COMPUTING

HIGH-PERFORMANCE

—

PARALLEL PROGRAMMING WITH
MESSAGE PASSING AND DIRECTIVES

The authors discuss methods for expressing and tuning the performance of parallel
programs, using two programming models in the same program: distributed and shared
memory. Such methods are important for anyone who uses these large machines for parallel
programs as well as for those who study combinations of the two programming models.

arallel application developers today face
the problem of how to integrate the
dominant parallel processing models
into one source code. Most high-per-
formance systems use the Distributed Memory
Parallel (DMP) and Shared Memory Parallel
(SMP; also known as Symmetric MultiProces-
sor) models, and many applications can benefit
from support for multiple parallelism modes.
Here we show how to integrate both modes into
high-performance parallel applications.
These applications have three primary goals:

1521-9615/01/$10.00 © 2001 IEEE

STEVE W. Bova

Sandia National Laboratories
CLAY P. BRESHEARS, HENRY (GABB, BOB KUHN, AND BILL MAGRO

KAI Software

RUDOLF EIGENMANN

Purdue University

GGREG (GAERTNER

Compagq Computer

STEFANO SALVINI

NAG

HowarD ScoTT

Lawrence Livermore National Laboratory

* high speedup, scalable performance, and ef-
ficient system use;

* similar behavior on a wide range of plat-
forms and easy portability between plat-
forms; and

* low development time and uncomplicated
maintenance.

Most programmers use the dominant parallel
programming languages for DMP and SMP: mes-
sage-passing interface! (MPL; www.mpi-forum.
org) and OpenMP?? (www.openmp.org), respec-
tively. Some applications we study here use PVM
instead of MPI (see Table 1). This article illustrates
good parallel software engineering techniques for
managing the complexity of using both DMP and
SMP parallelism.

Applications

The applications listed in Table 1 solve prob-
lems in hydrology, computational chemistry, gen-
eral science, seismic processing, aeronautics, and
computational physics. Emphasizing both I/0
and computation, they apply several numerical
methods including finite-element analysis, wave
equation integration, linear algebra subroutines,
fast Fourier transforms (FFT5), filters, and a vari-
ety of PDEs (Partial Differential Equations) and
ODEs (Ordinary Differential Equations). The

22

COMPUTING IN SCIENCE & ENGINEERING

Table 1. OpenMP MPI applications chosen for analysis.

Application Developers

Methods

Observations

CGWAVE ERDC (Engineer Research and
Development Center) Major
Shared Resource Center

GAMESS Univ. of lowa and Compaq

Linear Alge- NAG Ltd. and Albuquerque

bra Study High-Performance Computing
Center (AHPCC), Univ. of New
Mexico

SPECseis95 ARCO and Purdue Univ.

TLNS3D NASA Langley

CRETIN Lawrence Livermore National

Laboratory (LLNL)

sidebar, “A Taxonomy of Parallelism,” character-
izes these applications in terms of how they use
parallelism and the complexity of interactions
among the different techniques used.

DMP and SMP modes can combine in two
ways. The application could have two parallel
loop levels where, for the outer loop, each DMP
process executes an inner loop as an SMP multi-
threaded program. This applies also where a sin-
gle original loop has enough iterations to be split
into two nested loops, the outer DMP and the
inner SMP. The second, less frequent method is
for an application to have one level of parallelism
mapped to either DMP or SMP. Using both
types interchangeably increases portability and
lets each type crosscheck the other to isolate par-
allelism problems.

Developers frequently ask whether OpenMP
or MPI is faster. Most of these applications can
run with one MPI process and several OpenMP
threads, or several MPI processes and one
OpenMP thread. However, except for SPEC-
seis, the results are not directly comparable be-

FEM (Finite Element Method) code that
does MPI parameter space evaluation at
the upper level with OpenMP sparse lin-
ear equation solver at lower level.

A computational chemistry application
that uses MPI across the cluster and
OpenMP within each SMP node.

Study of hybrid parallelism using MPland ~ MPI provides scalability
while OpenMP provides
load balancing.

OpenMP for matrix-matrix multiplication
and QR factorization

Scalable seismic benchmark with MPI or
OpenMP used at the same level. It can

compare an SMP to a DMP. OpenMP.

CFD (Computational Fluid Dynamics) ap- ~ Some applications need
to configure the size of
an SMP node flexibly.

plication that uses MPI to parallelize
across grids and OpenMP to parallelize
each grid.

Non-LTE (non-Local Thermodynamic
Equilibrium) physics application that has
multiple levels of DMP and SMP
parallelism.

cause MPI applies best to coarser-grained par-
allelism, which has less overhead, whereas
OpenMP applies best to fine-grained paral-
lelism. Because OpenMP parallelism uses SMP
hardware, it can run finer-granularity parallelism
and still appear to perform as efficiently.

The results for SPECseis, where OpenMP has
been substituted for MPI at the same level, show
comparable performance between the two mod-
els. Some might argue that SPECseis doesn’t use
“true OpenMP style” because it replaces message-
passing primitives moving data between private
memory areas with copies to and from a shared
buffer. This might seem less efficient than plac-
ing all data accessed by multiple processors into
shared memory, but using shared memory is not
clearly better—using private memory can en-
hance locality of reference and hence scalability.

We present performance results for four of
the applications running on several platforms,
including Compaq Alpha, HP, IBM, SGI, and
Sun. Compaq, HP, and IBM systems have a
cluster SMP architecture, which is suitable for

Use both MPI and
OpenMP to solve the
biggest problems.

OpenMP is generally eas-
ier to use than MPI.

A scalable program will
scale in either MPI or

Restructuring for DMP
helps SMP. Tools help
find deep bugs.

SEPTEMBER/OCTOBER 2001

23

A Taxonomy of Parallelism

program structures with DMP parallelism on
the outside and SMP parallelism inside. Al-
though SGI and Sun machines are SMPs, SGI is
a NUMA (Non-Uniform Memory Access) ar-
chitecture whereas Sun is UMA, each with spe-
cific performance implications.

CGWAVE

Work supported by the US Department of
Defense High-Performance Computing Mod-
ernization Program used MPI and OpenMP si-

multaneously to dramatically improve the per-
formance of a harbor analysis code. This code
models wave motions from Ponce Inlet,* an area
on Florida’s Atlantic coast notorious for patches
of rough water that capsize boats as they enter
or leave the inlet. The advanced programming
techniques demonstrated here reduced calcula-
tion times from more than six months to less
than 72 hours. Reducing calculation times makes
modeling larger bodies of water, such as an en-
tire coastline, feasible.

