
1CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Introduction

Reading
– Papers

Homework #1 Due on Tuesday (in class)

2CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

OpenMP

Support Parallelism for SMPs
– provide a simple portable model
– allows both shared and private data
– provides parallel do loops

Includes
– automatic support for fork/join parallelism
– reduction variables
– atomic statement

• one processes executes at a time
– single statement

• only one process runs this code (first thread to reach it)

3CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Sample Code

program compute_pi
integer n, i
double precision w, x, sum, pi, f, a

c function to integrate
f(a) = 4.d0 / (1.d0 + a*a)
print *, \021Enter number of intervals: \021
read *,n

c calculate the interval size
w = 1.0d0/n
sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(x), SHARED(w)
!$OMP& REDUCTION(+: sum)

do i = 1, n
x = w * (i - 0.5d0)
sum = sum + f(x)

enddo
pi = w * sum
print *, \021computed pi = \021, pi
stop
end

4CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

UPC

Extension to C for parallel computing
Target Environment
– Distributed memory machines
– Cache Coherent multi-processors

Features
– Explicit control of data distribution
– Includes parallel for statement

5CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

UPC Execution Model

SPMD-based
– One thread per processor
– Each thread starts with same entry to main

Different consistency models possible
– “strict” model is based on sequential consistency
– “relaxed” based on release consistency

6CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Forall Loop

Forms basis of parallelism
Add forth parameter to for loop “affinity”
– Where code is executed is based on “affinity”

Lacks explict barrier before/after execution
– Differs from openMP

Supports nested forall loops

7CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Split-phase Barriers

Traditional Barriers
– Once enter barriers, busy-wait until everyone arrives

Split-phase
– Announce intention to enter barrier (upc_notify)
– Perform some local operations
– Wait for everyone else (upc_wait)

Advantage
– Allows work while waiting for processes to arrive

Disadvantage
– Must find work to do
– Takes time to communicate both notify and wait

8CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

HPF Model of Computation

goal is to generate loosely synchronous program
– original target was distributed memory machines

Explicit identification of parallel work
– forall statement

Extensions to FORTRAN
– the forall statement has been added to the language
– the rest of the HPF features are comments

• any HPF program can be compiled serially

Key Feature: Data Distribution
– how should data be allocated to nodes?
– critical questions for distributed memory machines
– turns out to be useful for SMP too since it defines locality

9CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

HPF Language Concepts

Virtual processor
– an abstraction of a CPU
– can have one and two dimensional arrays of VPs
– each VP may map to a physical processor

• several VP’s may map to the same processor

Template
– a virtual array (no data)
– used to describe how real array are aligned with each other
– templates are distributed onto to virtual processors

Align directives
– expresses how data different arrays should be aligned
– uses affine functions

• align element I of array A with element I+3 of B

10CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Distribution Options

BLOCK
– divide data into N (one per VP) contiguous units

CYCLIC
– assign data in round robin fashion to each processor

BLOCK(n)
– groups of n units of data are assigned to each processor
– must be exactly (array size)/n virtual processors

CYCLIC(n)
– n units of contiguous data are assigned round robin
– CYCLIC is the same as CYCLIC(1)

11CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Computation

Where should the computation be performed?
Goals:
– do the computation near the data

• non-local data requires communication
– keep it simple

• HPF compilers are already complex

Compromise: “owner computes”
– computation is done on the node that contains the lhs of a

statement
– non-local data for the rhs operands are sent the node as

needed

12CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Finding the Data to Use

Easy Case
– the location of the data is known at compile time

Challenging case
– the location of the data is a known (invertable) function of

input parameters such as array size

Difficult Case (irregular computation)
– data location is a function of data
– indirect array used to access data A[index[I],j] = ...

13CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Challenging Case

Each processor can identify its data to send/recv
– use a pre-processing loop to identify the data to to move

for each local element I
receive_list = global_to_proc(f(I))
send_list = global_to_proc(f-1(I))

send data in send_list and receive data in receive_list
for each local rhs element I

perform the computation

14CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Irregular Computation

Pre-processing step requires data to be sent
– since we might need to access non-local index arrays

two possible cases
– gather a(I) = b(u(I))

• pre-processing builds a receive list for each processor
• send list is known based on data layout

– scatter a(u(I)) = b(I)
• pre-processing builds a send list for each processor
• receive list is known based on data layout

15CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Communication Library

How is it different from pvm?
– abstraction based on distributed, but global arrays

• provides some support for index translation
• pvm has local arrays

– multicast is in one dimension of a array only
– shifts and concatenation provided
– special ops for moving vectors of send/recv lists

• precomp_read
• postcomp_write

Goals
– written in terms of native message passing
– tries to provide a single portable abstraction to compile to

16CMSC 714 – F06 (lect 05) copyright 2006 Jeffrey K. Hollingsworth

Performance Results

How good are the speedup results?
– only one application shown
– speedup is similar to hand tuned message passing program

• one extra log(n) communication operations slows perf
– how good is the hand tuned program?

• speedup is only 6 on 16 processors

What is figure 4 showing?
– compares performance on two different machines
– no explanation

• is this showing the brand x is better then brand y?
• does it show that their compiler doesn’t work on brand y?

– lesson: figures should always tell a story
• don’t require the reader to guess the story

