Announcements

e Reading
— Today: Chapter 6 (6.1 & 6.2)

e Midterms : Requests for re-grade due by 10/19

e HW #1 (Due Tuesday 10/19)
— Tanenbaum: 3-5, 3-25, 5-11, 5-16, 5-24

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Transport Layer

e (Goal: provide error free end-to-end delivery of data
— provide in-order delivery over unreliable network layer

e [ssues:
— checking packet integrity
— re-transmission of lost of corrupt packets
— connection establishment and management
— addresses
* need to define a host plus process
* typical abstraction is <host, port>
— byte vs. packet transport service
* byte service
— bytes are in order, but packet boundaries are lost
— used by TCP
» packet service
— preserve packet boundaries

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Duplicate Packets

e Issue: packets can be lost or duplicated
— need to detect duplicates
— need to re-send lost packets
* but how do we know they are not just delayed?

e Solution 1
— use a sequence number
« each new packet uses a new sequence number
« can detect arrival of stale packets
— problem: when node crashes, sequence number resets

e Solution 2
— use a clock for the sequence number

» clocks don’t reset on reboot, so we never lose
seguence #

— use a max lifetime for a packet
e permits clocks to roll over
— can get into forbidden region

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Three-way Handshake

e Use different sequence number spaces for each direction

e Three messages used

— Connection Request
» send initial sequence number from caller to callee

— Connection Request Acknowledgment
* send ACK of initial sequence number from caller to callee
» send initial sequence number from callee to caller

— First Data TPDU
» send ACK of initial sequence number from callee to caller

e Each Side Selects an initial number
— It knows that the number is not currently valid
e uses time of day
 limits number of connects per unit time, but not data!

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Example of Three-way Handshake

Host
Host 1 Host 2 Host 1 2
] Cr]] Oldduplicate]
(Sag = CR
N\ %)‘(
> =N
£ -y ot =) P
[= P*C‘ kﬁ)\ P\C\k kﬁ)‘
A (Seq < REECT
X Ac w::
o @ o o (b) o
Host 1 Host 2
T CR(S
S <
old duM
pO-

From: Computer Networks, 34 Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Closing a Connection

e To prevent data loss,

both sides must agree they are done

e Problem: how to agree

possible that “I am done” messages will get lost
possible that “I ACK you are done” messages will get lost

e Solution:

Initiator sends Disconnect Request, start DR timer

when initiated party receives DR, send DR and start DR
timer

when initiator gets DR back, send ACK and release
connection

when initiated gets ACK, release connection
If initiator times out, send new DR
If initiated times out, release connection

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Connection Close Example

Host 1 Host 2 Host 1 Host 2
Send DR DR Send DR DR
+oattimer Ftarttimer
St s
‘y art timer ‘DR/ timer
Release Releas_e
connection connection
Send ACK] ACK I
| Reee Send ACK_ACK
connection \ (Tirheout)
release
connection
@ (b)
Host 1 Host 2 Host 1 Host 2
Send DR DR Send DR DR Send DR
+ start timeN, Send DR & + start timeN 2
} start timef I | sattimer
(Timeout % I
send DR &‘ Send DR & (Tir'neout
+ start timer <art timet send DR \
DR + start timer I
Release
connection I
Send ACK I
%} Release (N Tihneou) (Timeout)
connectior release release
connectio connection
(© (d)

From: Computer Networks, 34 Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Lingering Half-Duplex Connections

e If a party (or a link) dies
— can be left with dead connections

e Solution: use keep-alive packets
— every n seconds, send a packet
— 1f no packet is received after n * m seconds, cleanup

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Buffer Management

e Unreliable Network
— sender must buffer all un-acked packets
— receiver can buffer if space is available
* if not, drop packet and wait to re-transmission

e Buffer Size
— does one size fit all?
o are TPDUs of uniform size?
— might use a fixed size buffer smaller than max TPDU
* requires support for multiple buffers per TPDU

e Possible to decouple buffer allocation from window
— ACKSs contain both buffer credits and ACKSs
e Buffer Copies

— possible for each layer to copy the buffer, but this is slow
— handoff pointers to data, but requires coordination between layers

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth 9

Multiplexing in the Transport Layer

e Upward multiplexing
— putting multiple transport connections onto one network connection
— used to accommodate pricing strategies that charge for connections

e Downward multiplexing
— using several network connections per transport connection
— permits use of multiple copies of network resources
« if the network layer uses sliding windows
— a high latency network may under utilize the link
— multiple connections each get a window
» per connection buffer allocation
— get more buffers
* round-robin scheduling
— get a larger share of link bandwidth

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth 10

Crash Recovery

e Router or Link Crashes
— Data in transit can be lost.
— End nodes have sufficient state to recover lost data.
— Transport protocol can hide network failures from the application.

e Host Crashes
— Transport level state will be lost at one end.
— Does the transport layer have sufficient info to recover?, No!.
 Information must flow down to network and up to transport user
— ACKs go down, and data goes up.
— It is not possible to make these two operations atomic.
 lack of stable storage causes this problem
— Result, higher up layer must deal with host crashes

CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth 11