The DoD now uses CGWAVE, developed at

We can also roughly characterize the parallel SMP struc-

Characterizing the applications studied here helps us un-
derstand their different uses of parallelism and the complex-
ity of interactions among them. We classify the applications
across two dimensions, one describing the message-passing
parallelism and the other describing the directive parallelism.

We break message passing into three classes:

e Parametric—This type has a very coarse-grained outer
loop: Each parallel task differs only in a few parameters,
communicated at task start. We expect high efficiency
and performance scalable to the number of parametric
cases. This is easy to implement on DMP systems.

e Structured domains—When algorithms perform neigh-
borhood communications, such as in finite difference
computations, efficient DMP execution relies on domain
decomposition, which can be broken into structured
and unstructured grids. Structured domain decomposi-
tion is simpler because data can be decomposed by data
structures. None of the applications studied here have
unstructured domains, which are more difficult to imple-
ment. Domain decomposition leads to higher communi-
cation than parametric parallelism.

e DMP direct solvers—Linear algebra solvers can be direct
or iterative. Implementing direct solvers on DMP systems
is complex because they have very high communication
needs and require load balancing. For efficiency’s sake,
linear systems should be large, usually greater than
2,000 unknowns, to warrant using a DMP model.

ture into three types, analogous in complexity to the DMP
types listed earlier:

e Statically scheduled parallel loops—Directive methods

permit easy parallelization of applications that contain
either a large single loop calling many subroutines or
(less efficient) a series of simple loops.

Parallel regions—Coordinating scheduling and data
structure access among a series of parallel loops
increases the efficiency of directive-based applications.
On SMP systems, the benefits are reduced scheduling
and barrier overhead and better use of locality
between loops. Merging all loops into one parallel re-
gion is conceptually similar to domain decomposition.
Iterative solvers, for example, consist of a parallel
region with several loops.

Dynamic load balanced—In some applications, static
scheduling results in gross inefficiency. Load balancing
schemes are more complex to implement than parallel
regions, which have a fixed assignment of tasks to
processors. The direct solvers studied here require this
technique because the complex data flow leads to ir-
regular task sizes.

Table A shows the structural characteristics of our appli-
cations following this classification. Two applications,
GAMESS and CRETIN, consist of multiple significantly differ-
ent phases and appear in two positions.

Table A. Message-passing versus directive complexity in applications studied.

Message-passing

directives Parametric Structured domains DMP direct solvers
Statically-scheduled parallel loops GAMESS (Integration) CRETIN (Transport)
Parallel regions CGWAVE TLNS3D, SPECseis

Dynamic load balanced

CRETIN (Kinetics) NAG GAMESS (Factor)

24

COMPUTING IN SCIENCE & ENGINEERING

Parallel Vector Adds: OpenMP versus MPI-OpenMPI

Figure A shows a simple vector add computation in vectors b and ¢ from MPI task O to all the others. Each MPI
OpenMP form and in MPI-OpenMP form. The OpenMP task enters the parallel do, which divides each section
form is just the serial form with a parallel directive indicat- among a set of threads for each MPI task. Then MPI gathers
ing that the loop can be executed in parallel. The combined the result sections from each MPI task back together on MPI
MPI-OpenMP form simply scatters sections of the input task 0.

SUBROUTINE vadd(a,b,c,n)

DIMENSION a(n),b(n),c(n)
1$OMP PARALLEL DO

DOi=1,n

a(i) = b(i) + c(i)

ENDDO

1$OMP END PARALLEL DO
RETURN
END

(a)

SUBROUTINE vadd(a, b, c, n)
DIMENSION a(n),b(n),c(n)
DIMENSION aloc(n),bloc(n),cloc(n)
CALL MPI_Init(ierr)
1l Get an identifier for each MPI task and the number of tasks
CALL MPI_Comm_Rank(MPI_COMM_WORLD, mytask,ierr)
CALL MPI_Comm_Size(MPI_COMM_WORLD, ntasks, ierr)

I Divide up and send sections of b and c to each task from task 0

isize = n/ntasks

CALL MPI_Scatter(b,isize, MPI_REAL,bloc,isize, MPI_REAL,0,MPI_COMM_WORLD, ierr)
CALL MPI_Scatter(c,isize, MPI_REAL,cloc,isize, MPI_REAL,0,MPI_COMM_WORLD,ierr)

I Now divide up each section among available threads

1$OMP PARALLEL DO
DO i =1,isize
aloc(i) = bloc(i) + cloc(i)
ENDDO

(b)

the ERDC Coastal and Hydraulics Laboratory,
daily to forecast and analyze harbor conditions.’
CGWAVE also assists with determining safe
navigation channels, identifying safe docking
and mooring areas, and insurance underwriting.

CGWAVE looks for harbor response solu-
tions within a parameter space. It exploits MPI at
a coarse-grained level to perform several simu-
lation runs, with different parameters, in parallel.
At each point of the parameter space under
consideration, CGWAVE uses OpenMP to par-
allelize compute-intense portions of the simula-
tion. Combining these two programming para-
digms increases how much parameter space we
can explore within a reasonable amount of time.
This dual-level parallel code can help coastal an-
alysts solve problems previously considered
unsolvable.

Parallel execution scheme
CGWAVE characterizes the sea state as sev-
eral incident wave components defined by pe-

Figure A. Parallel vector adds.

(a) Open MP version. If directives
are ignored, you must have the
serial version. (b) MPI-Open MP
version.

riod, amplitude, and direction. We see this set of
wave components as a parameter space: Each
triplet leads to a separate partial differential equa-
tion to be solved on the finite element grid, and
the parallelism applied uses MPI to distribute the
work. Because the execution time of separate
wave components might differ by a factor of four
or more, a simple boss—worker strategy dynami-
cally balances the workload. Each component
calculation approximates the harbor’s known
depth and shape within a finite-element model
that leads to a large, sparse linear system of more
than 100,000 simultaneous equations. The solver
is parallelized with OpenMP to return the an-
swer to any one component more quickly.

