Bell was to MUX multiple telegraph signals
e Time Division Multiplexing

— everyone gets whole bandwidth
— but only when its their turn

- 193 Bit frame (125 psec) >
: Channel : Channel : Channel : Channel : : Channel :
I 1 I 2 I 3 | 4 | | 24 |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
L, | | | | | |
| | | | | | |
0 | | | | | | |
| | | | | | |
. ~ J
Bit1is 7 Data Bit 8 is for
a framing bits per signaling
code channel
per sample

figure copyright , 1996, Andrew S. Tanenbaum
CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Frequency Division Multiplexing

Frequency Division
— everyone gets to talk at once
— but only in their own frequency

1

Channel 1
f
Channel 2

")
f_\ S

5 Channel 2
3 Channel 1 Channel 3
s 1
© —
>
)\ JA'A'A
g) ’60 64 68 72
Channel 3 Frequency (kHz)
1F (©)
_;l'l |] |
300 3100 60 64 68 72
Frequency (Hz) Frequency (kHz)

(@)

CMSC 417 - S97 (lect 6)

(b)
figure copyright , 1996, Andrew S. Tanenbaum

copyright 1997 Jeffrey K. Hollingsworth

ATM Switching

e Requirements
— be able to switch 360,000 cells/sec per input link
— switch cells with as low a discard rate as possible
— never reorder the cells on a virtual circuit

® [ssues
— multiple cells destined for the same output at once
* need to buffer one of them
e must ensure fairness is maintained
— head-of-line blocking

» possible that a blocked output is holding up cells that
could be delivered

CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Switching Fabric (space division)

e Cross bars are great, but require O(n?) wires

e Can use a collection of smaller cross bar switches
— penalty: a request to connect may block

N=16,n=4,k=2 N=16,n=4,k=3
N N N N
o Crossbars o Crossbars o Crossbars n Crossbars
n{ - nxKk kxn [~ 1 nxk k kxn [
] ‘ —] Crossbars —
Crossbars ﬁxﬁ
— _ — n n -
1 nxk ﬁxﬁ kxn [C 1 nxk kxn [C
N N
_ X —
— — — n n —
] nxk NN kxn [C] nxk kxn [T
N N
- X —
— - — n n _
1 nxk kxn [1 nxk _/_ \ kxn [C
N Inputs N outputs N Inputs N outputs

€Y (b)

CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Batcher-banyan Switching

e Banyan
— can do a “good” or “poor” job of switching due to collisions
— if the inputs are sorted, we get performance

e Batcher
— sorts traffic base on full address of destination

— compares two colliding packets and uses final destination to select
output port

— requires O(nlog?n) nodes (2x2 switching elements)

Batcher switch Banyan switch

——

i 001 001 001

N *‘v

. * S jr'
'“"Wv o

__

CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Introduction to Pthreads

e Often want multiple “threads of control”

— separate logical acctivity (processing different requests)
— can exploit multiple processors if they are available

e Threads
— multiple execution streams that share an address space
e premptive: each thread gets a timeslice
* non-premptive: threads only switch on a block or a yield
— similar to processes

e Need to share information
— different threads are working on the same problem
— goal: let them share all of their global and heap variables
— problem: coordinating access

CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Producer-consumer: shared memory

e Consider the following code for a producer

repeat
produce an item into nextp

while counter == n;
buffer[in] = nextp;
in = (in+) % n;
counter++;

until false;

e Now consider the consumer

repeat
while counter == 0;
nextc = buffer[out];
out = (out + 1) % n;
counter--;
consume the item in nextc
until false;

e Does it work? Answer: NO!

CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Problems with the Producer-Consumer
Shared Memory Solution

e Consider the three address code for the counter

Counter Increment
reg, = counter
reg, =reg, +1
counter = reg,

Counter Decrement
reg, = counter
reg,=reg, -1
counter = reg,,

e Now consider an ordering of these instructions

0

=

N

N

— A A —

(&)

producer
producer
consumer
consumer
producer
consumer

CMSC 417 - S97 (lect 6)

reg, = counter {reg,=5}
reg,=reg, +1 {reg, =6}
reg, = counter {reg,=5}
reg,=reg,-1 {reg,=4}

counter =reg, {counter=06} This
counter =reg, {counter=4} -€&—should
be 5!

copyright 1997 Jeffrey K. Hollingsworth 9

Defintion of terms

e Race Condition

— Where the order of execution of instructions influences the
result produced

— Important cases for race detection are shared objects
e counters: in the last example
e queues: in your project
e Mutual exclusion
— only one process at a time can be updating shared objects

e Critical section
— region of code that updates or uses shared data

 to provide a consistent view of objects need to make
sure an update is not in progress when reading the data

— need to provide mutual exclusion for a critical section

CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth 10

Critical Section Problem

® processes must
— request permission to enter the region
— notify when leaving the region

e protocol needs to
— provide mutual exclusion
» only one process at a time in the critical section
— ensure progress

* N0 process outside a critical section may block another
process

— guarantee bounded waiting time

 limited number of times other processes can enter the
critical section while another process is waiting

— not depend on number or speed of CPUs
» or other hardware resources

CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

11

Using Locks for the Critical Section

e Lock:
— if no thread has the lock mark it locked and return
— If another thread has the lock, wait
e Unlock:
— release the lock
— If other threads waiting, notify one or all of them
e Called mutexs in pthreads
— pthread_mutex is the data type
— pthread_mutex_init used to initialize it
— pthread_mutex_lock locks it
— pthread_mutex_unlock releases it
e Lock Grainularity
— want to lock enough to protect accesses
— don’'t want to lock too much to slow down the program

CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth 12

