
1CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Announcements

l Reading
– Today: Chapter 6 (6.1 & 6.2)

l Midterms : Requests for re-grade due by 10/19
l HW #1 (Due Tuesday 10/19)

– Tanenbaum: 3-5, 3-25, 5-11, 5-16, 5-24

2CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Transport Layer
l Goal: provide error free end-to-end delivery of data

– provide in-order delivery over unreliable network layer

l Issues:
– checking packet integrity
– re-transmission of lost of corrupt packets
– connection establishment and management
– addresses

• need to define a host plus process
• typical abstraction is <host, port>

– byte vs. packet transport service
• byte service

– bytes are in order, but packet boundaries are lost
– used by TCP

• packet service
– preserve packet boundaries

3CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Duplicate Packets

l Issue: packets can be lost or duplicated
– need to detect duplicates
– need to re-send lost packets

• but how do we know they are not just delayed?
l Solution 1

– use a sequence number
• each new packet uses a new sequence number
• can detect arrival of stale packets

– problem: when node crashes, sequence number resets
l Solution 2

– use a clock for the sequence number
• clocks don’t reset on reboot, so we never lose

sequence #
– use a max lifetime for a packet

• permits clocks to roll over
– can get into forbidden region

4CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Three-way Handshake

l Use different sequence number spaces for each direction
l Three messages used

– Connection Request
• send initial sequence number from caller to callee

– Connection Request Acknowledgment
• send ACK of initial sequence number from caller to callee
• send initial sequence number from callee to caller

– First Data TPDU
• send ACK of initial sequence number from callee to caller

l Each Side Selects an initial number
– it knows that the number is not currently valid

• uses time of day
• limits number of connects per unit time, but not data!

5CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Example of Three-way Handshake

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

T
im

e

DATA (seq = x, ACK = y)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2

REJECT (ACK = y)

DATA (seq = x,
ACK = z)

ACK (seq
 = y, ACK = x)

CR (seq = x)

Host 1 Host 2

REJECT (ACK = y)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1
Host
2

Old duplicate

Old duplicate

Old duplicate

(a) (b)

(c)

6CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Closing a Connection

l To prevent data loss,
– both sides must agree they are done

l Problem: how to agree
– possible that “I am done” messages will get lost
– possible that “I ACK you are done” messages will get lost

l Solution:
– initiator sends Disconnect Request, start DR timer
– when initiated party receives DR, send DR and start DR

timer
– when initiator gets DR back, send ACK and release

connection
– when initiated gets ACK, release connection
– if initiator times out, send new DR
– if initiated times out, release connection

7CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Connection Close Example

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

DR

ACK

ACK

Host 1 Host 2

DR

DR

Send DR
+ start timer

Send DR
+ start timer

Send ACK

Release
connection

(Timeout)
release

connection

(Timeout)
release

connection

(N Timeouts)
release

connection

(Timeout)
send DR

+ start timer

Release
connection

DR

DR

Host 1 Host 2

DR

Send DR
+ start timer

Send DR &
start timer

Send DR &
start timer

Send DR
&
start timer

Send ACK
Release

connection

Release
connection

DR

ACK

Host 1 Host 2

DR

Send DR
+ start timer

Send DR+ start
timer

Send ACK

Release
connection

Lost

Lost

(Timeout)
send DR

+ start timer

DR

Host 1 Host 2

Send DR
+ start timer

Lost

Lost

(a) (b)

(c) (d)

8CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Lingering Half-Duplex Connections

l If a party (or a link) dies
– can be left with dead connections

l Solution: use keep-alive packets
– every n seconds, send a packet
– if no packet is received after n * m seconds, cleanup

9CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Buffer Management

l Unreliable Network
– sender must buffer all un-acked packets
– receiver can buffer if space is available

• if not, drop packet and wait to re-transmission
l Buffer Size

– does one size fit all?
• are TPDUs of uniform size?

– might use a fixed size buffer smaller than max TPDU
• requires support for multiple buffers per TPDU

l Possible to decouple buffer allocation from window
– ACKs contain both buffer credits and ACKSs

l Buffer Copies
– possible for each layer to copy the buffer, but this is slow
– handoff pointers to data, but requires coordination between layers

10CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Multiplexing in the Transport Layer
l Upward multiplexing

– putting multiple transport connections onto one network connection
– used to accommodate pricing strategies that charge for connections

l Downward multiplexing
– using several network connections per transport connection
– permits use of multiple copies of network resources

• if the network layer uses sliding windows
– a high latency network may under utilize the link
– multiple connections each get a window

• per connection buffer allocation
– get more buffers

• round-robin scheduling
– get a larger share of link bandwidth

11CMSC 417 - F99 (lect 12) copyright 1996-1999 Jeffrey K. Hollingsworth

Crash Recovery

l Router or Link Crashes
– Data in transit can be lost.
– End nodes have sufficient state to recover lost data.
– Transport protocol can hide network failures from the application.

l Host Crashes
– Transport level state will be lost at one end.
– Does the transport layer have sufficient info to recover?, No!.

• Information must flow down to network and up to transport user
– ACKs go down, and data goes up.
– It is not possible to make these two operations atomic.

• lack of stable storage causes this problem
– Result, higher up layer must deal with host crashes