We performed our CGWAVE simulations si-
multaneously using computers in two different
locations: at the ERDC Major Shared Resource
Center (MSRC) and the Aeronautical Systems
Center MSRC in Dayton, Ohio. We used SGI
Origin 2000 platforms, which have shared mem-
ory required for the dual-level parallelism. To

SEPTEMBER/OCTOBER 2001

25

OpenMP threads

MPI workers

the data will also execute the
compute-intensive work on

20,000 that data.
18,000
16.000 Parallel software engin.eering
’ Because CGWAVE is a pro-
14,000 duction code, we don’t want to
12000 § modify the code extensively.
§ Portability is also important.
10,000 & Our work here represents
8,000 the first parallelization of CG-
WAVE for SMP. To prepare the
6,000 code for SMP parallelism, we
4,000 declared work arrays in common
2,000 blocks locally in the conjugate

gradient subroutine, eliminating
0 array access synchronization and
coherency overhead. This was
our only modification to the
original source. We used the
KAP-Pro Toolset (Kuck and As-

sociates, www.kai.com) for par-

Figure 1. Wall-clock time (in seconds) for CGWAVE analysis of a sediment mound

(50,000 elements, 75 components) on an SGI Origin 2000 platform.

couple the geographically separate SGI systems,
we used MPI_Connect.’

Programming issues

Calling MPI_Init or some other MPI commu-
nication routines from within an OpenMP par-
allel region causes severe problems in an
MPI-OpenMP program, and we recommend
avoiding such calls. Parallelizing the CGWAVE
code avoids these problems by allowing only one
thread to execute message-passing operations.

Distributing wave components among MPI
processes is highly parallel. Except for a combi-
nation step at the end, no communication occurs
between the MPI worker processes but only be-
tween boss and worker processes. The OpenMP
threads of one process therefore do not interfere
with those of another because each wave com-
ponent is independent and each MPI process has
local memory.

"To achieve scalability in the solver on the SGI
Origin 2000 NUMA architecture, the program
must assign data needed by the conjugate gra-
dient solver to the processor that will use it
most. CGWAVE takes advantage of the first-
touch rule to transparently distribute data.
Specifically, data resides with the processor that
first touches it. Important arrays are initialized
in parallel such that the processor initializing

allel assurance testing (Assure)
and performance optimization
(GuideView).

Domain decomposition us-
ing MPI at the finite-element-solver level would
require extensive code modification, whereas
distributing the wave components with MPI re-
quires minimal changes: the original serial code
simply loops over the wave components. Instead
of using the loop iteration value to select the next
wave component, we used MPI send-receive
calls to request, receive, and distribute wave
components. A Fortran 90 module houses the
boss—worker subroutines that coordinate com-
ponent dispatch and acquisition.

Preprocessor directives control conditional
compilation, which makes it easy to compile the
original serial, OpenMP, MPI, or MPI-OpenMP
version of CGWAVE from the same source code.

Performance

We ran several simulations using a range of MPI
processes and OpenMP threads. To test portabil-
ity, we ran the code on the ERDC MSRC SGI
Origin 2000, Cray T3E, and IBM SP (the latter
two under MPI only). We used an academic test
problem (an underwater sediment mound caused
by dredging) to measure performance and verify
the parallel code’s numerical accuracy.

Figure 1 shows the relative performance for dif-
ferent numbers of MPI and OpenMP workers
computing the test problem. For Ponce Inlet sim-
ulations, we used a grid size of 235,000 elements

26

COMPUTING IN SCIENCE & ENGINEERING

and almost 300 wave components. Without par-
allelism, this simulation would require six months
of CPU time, conservatively. Sixty processors re-
duced this to about three days. We conducted
timings on a 112-CPU SGI Origin 2000.

Although we’re tempted to draw conclusions
about the relative performance of MPI and
OpenMP, it’s not appropriate to compare these
models because we applied each to a different
level of parallelism in CGWAVE. Running mul-
tiple MPI processes, each executing multiple
OpenMP threads, yielded the best overall per-
formance. We must note that the boss—-worker
dynamic load balancing breaks down as the num-
ber of MPI worker processes approaches the
number of wave components in the test system.
On a 100-CPU machine, for example, using 100
MPI workers to perform a 100-component har-
bor simulation is inefficient due to inappropriate
load balance. It would be more efficient to have
25 MPI workers create four OpenMP threads for
each assigned wave component.

GAMESS
The Hartree-Fock self-consistent field (SCF)

approach to computing wave functions using a
finite set of Gaussian-type functions has been
central to ab initio quantum chemistry since
computers became powerful enough to tackle
polyatomic molecules. GAMESS-US,’ part of
the SPEChpc® suite, offers a well-studied exam-
ple of such computation.

Considerable research’™!! has explored how
parallel processing could benefit ab initio com-
putation. GAMESS (General Atomic and Mole-
cular Electronics Structure System) is a large and
complex software system, its 70,000 lines of code
consisting of several relatively autonomous mod-
ules written and extended by many people over
many years. Several modules in the GAMESS
release we explore here have been restructured
to exploit both DMP and SMP parallelism.

Parallel execution scheme

Figure 2 shows the software layers used in
most ab initio computation, illustrated here us-
ing Global Arrays (www.emsl.pnl.gov), a library
for distributed array operations in chemistry ap-
plications. The application software layer im-
plements ab initio computations in GAMESS.
The next layer consists of application-specific
parallel operations and is the first to support par-
allel processing concepts. The third layer,
portable parallel processing, shows two alterna-

Application layer
Application primitives

Ab initio computation
Global arrays

Parallelism support PVM OpenMP
Memory Digital
System layer | channel AP threads

tives: PVM, a message-passing library, and
OpenMP, directive-based parallel processing.
(As with many message-passing applications, the
GAMESS message-passing layer is referred to
as PVM, but a common subset of message-pass-
ing primitives permits porting to MPL) A pro-
gram can use both models at different levels of
parallelism. The lowest layer visible to a pro-
grammer is that bound to a particular operating
system. In this case, PVM calls the Memory
Channel API while OpenMP calls Digital Unix
Threads operations.

GAMESS uses different parallelism models for
two application primitives—building the Fock
matrix with electron orbital integral evaluation
and, our focus here, solving the Fock matrix.

We can apply both OpenMP and PVM at the
application primitives layer, which consists of se-
lected linear algebra solvers for ab initio chem-
istry. Because these solvers are communication-
intense algorithms that need dynamic scheduling,
OpenMP works better than message passing ex-
cept for very large computational chemistry
problems. We therefore implemented these
solvers in both PVM and OpenMP to let users
select the parallelism mode according to compu-
tation size.

Parallel software engineering

Solving the Fock matrix requires several lin-
ear algebra operations. In a message-passing sys-
tem, each processor typically computes some
portion of the operation with a local array, then
performs global reduction message-passing. The
code requires fairly complex modifications to a
simple solver, as Figure 3a illustrates for the ma-
trix operation from the GAMESS message-pass-
ing version. The color coding highlights the
sources of this version’s additional complexity:

* Some of the code switches parallel mode on
or off. Figure 3b, which uses the same color
scheme, shows that OpenMP does this with
one directive.

