Announcements

- Midterm #1 solutions are on the web
 - last day to submit re-grade requests in Today (11AM)
- HW #2 (due 10/28/97):
 - Chapter 5: 1, 5, 6, 7, 8, 15, 16, 21, 30, 35
- Project Partner Signup Sheet was circulated
- Reading
 - Today: 5.5-5.6
 - Tuesday:

Choke Packets

Monitor link utilization

- keep an estimate (u) of average utilization over time
- $-u_{\text{new}} = au_{\text{old}} + (1 a)f$
 - f is a 0/1 sampling of link state
 - a is a parameter to control history
- can also use queue length or buffer utilization

When utilization is above a threshold

- for each new packet to be sent over congested link
 - send "choke" packet back to sender
 - tag forwarded data packet to prevent more coke packets
- when sender receives choke packet
 - must reduce rate to "choked" destination

Hop-by-hop coke

- on path back to sender, each router reduces traffic
- consumes buffer space along path to sender
- provides faster relief to congested router/link

Fair Queuing

- Local (per router) congestion control
 - each output link has n queues, one for each sender
 - need to limit max queue size or buffers will be exhausted
 - use round-robin to select next packet to queue

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

Weighted Fair Queuing

- can give different links different priorities
- give higher priority length multiple slots per round

Load Shedding

- When all else fails, routers drop (discard) packets
- Policy question: what packets to drop?
 - oldest ones: they are likely to be useless now
 - newest ones: helps to close open window in file transfer
 - less important ones
 - requires cooperation of application
 - in MPEG I frames are more important than B frames
 - drop all related packets
 - fragmentation: loss of one packet renders others useless
 - requires information from higher levels
- Preemptive shedding
 - when traffic starts to get high, dropping packets can prevent additional congestion

RSVP - Multicast Bandwidth Reservation

- Receivers send request to reserve BW up spanning tree
- Routers propagate request if request up tree
 - only sent if greater than prev. request for this group
- Dest. can request BW for multiple alternative sources
 - routers only allocate bandwidth for maximum channel request

5

Internetworking

- Goal: seamless operation over multiple subnets
 - could be two similar LANs
 - link WANs to LANS
 - link two different LANs together
- Issues:
 - packet size limits (different networks may have different limits)
 - quality of service (is it provided, how is it defined)
 - congestion control
 - connection vs. connectionless networks
- Possible at many levels
 - physical layer: repeaters
 - link layer: bridges regenerate traffic, some filtering
 - network: routers route packets between networks
 - transport: gateway byte streams
 - application: gateway email between two different systems

Firewalls

- A way to limit information flow
 - selective forwarding of information based on policy
 - policy: rules about what should be permitted
 - mechanism: way to enforce policy
- Can be implemented at many levels
 - at higher layers have more information
 - at lower layers can share filtering between multiple higher level entities
- Possible Layers
 - link layer: filter based on MAC address
 - network layer: filter based on source/destination, transport
 - transport: filter based on service (e.g. port number)
 - application: filter based on user name in email, based on content

Tunneling

- Problem
 - Source and Destination are compatible
 - something in the middle is not compatible
- Solution: Tunnel though the middle
 - only multi-protocol routers need to understand conversion
 - possible to tunnel through almost anything
 - can tunnel IP through IP (for mobile computing perhaps)

Internet Routing

- Use two levels of routing
- local (subnet) level routing
- Internet routing between multi-protocol gateways
 - multiple protocol gateways are generally fully connected
 - since they hide the underlying network
 - policies (politics) can dictate acceptable routes
 - don't route IBM packets of the Microsoft network
 - all packets starting and ending in Canada must stay in Canada
- Can use any of the standard routing algorithms
 - link-state
 - distance vector

Interior Gateway Routing Protocol

- Routes within a single Autonomous System (AS)
 - An AS contains
 - areas (collection of one or more subnets)
 - backbone (to interconnect areas within AS)
 - Also Called Open Shortest Path First (OSPF)
- Divides routers into four classes
 - Internal only within the area
 - Area boarder routers connect two or more areas
 - Backbone routers connect to backbone
 - AS boundary routers talk to other AS
- Exchanges info between adjacent routers
 - not the same as a neighbor since could have many hops inbetween
- Uses link-state
 - flooding with sequence numbers
 - supports multiple metrics: throughput, reliability, delay
 - backbone computes inter-area routes

OSPF

Graph representation of an Autonomous system.

Relationship between areas an ASes

Borderp Gateway Protocol (BGP)

Used to route between AS's

- concerned with politics and turf battles
- supports specific policies
 - don't send my packets of network X
 - don't send packets through me

Two types of nodes

- stub networks (one connection to BGP)
- multi-connected networks (more than one connection)
 - might also be transit networks (carry traffic for others)

Uses Distance Vector

- but includes complete path in table and sent to neighbors
- uses "scoring" function to select among possible routes