Announcements

• Midterms

- Mt #1 Tuesday March 6
- Mt #2 Tuesday April 15
- Final project design due April 11
- Midterm #1
 - Chapters 1 & 2
 - Chapter 5 (to 5.2)

1

Congestion

- Too much traffic can destroy performance
 - goal is to permit the network to operate near link capacity
 - can reach a knee in the packets sent vs. delivered curve
- Sources
 - all traffic is destined for a single out link
 - backup in traffic consumes buffers
 - other (cross traffic) will not get through due to lack of buffers
 - slow router CPU
 - can't service all requests at link speed
 - links still backup
- Often feeds on itself
 - queuing delays can cause packets to timeout
 - introduces more traffic due to re-transmissions

Congestion Control

• Two possible approaches

- open loop: prevent congestion from every happening
 - tends to be conservative and result in under utilizaion
- closed loop: detect and correct
 - some congestion will still occur until it is corrected

• Open loop

- request resources before using them
- global (or regional) resource allocation
 - responds yes or no to each request for service

Closed loop

- monitor network to detect congestion
- pass information back to location where action can be taken
- adjust system operation to correct the problem

Responding to Congestion

• Add more resources

- dialup network: start making additional connections
- SMDS: request additional bandwidth from provider
- split traffic: use all routes not just optimal
- Decrease load
 - deny service to some users: based on priorities
 - degrade service to some or all users
 - require users to schedule their traffic

Traffic Shaping

• Traffic tends to be bursty

- great variation between min and max bandwidth used
- this uncertainty leads to inefficient use of the network

Flow Specification

- user proposes a specific probability distribution
 - maximum packet size
 - transmission rate (min, max, or mean)
 - maximum delay
 - maximum delay variation (jitter)
 - quality guarantee (how strong is this agreement)
- network can
 - agree to request
 - refuse it
 - counter offer

Leaky Bucket

- buffer accepts traffic at link rate
 - buffer has a bounded size (limits burst size that is accepted)
- output is limited to a lower rate
 - traffic is constrained to this rate

6

Token Bucket

- Bucket hold tokens (generated one every T seconds)
- Can save up to a fixed limit of n tokens
- When traffic arrives, it must a have token to be sent

Congestion Control with Virtual Circuits

Admission control

- once traffic reaches a threshold, don't admit more VCs
- doesn't correct current problem, but prevents additional congestion

• Alter routes

- admit new connections
- route them around "trouble" areas

• Negotiate traffic

- establish parameters for volume and shape of traffic

Choke Packets

Monitor link utilization

- keep an estimate (u) of average utilization over time
- $u_{new} = au_{old} + (1 a)f$
 - f is a 0/1 sampling of link state
 - a is a parameter to control history
- can also use queue length or buffer utilization
- When utilization is above a threshold
 - for each new packet to be sent over congested link
 - send "choke" packet back to sender
 - tag forwarded data packet to prevent more coke packets
 - when sender receives choke packet
 - must reduce rate to "choked" destination
- Hop-by-hop coke
 - on path back to sender, each router reduces traffic
 - consumes buffer space along path to sender
 - provides faster relief to congested router/link

CMSC 417 - S97 (lect 10)

Load Shedding

- When all else fails, routers drop (discard) packets
- Policy question: what packets to drop?
 - oldest ones: they are likely to be useless now
 - newest ones: helps to close open window in file transfer
 - less important ones
 - requires cooperation of application
 - in MPEG I frames are more important than B frames
 - drop all related packets
 - fragmentation: loss of one packet renders others useless
 - requires information from higher levels
- Preemptive shedding
 - when traffic starts to get high, dropping packets can prevent additional congestion

RSVP - Multicast Bandwidth Reservation

- Receivers send request to reserve BW up spanning tree
- Routers propagate request if request up tree
 - only sent if greater than prev. request for this group
- Dest. can request BW for multiple alternative sources
 - routers only allocate bandwidth for maximum channel request