* Some of the code implements scheduling
options. In OpenMP, a directive calls out

Figure 2. The

parallel
programming
model for

ab initio
computation.

SEPTEMBER/OCTOBER 2001

27

DO 310 J = 1,M,MXCOLS

cSomp parallel if ((N .gt. 100)

.and. (M .gt.50))

JJIMAX = MIN(M, J+MXCOLS-1) cSomp& shared (V,Q,WRK,M,N, LDQV)
cC ---— GO PARALLEL! ----- c$omp& private (j,3jj,jjmax,i,w,wrkloc)
IF (PARR) THEN cSomp do schedule (dynamic)
IF (NXT) THEN DO 310 J = 1,M,MXCOLS
L2CNT = L2CNT + 1 JJIJMAX = MIN(M,J+MXCOLS-1)
IF (L2CNT.GT.NEXT) NEXT=NXTVAL (NPROC) DO 300 JJ=J,JJMAX
IF (NEXT.NE.L2CNT) THEN DO 100 I = 1,N
DO 010 JJ=J,JJMAX W = DDOT(M,Q(I,1),LDQV,V(1,JJ),1)
CALL VCLR(V(1,JJ),1,N) IF (ABS (W) .LT.SMALL) W=ZERO
010 CONTINUE WRKloc (I)=W
GO TO 310 100 CONTINUE
END IF DO 200 I = 1,N
ELSE V(I,JJ) = WRKloc(I)
IPCOUNT = IPCOUNT + 1 200 CONTINUE
IF (MOD(IPCOUNT,NPROC) .NE.O) THEN 300 CONTINUE
DO 020 JJ=J,JJMAX 310 CONTINUE
CALL VCLR(V(1,JJ),1,N) c$Somp end do nowait
020 CONTINUE c$omp end parallel
GO TO 310
END IF
END IF (b)
END IF
DO 300 JJ=J,JJMAX
DO 100 I = 1,N
W = DDOT(M,Q(I,1),LDQV,V(1,JJ),1)
IF (ABS (W) .LT.SMALL) W=ZERO
V(I,JJ)=w
100 CONTINUE
300 CONTINUE
310 CONTINUE
IF (PARR) THEN
IF (LDQV.GT.N) THEN
NP1 =N + 1
DO 420 I=NP1l,LDQV
DO 410 J=1,M
V(I,J) = ZERO Color coding:
410 CONTINUE Parallel / serial switch
420 CONTINUE Dynamic scheduling
END IF

CALL MY MPI_REDUCE (V,LDQV*M,MPI_SUM)
IF (NXT) NEXT = NXTVAL (-NPROC)

@ END IF

Block scheduling
Matrix kernel
Merge global matrix

Figure 3. GAMESS solver, (a) message-passing version and (b) directive version.

the scheduling option from a library.

* Some of the code sets array elements used
for the local computation (the V array),
which must be properly initialized. Ele-
ments not touched are set to zero so that the
global reduction operation (the call to
MY_MPI_REDUCE) correctly combines
all processors’ parts. The OpenMP version
accesses the shared array directly.

MPT also incurs computational overhead be-
cause data must be

1. passed from a matrix in GAMESS to a sys-
tem buffer,
2.passed from the system buffer across the

network to a destination system buffer, and
3.copied from this buffer to the GAMESS

matrix again.

This process must repeat several times for each
global reduction operation, hence the arrays in-
volved must be very large before parallel pro-
cessing offers any benefit.

Figure 3b shows the same Fock matrix op-
erations computed with OpenMP directives.
Not only does efficiency increase, but the code
is much simpler to write, maintain, and debug.

Performance
Table 2 shows how parallel GAMESS per-
forms on a cluster of four Compaq Alpha 8400

28

COMPUTING IN SCIENCE & ENGINEERING

systems with eight EV5 Alpha processors on
each system connected by a Memory Channel.
The dataset is SPEC “medium.” The 32-proces-
sor cluster completes operations five times faster
than the four-processor cluster.

Linear algebra study

As part of their ongoing collaboration, Nu-
merical Algorithms Group (NAG) and the Al-
buquerque High Performance Computer Cen-
ter (AHPCC) analyzed the feasibility of
mixed-mode parallelism on a Model F50-based
IBM SP system.!? Each SMP node in this sys-
tem has four Model F50 processors connected
by an enhanced bus. The project aimed to

* study the techniques required to achieve high
performance from a single processor to a sin-
gle SMP node up to multiple SMP nodes;

* develop an approach that incorporates both
DMP and SMP parallelism and would allow
the same code to be used for pure DMP, at
one extreme, to pure SMP, at the other, with
hybrid processors in between; and

* make use of emerging or established stan-
dards, such as OpenMP and MPI, using only
standard directives and MPI functions to en-
sure portability across different platforms.

The IBM SP system employs POSIX threads,
whose thread-safe MPI libraries allow the coex-
istence of DMP and SMP parallelism. In this
work, hybrid parallelism means using the SMP
mode within each node and explicit message
passing across nodes. The study also explored
communication cost hiding and the feasibility of
dynamic load balancing within the node with di-
rective parallelism.

Test cases involved matrix-matrix multiplica-
tion and QR factorization, both common linear
algebra operations. The approach used showed
good scalability and performance in the hybrid
mode for both. We discuss the results of the QR
factorization study here; the full measurements
appear elsewhere.!?

Why message passing and directives?

Message-passing parallelism is difficult be-
cause both functional and data parallelism must
be considered. It also, however, provides a more
flexible framework than directives in that the
parallelism need not fit into specific parallel con-
trol constructs. Also, at least in principle, DMP
offers extremely high scalability.

Table 2. Cluster of four 8-processor systems on GAMESS.

Number of CPUs Elapsed time (sec) Cluster speedup
4 327 1
8 178 1.84
16 101 3.24
24 76 4.30
32 64 5.11

OpenMP directive parallelism is much simpler
to use. The SMP hardware does data placement
automatically—explicit data placement some-
times enhances performance but is not required.
Also, within an SMP node, directive parallelism
uses shared memory more efficiently and facili-
tates dynamic load balancing. Scaling to many
SMP processors requires using directives at the
same level as message passing, however, where
these benefits disappear. Little data exists on ap-
plications using directives at this level.

We see parallelism as a continuum between
the limits of pure message passing and pure di-
rectives. Code should then execute anywhere
along that continuum depending on the number
of processors per node. The ideal code could
move seamlessly along the continuum with no
modifications, with the parallelism mode se-
lected dynamically at runtime.

