
CMSC 714
Lecture 4

OpenMP and UPC

Chau-Wen Tseng
(from A. Sussman)

2CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

Programming Model Overview

Message passing (MPI, PVM)
– Separate address spaces
– Explicit messages to access shared data

• Send / receive (MPI 1.0), put / get (MPI 2.0)

Multithreading (Java threads, pthreads)
– Shared address space

• Only local variables on thread stack are private
– Explicit thread creation, synchronization

Shared-memory programming (OpenMP, UPC)
– Mixed shared / separate address spaces
– Implicit threads & synchronization

3CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

Shared Memory Programming Model

Attempts to ease task of parallel programming
– Hide details

• Thread creation, messages, synchronization
– Compiler generate parallel code

• Based on user annotations

Possibly lower performance
– Less control over

• Synchronization
• Locality
• Message granularity

My inadvertently introduce data races
– Read & write same shared memory location in parallel loop

4CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

OpenMP

Support parallelism for SMPs, multi-core
– Provide a simple portable model
– Allows both shared and private data
– Provides parallel for/do loops

Includes
– Automatic support for fork/join parallelism
– Reduction variables
– Atomic statement

• one processes executes at a time
– Single statement

• only one process runs this code (first thread to reach it)

5CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

OpenMP

Characteristics
– Both local & shared memory (depending on directives)
– Parallelism directives for parallel loops & functions
– Compilers convert into multi-threaded programs (i.e. pthreads)
– Not supported on clusters

Example
#pragma omp parallel for private(i)
for (i=0; i<NUPDATE; i++) {

int ran = random();
table[ran & (TABSIZE-1)] ^= stable[ran >> (64-LSTSIZE)];

}

Parallel for indicates
loop iterations may be

executed in parallel

6CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

More on OpenMP

Characteristics
– Not a full parallel language, but a language extension
– A set of standard compiler directives and library routines
– Used to create parallel Fortran, C and C++ programs
– Usually used to parallelize loops
– Standardizes last 15 years of SMP practice

Implementation
– Compiler directives using #pragma omp <directive>
– Parallelism can be specified for regions & loops
– Data can be

• Private – each processor has local copy
• Shared – single copy for all processors

7CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

OpenMP – Programming Model

Fork-join parallelism (restricted form of MIMD)
– Normally single thread of control (master)
– Worker threads spawned when parallel region encountered
– Barrier synchronization required at end of parallel region

Master
Thread

Parallel Regions

8CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

OpenMP – Example Parallel Region

double a[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int id = omp_thread_num();
foo(id,a);

}
printf(“all done \n”);

double a[1000];

#pragma omp parallel

foo(3,a);

printf(“all done \n”);

foo(2,a);foo(1,a);foo(0,a);

omp_set_num_threads(4);

Task level parallelism – #pragma omp parallel { … }

OpenMP
compiler

9CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

OpenMP – Example Parallel Loop

#pragma omp parallel
{

int id, i, nthreads,start, end;
id = omp_get_thread_num();
nthreads = omp_get_num_threads();
start = id * N / nthreads ; // assigning
end = (id+1) * N / nthreads ; // work
for (i=start; i<end; i++) {

foo(i);
}

}

#pragma omp parallel for
for (i=0;i<N;i++) {

foo(i);
}

Loop level parallelism – #pragma omp parallel for
– Loop iterations are assigned to threads, invoked as functions

OpenMP
compiler

Loop iterations
scheduled in blocks

10CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

Iteration Scheduling

Parallel for loop
– Simply specifies loop iterations may be executed in parallel
– Actual processor assignment is up to compiler / run-time system

Scheduling goals
– Reduce load imbalance
– Reduce synchronization overhead
– Improve data location

Scheduling approaches
– Block (chunks of contiguous iterations)
– Cyclic (round-robin)
– Dynamic (threads request additional iterations when done)

11CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

Parallelism May Cause Data Races

Data race
– Multiple accesses to shared data in parallel
– At least one access is a write
– Result dependent on order of shared accesses

May be introduced by parallel loop
– If data dependence exists between loop iterations
– Result depend on order loop iterations are executed
– Example

#pragma omp parallel for
for (i=1;i<N-1;i++) {

a[i] = (a[i-1] + a[i+1]) / 2;
}

12CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

Sample Fortran77 OpenMP Code

program compute_pi
integer n, i
double precision w, x, sum, pi, f, a

c function to integrate
f(a) = 4.d0 / (1.d0 + a*a)
print *, “Enter # of intervals: “
read *,n

c calculate the interval size
w = 1.0d0/n
sum = 0.0d0

!$OMP PARALLEL DO
PRIVATE(x), SHARED(w)

!$OMP& REDUCTION(+: sum)
do i = 1, n

x = w * (i - 0.5d0)
sum = sum + f(x)

enddo
pi = w * sum
print *, “computed pi = “, pi
stop
end

13CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

Reductions

Specialized computations that
– Partial results may be computed in parallel
– Combine partial results into final result
– Examples

• Addition, multiplication, minimum, maximum, count

OpenMP reduction variable
– Compiler inserts code to

• Compute partial result locally
• Use synchronization / communication to combine results

14CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

UPC

Extension to C for parallel computing

Target Environment
– Distributed memory machines
– Cache coherent multi-processors
– Multi-core processors

Features
– Explicit control of data distribution
– Includes parallel for statement
– MPI-like run-time library support

15CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

UPC

Characteristics
– Local memory, shared arrays accessed by global pointers
– Parallelism : single program on multiple nodes (SPMD)
– Provides illusion of shared one-dimensional arrays
– Features

• Data distribution declarations for arrays
• One-sided communication routines (memput / memget)
• Compilers translate shared pointers & generate communication
• Can cast shared pointers to local pointers for efficiency

Example

shared int *x, *y, z[100];
upc_forall (i = 0; i < 100; j++) { z[i] = *x++ × *y++; }

16CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

More UPC

Shared pointer
– Key feature of UPC

• Enables support for distributed memory architectures
– Local (private) pointer pointing to shared array
– Consists of two parts

• Processor number
• Local address on processor

– Read operations on shared pointer
• If for nonlocal data, compiler translates into memget()

– Write operations on shared pointer
• If for nonlocal data, compiler translates into memput()

– Cast into local private pointer
• Accesses local portion of shared array w/o communication

17CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

UPC Execution Model

SPMD-based
– One thread per processor
– Each thread starts with same entry to main

Different consistency models possible
– “Strict” model is based on sequential consistency

• Results must match some sequential execution order
– “Relaxed” based on release consistency

• Writes visible only after release synchronization
– Increased freedom to reorder operations
– Reduced need to communicate results

– Consistency models are tricky
• Avoid data races altogether

18CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

Forall Loop

Forms basis of parallelism

Add fourth parameter to for loop, “affinity”
– Where code is executed is based on “affinity”
– Attempt to assign loop iteration to processor with shared data

• To reduce communication

Lacks explicit barrier before / after execution
– Differs from OpenMP

Supports nested forall loops

19CMSC 714, Fall07 - Alan Sussman & Jeffrey K. Hollingsworth

Split-phase Barriers

Traditional Barriers
– Once enter barrier, busy-wait until all threads arrive

Split-phase
– Announce intention to enter barrier (upc_notify)
– Perform some local operations
– Wait for other threads (upc_wait)

Advantage
– Allows work while waiting for processes to arrive

Disadvantage
– Must find work to do
– Takes time to communicate both notify and wait