Message-passing paradigms have particular
difficulty with dynamic load balancing: Any ap-
proach based on data migration across nodes en-
tails significant communication cost and code
complexity. For a fixed problem size, as node
quantity increases, computation time decreases
while communication costs and load imbalance
increase.

Hybrid parallelism can increase message-pass-
ing efficiency: if N, is the total number of proces-
sors and N, the number of processors per node,
message passing would only occur between N, /
Ny communicating entities. Communication
costs and overhead would approach those of a
smaller message-passing system and load imbal-
ance would decrease. Introducing communica-
tion within the extent of dynamic load balancing
would also permit overlapping communication
and computation within each SMP node, reduc-
ing communication costs by up to a factor N,,,,,.
For example, on the IBM SP used, communica-
tion costs could be reduced by up to 75 percent.

Parallel execution scheme
In the matrix multiply case, C = aA'B + bC, we

SEPTEMBER/OCTOBER 2001

29

Table 3. QR-factorization performance for mixed MPI-OpenMP code on various cluster configurations.

Dynamic versions (N; X Ny)

1x1 1x 4 2x 4 4x 4
n Hide No hide Hide No hide Hide No hide Hide No hide
500 218 208 611 494 656 618 628
1,000 225 229 732 678 1,128 912 1,231 1,131
2,000 746 773 1,310 1,185 1,963 1,579
4,000 2,467 2,124

Adaptive Versions (N, x Nyp,,)

1x1 1x 4 2x 4 4x 4
n Hide No hide Hide No hide Hide No hide Hide No hide
1,000 229 700 1,225 1,796
2,000 713 1,409 2,507
4,000 2,758

achieved perfect load balance by partitioning B
and C into equal column-blocks across nodes.
We distributed the matrix 4 block-cyclically by
columns. Each A column block was broadcast to
all nodes and then used for partial products, ac-
cumulating the results in C.

We also used communication hiding (overlap-
ping communication with computation), and the
performance results, discussed further later, high-
light its importance. We placed the communica-
tions outside the parallel region and then inside
the parallel region, then used OpenMP directives
requiring the dynamic scheduling of a DO loop
to hide communication cost by using broadcast
of the A column-block as one special DO loop it-
eration. We also tried an adaptive load-balancing
scheme that subdivided matrices B and C into
column blocks, one for each processor in the
SMP node. The processor performing the com-
munication accessed a narrower column block, its
width determined by ad hoc cost parameters.

The QR-factorization communication pattern
resembles that of matrix-matrix multiplication
except that perfect load balance isn’t possible
without data movement across SMP nodes.
However, our approach allowed good local load
balancing—that is, over the data stored within
each SMP node. We used a block version of the
QR factorization algorithm functionally similar
to that of ScalLapack. As with matrix-matrix
multiplication, the adaptive strategy performed
better than dynamic DO loop scheduling.

Programming issues
When we found that the IBM XL Fortran
compiler release we used did not completely im-

plement OpenMP directives—specifically, syn-
chronization directives—we explicitly coded a
Fortran barrier subroutine, which might have
impacted performance.

Also, the need to communicate information
about the message-passing parallelism (number
of nodes, data distribution, and so on) across the
subroutine interfaces increased code complex-
ity. This makes a hybrid application less portable
to a serial or SMP system.

Performance

For the matrix multiply, we tested modest
2,000-square matrices. Table 3 shows the QR-
factorization performance results for various
cluster configurations, communication hiding or
not, and dynamic versus adaptive strategies. The
performance data appear in megaflops, measured
using system wall clock time. Hide and No hide re-
fer to communication hiding. We tested the con-
figurations N, X N, where N, represents the
number of nodes and N, the number of proces-
sors per node. For comparison, Stefano Salvini
and his colleagues'? reported 1,060 Mflops for
the NAG library F68AEF and measured 743
megaflops with the Lapack routine DGEQRF
in the 1 x 4 configuration (pure four-way SMP),
for = 2000.

Without communication hiding, communica-
tion accounted for 15 to 20 percent of the elapsed
time. Communication hiding recovered 75 per-
cent of that time. On four 4-way Model F50
nodes, communication hiding and adaptive load
balancing achieved nearly a threefold speedup—
encouraging, because we spent little time opti-
mizing these codes.

30

COMPUTING IN SCIENCE & ENGINEERING

SPECseis

SPECseis, a seismic processing benchmark
used by the Standard Performance Evaluation
Corporation (SPEC, www.spec.org), typifies
modern seismic processing programs used for
oil and gas exploration.® It consists of 20,000
lines of Fortran and uses C primarily to inter-
face with the OS. FFTs and finite-difference
solvers comprise the main algorithms in the 240
Fortran and 119 C subroutines. The benchmark
includes five data sets—the smallest runs in half
an hour at 100 Mflops and uses 110 Mbytes of
temporary disk space; the largest runs in 240
hours at 100 Mflops and uses 93 Gbytes of disk
space.

The benchmark originally used message pass-
ing, but growing use of high-performance SMP
and NUMA systems has increased the need for
realistic benchmarks to test these systems. We
also wanted to test whether scalable parallelism
is inherent to the programming model—mes-
sage passing versus directives—or the applica-
tion itself.

Parallel execution scheme

The code has serial and parallel variants.
The parallel variant comes in two very similar
forms: message-passing PVM or MPI and di-
rective OpenMP, the latter developed from the
former. SPECseis uses an SPMD execution
scheme with consecutive computation and
communication phases, separated by barrier
synchronization.

The message-passing variant starts directly in
SPMD mode; that is, all processes start execut-
ing the same program. During initialization, ex-
ecuted by the master processor only, the other
processes are waiting explicitly. By contrast, the
OpenMP variant starts in sequential mode be-
fore opening an SPMD parallel section that en-
compasses the rest of the program.

Both versions keep all data local to the
processes and partitioned about equally. PVM
or MPI programs always keep data local to the
processes, whereas OpenMP programs give ex-
plicit locality attributes (default is shared). The
only data elements declared shared in SPECseis
are interprocess data exchange regions used sim-
ilarly to message-passing library implementa-
tions on SMP systems. The sending thread
copies data to the shared buffer, and the receiv-
ing thread copies it into its local data space. We
could improve this scheme by allocating in
shared memory all data for communication, but
we have not yet done this in SPECseis.

Programming issues
Several issues arose when we converted the
SPECseis message-passing variant to OpenMP.

* Data privatization: All data except for com-
munication buffers was declared private to
all threads, making the memory required for
a data set equal to that for the message-pass-
ing version. OpenMP’s syntactic forms al-
lowed us to easily privatize individual data
elements, arrays, and entire common blocks.
Switching the default for all data to private
achieves the same effect.

* Broadcasting common blocks: OpenMP
permits broadcasting common blocks that
have been initialized before a parallel region
to all private copies of the common block
inside the parallel region. SPECseis used
this extensively. OpenMP requires specify-
ing this broadcast statically and explicitly.
SPECseis doesn’t require copying all com-
mon block data into the parallel regions, but
our OpenMP variant does so, incurring
slight additional execution overhead.

* Mixing C and Fortran: We used a Fortran
OpenMP compiler only because OpenMP
for C was not yet available. However, be-
cause all calls to C routines occur within
parallel regions, performance did not de-
grade. This raised two issues. First, C global
data was difficult to privatize; we had to
make an explicit copy for each thread.
OpenMP C features would have let us sim-
ply give a private attribute to these data.
Second, although OpenMP requires OS
calls to be thread-safe, C programs com-
piled with a non-OpenMP-aware compiler
don’t have this property. We had to use OS-
specific mechanisms to guarantee a thread-
safe program—for example, placing a criti-
cal section around memory allocation.

* Thread binding: OpenMP does not require
that processes be bound to specific proces-
sors, nor does it provide mechanisms to
specify this execution attribute. Again, we
had to use OS-specific mechanisms, where
available, to achieve this.

OpenMP provides all necessary constructs for
scalable SPMD-style programming. Although this
is only one case study, we found OpenMP easy to
learn, and it even obviated several problems that
proved time-consuming in our message-passing
experiments. For example, we didn’t need to set up
configuration files or message-passing daemons.

SEPTEMBER/OCTOBER 2001

31

Figure 4.
SPECseis
speedup
comparison
for PVM and
OpenMP.

6 .
5 —
m PYM
Q 4
@ -’ OpenMP
(9]
3]
£ 3
el
Q
[0}
Q.
n 2
1
0 L
1 2 3 4
Number of processors
Performance

Message passing might seem more scalable
than directive parallelism, but our message-pass-
ing and OpenMP variants achieve equal scala-
bility using the same parallelization scheme with
the same data partitioning and high-level paral-
lelism. Figure 4 shows results obtained on an
SGI Power Challenge. Although the OpenMP
variant runs slightly faster that the PVM version,
this slight difference disappears if we increase
the data set size. We attribute this to the higher
message-passing costs for exchanging small data
sections.

TLNS3D

TLNS3D, developed at NASA Langley, is a
thin-layer Navier-Stokes solver used in compu-
tational fluid dynamics analyses. The program
can handle models composed of multiple blocks
connected with boundary conditions. The code,
written in Fortran 77, is portable to major Unix
platforms and Window N'T.

To simplify complex object flow modeling,
typical input data sets contain multiple blocks,
motivated by the physical model’s geometry. You
can compute these blocks concurrently and use
MPI to divide the blocks into groups and assign
each group to a processor. The block assignment
is static during the run because the program
must create distinct data files for each worker.

This approach works well for models that use
significantly more blocks than workers, because
TLNS3D can generally group the blocks such
that each MPI worker does roughly the same
amount of work. Unfortunately, as the number
of MPI workers increases, the potential for sta-
tic load balancing diminishes, eventually reach-

ing a one-to-one mapping of blocks into groups.
Load balancing then becomes impossible, which
limits the best-case parallel speedup to the num-
ber of blocks. Splitting large blocks before the
run could increase their number, but modifying
blocks becomes harder and the simplified nu-
merical methods at the block level can impact
the results.

Parallel execution scheme

At the block level of parallelism, TLNS3D
uses a boss—worker model in which the boss per-
forms I/O and the workers do numerical com-
putations. The boss also acts like a worker. A run
consists of multiple iterations, and at the end of
each, the MPI workers exchange boundary data.

To address the MPI level of parallelism’s limi-
tations, we added OpenMP directives to exploit
parallelism within each block. Each block ap-
pears as a 3D grid, and most computations on
that grid take the form of loops that can be per-
formed in parallel. Because TLNS3D has many
such parallel loops, we carefully tuned the
OpenMP directives to maximize cache affinity
between loops and eliminate unnecessary global
synchronization among threads.

With single-block data sets, OpenMP paral-
lelism allows scalable parallel performance im-
provements on up to 10 processors, whereas the
MPI version achieved zero speedup. The mixed
parallel version, however, provides the ability to
load balance cases when the number of CPUs ap-
proaches or even exceeds the number of blocks.

TLNS3D achieves load balance by first parti-
tioning the blocks across MPI workers to achieve
the best possible static load balance. Next, it par-
titions a group of threads, matching the number
of CPUs to be used, among blocks such that the
average number of grid points per thread is ap-
proximately equal. For example, a block con-
taining 60,000 grid points would have roughly
twice as many threads at its disposal as a block
containing 30,000 grid points. This nonuniform
thread allocation achieves a second form of load
balancing, which is effective for runs on a very
large number of processors.

Programming issues

Given many CPUs and two available paral-
lelism levels, the question arises of how many
MPI processes to use. Generally, we want to
minimize load imbalance while also minimizing
communication and synchronization. Finding
the correct balance is complicated, however, be-
cause load imbalance arises as MPI processes in-

32

COMPUTING IN SCIENCE & ENGINEERING

subroutine top
ISOMP PARALLEL
allocate (..)

ISOMP DO

do i = 1,N_lines
call line transfer
enddo \

do while
1SOMP DO

enddo

subroutine line_ transfer

do i = 1,N_angles

call mesh sweep

/ subroutine mesh sweep

do i = 1,N_zones
do j = 1,N_energies
/ enddo

do j = 1,N_energies

enddo

call diagnostics_0 '
!$SOMP END PARALLEL call diagnostics_1 VM
‘" call accelerate " enddo

enddo

crease, and synchronization overhead grows as
OpenMP threads proliferate within each block.

One solution is increasing the number of MPI
processes until a load imbalance begins to de-
velop, then using OpenMP threads to achieve
additional speedup and reduce the remaining
load imbalance. This doesn’t require modifying
the code or data set.

The nonuniform mapping of threads to block
groups in TLNS3D makes this application most
effective on shared-memory systems, such as the
SGI Origin 2000. Other systems, such as the IBM
SP, severely limit your ability to use varying num-
bers of threads per MPI worker. The mixed-par-
allel approach, however, can be effective on these
machines if you limit the number of MPI workers
to maintain good static load balance. You can then
assign a fixed number of threads to each SMP
node for additional speedup.

Parallel software engineering

We found parallel processing tools very effec-
tive in analyzing TLNS3D. On the MPI side,
VAMPIR and VAMPIRTRACE programs from
Pallas (www.pallas.com) analyze the message-
passing performance to identify where delays oc-
cur. This permits identifying block load imbal-
ance. On the OpenMP side, GuideView from
KAT identifies OpenMP performance problems.
We also used its Assure tool to find shared vari-
ables needing synchronization. This is important
when converting programs to directives because
shared variables can be touched anywhere.

CRETIN

CRETIN is a non-LTE physics application
developed at Lawrence Livermore National
Laboratory over the past 10 years by one devel-
oper. It uses roughly 100,000 lines of Fortran.
Compared to many LLNL application packages,

call diagnostics_2

it is moderately complex. Smaller and younger
codes use more recent software technology, but
older, larger, more complex codes developed by
physicists must be migrated from vector archi-
tectures to newer DMP and SMP parallelism
available on ASCI (Accelerated Strategic Com-
puting Initiative) systems.

The Department of Energy ASCI project uses
state-of-the-art parallel processing systems to
achieve the project’s goals: to simulate much
larger physical models than previously feasible.
The ASCI blue systems, combined DMP-SMP
systems, require mixed MPI-OpenMP program-
ming. Using portable MPI and OpenMP, we have
ported CRETIN to two ASCI blue systems:

® Blue Pacific—an IBM SP2 system with 1,464
clusters of four-processor PowerPC 604e
nodes, and

® Blue Mountain—an SGI Origin 2000 with
48 clusters of 128 processors each.

Parallel execution scheme

Several CRETIN computation packages or
modes have a high degree of parallelism. We dis-
cuss two: Atomic Kinetics and Line Radiation
Transport. Atomic Kinetics is a multiple-zone
computation with massive amounts of work in
each zone. We can map the loop over zones to ei-
ther message-passing or directive parallelism. Ra-
diation Transport has potentially several levels of
parallelism: lines, directions, and energies. The
kernel of the computation is a mesh sweep across
the zones. We used several nested parallel regions
with OpenMP IF clauses to select the best paral-
lelism level for the problem and the algorithm se-
lected for the run. On the message-passing level
the boss performs memory allocation and passes
zones to the workers. Figure 5 shows part of Ra-
diation Transport’s structure.

Figure 5.
Structure of
radiation
transport in
CRETIN. (The
code is shown
in a simplified
version, with
the OpenMP IF
clauses omitted
for clarity.)

SEPTEMBER/OCTOBER 2001

33

Figure 6. CRETIN

deep bug found
with Assure.

Original:

COMMON saved_x

Restructured:

subroutine sub_N

subroutine sub_ N x =0

subroutine top
! SOMP PARALLEL x = saved_x X=X+ Yy
call sub_1

X =X+Yy !SOMP CRITICAL

N

subroutine sub_1

call sub_2

Programming issues

In Atomic Kinetics, the amount of work in the
zones varies over five orders of magnitude, mak-
ing load balancing of zones a critical issue. On
each time step, we used the computational time
for each zone to sort and assign zones to proces-
sors for the next step. In the DMP version, we
restructured data to use temporary zones to
avoid referencing the zone index. This took
considerable work but aided data localization
for the SMP version as well. Minor restructur-
ing helped localize and minimize communica-
tion points for message passing. Here, too, the
SMP version benefited with fewer and larger
critical sections, making the directive version
easy to develop.

We also needed to classify common blocks as
shared or thread private and move some private
variables from the master initialization code to
inside the parallel region before the workshar-
ing parallel do.

Line Radiation Transport offers two DMP
parallelization options:

* Each processor can transport different lines
over the entire mesh, which requires trans-
posing data from the distributed zones. This
code is not needed in the serial or SMP ver-
sion. The SMP version uses the same data
structures as the serial version with array ac-
cesses interleaved to different caches. This
option executes very efficiently but is lim-
ited by memory requirements.

® Larger problems can apply domain de-
composition. The data transpose is not
needed, but load balancing might suffer be-
cause the zone distribution across proces-
sors might not be efficient for the Atomic
Kinetics. The transport algorithm becomes
less efficient and requires more iterations

saved_x = saved_x + X
!1SOMP END CRITICAL

for more domains. SMP parallelization
helps significantly here by decreasing the
number of domains for a given number of
processors.

Both options allocated thread private work-
spaces for temporary space. Minor restructuring
to minimize critical sections increased efficiency
of the lowest parallelism levels.

Multiple models for dynamic memory are
available—Fortran77, Fortran90, and Cray
pointers—but make portable memory manage-
ment tricky. Thread private allocations are per-
formed using the pointers stored in a thread pri-
vate common block. The scope of thread private
data spans several parallel regions. The pointers
remain valid as the application moves from par-
allel region to parallel region. So the application
relies on the thread private common retaining
these pointers between parallel regions. Al-
though it’s a subtle feature of OpenMP that all
implementations must implement correctly, it is
superior to adding a thread-specific index to all
array references.

Parallel software engineering

When designing the application, we spent
most of the parallelism work (five months) on
the DMP level. We spent just one month on the
SMP parallelization, primarily learning how to
use an SMP efficiently. However, restructuring
the DMP parallelism helped organize the paral-
lel structure for easy conversion to an efficient
SMP version.

Getting the parallelism mostly working was
relatively quick; finding deep bugs took longer.
We uncovered most of the deep bugs with the
Assure tool for OpenMP. Figure 6 shows an ex-
ample scenario for a deep bug. Several levels
deep in a parallel region, the programmer made

34

COMPUTING IN SCIENCE & ENGINEERING

CGWAVE

GAMESS

Table 4. Performance and programming issues in applications that use message passing and directives.

Linear algebra study

Why use directives and
message passing?

Parallelism Message
passing
Directives

Platforms

Problems

Parallel software
engineering

Add performance needed
to attack another dimension
in problem solving

Boss—-worker applied to
wave parameter space

Sparse solver applied to
PDE

Multiple SGI 02000

Calling message-passing
routines in parallel regions

Used Assure to explore
OpenMP parallelism

SPECseis

Flexible use of SMP clusters
on problems with lots of
parallelism

Outer coarser grain parallel
loop

Inner finer grain more vari-
able size

Memory Channel
AlphaServer 8400

Small granularity in MPI;
thread private efficiency of
OpenMP

OpenMP versions are
sometimes much simpler

TLNS3D

To get message-passing
scalability and good load
balancing with directives

Block solve matrix system
with fixed distribution

Dynamic or adaptive
scheduling of block
solution

SP2 with F50 nodes

Couldn’t use MPI within
node; incomplete support
for OpenMP

Porting and maintaining
two levels is difficult

CRETIN

Why use directives and
message passing?

Parallelism Message
passing
Directives

Platforms

Problems

Parallel software
engineering

Provide benchmark
portable to DMP and SMP
systems

SPMD: Compute, barrier,
communicate, then repeat

Same parallelism but built
with different model

SGl, Sun

Setting up message-pass-
ing configuration; thread
safety of libraries

Emulating message pass-
ing in directives

Assignment of grid blocks
left poor load balance for
MPI

Group of grid blocks
assigned to each worker by
boss

More or fewer processors
assigned to each worker

SGI 02000

Need for flexible clustering
of processors to SMP nodes

One expert for MPI,
another for OpenMP

To solve much larger prob-
lems with leading-edge
computers

Uses explicit data
transpose, not needed in
SMP

Benefited from previous
DMP parallelization

IBM SP2, SGI ©2000

Storage allocation pointers
tricky

Used OpenMP tools to find
deep bugs

a local copy of a shared common variable, up-
dated it, and stored it back in the common, but
forgot a critical section around the update. Also,
the local variable is initialized to zero rather than
to the saved_x, such that updating saved_x
can be done in one atomic operation. This
makes the critical section more efficient.

Finally, we made every effort to keep all paral-
lelism consistent with a single source to simplify
maintenance, debugging, and testing. We
achieved this, with the exception of data trans-
pose, mentioned earlier, and find it greatly ben-
efits ongoing development.

1l six applications described here suc-

cessfully use both message-passing and

directive parallel models to improve

program performance. Most use mul-

tiple levels of parallelism, with the coarse grain us-

ing DMP and the finer grain using SMP. An ap-

plication can, however, have only one level of

coarse-grained, domain decomposition parallelism

mapped to both message passing and directive ver-

sion in the same code without performance degra-
dation. Table 4 summarizes our experiences.

Running applications at the highest perfor-

mance levels possible remains a challenge that

SEPTEMBER/OCTOBER 2001

35

requires experimentation to find the critical pa-
rameters and optimal coding for each system. In
testing leading-edge parallel processing tech-
nology, we found that understanding the se-
mantics and implementation of each program-
ming model presented the primary obstacle.
Once we deciphered these, we found it rather
easy to successfully apply the models to the many
code situations. We hope our experiences will
migrate to a daily production environment. §

Acknowledgments

This work was supported in part by the US Department of
Energy under contract no. W-7405-Eng-48 and by the
National Science Foundation under grant no. 9703180.
Any opinions, findings, conclusions, or recommendations
expressed in this material are the authors’ and do not
necessarily reflect sponsors’ views.

References

1. W. Gropp, E. Lusk, and A. Skjellum, Using MPI, Portable Parallel
Programming with the Message-Passing Interface, The MIT Press,
Cambridge, Mass., 1994.

2. R. Chandra et al., Parallel Programming in OpenMP, Morgan Kauf-
mann, San Francisco, 2000.

3. L. Dagum and R. Menon, “OpenMP: An Industry-Standard API
for Shared-Memory Programming,” IEEE Computational Science &
Eng., vol. 4, no. 1, Jan.-Mar. 1998, pp. 46-55.

4. S.W.Bova et al., “Dual-level Parallel Analysis of Harbor Wave Re-
sponse Using MPI and OpenMP,” Int’l|. High-Performance Com-
puting Applications, vol. 14, no. 1, Spring 2000, pp. 49-64.

5. B. Bingyi Xu, V. Panchang, and Z. Demirbilek, “Exterior Reflec-
tions in Elliptic Harbor Wave Models,” J. Waterway, Port, Coastal,
and Ocean Eng., vol. 122, no. 3, May/June 1996, pp. 118-126.

6. G.E. Fagg and].]. Dongarra, PVYMPI: An Integration of the PVM
and MPI Systems, tech. report UT-CS-96-328, Univ. of Tennessee,
Knoxville, Tenn., May 1996.

7. M.W. Schmidt et al., “General Atomic and Molecular Electronic
Structure System,” J. Comp. Chem., vol. 14, no. 11, Nov. 1993,
pp. 1347-1363.

8. R. Eigenmann and S. Hassanzadeh, “Benchmarking with Real In-
dustrial Applications: The SPEC High-Performance Group,” IEEE Com-
putational Science & Eng., vol. 3, no. 1, Spring 1996, pp. 18-23.

9. R.J. Harrison and R. Shepard, “Ab Initio Molecular Electronic
Structure on Parallel Computers,” Ann. Rev. Phys. Chem., vol. 45,
1994, pp. 623-658.

10. D. Feller, R.A. Kendall, and M.]. Brightman, The EMSL Ab Initio
Methods Benchmark Report, tech. report PNNL-10481, Pacific
Northwest National Laboratory, Richland, Wash., Mar. 1995.

11. B. Kuhn and E. Stahlberg, “Porting Scientific Software to Intel
SMPs Under Windows/NT,” Scientific Computing & Automation,
vol. 14, no. 12, Nov. 1997, pp. 31-38.

12. S. Salvini, B.T. Smith, and]. Greenfield, Towards Mixed-Mode Par-
allelism on the New Model F50-Based IBM SP System, Tech. Report
AHPCC98-003, Albuquerque High Performance Computing
Center, Univ. of New Mexico, Sept. 1998.

Steve W. Bova works in the Thermal/Fluid Computa-
tional Engineering Sciences Group at Sandia National
Laboratories. His research interests include parallel
computing and adaptive finite-element methods for
systems of parabolic and hyperbolic differential equa-
tions. He received his PhD from the University of Texas.
Contact him at Sandia National Laboratories, P.O. Box
5800, MS 0835, Albuquerque, NM 87185-0835;
swbova@sandia.gov.

Clay P. Breshears is a member of the Parallel Applica-
tions Center at KAl Software, a division of Intel Ameri-
cas. His research interests include threading, cryptog-
raphy, and numerical methods on parallel systems. He
received a PhD in computer science from the Univer-
sity of Tennessee, Knoxville. Contact him at KAI
Software, 1906 Fox Dr., Champaign, IL 61820; clay.
breshears@intel.com.

Henry Gabb is a member of the Parallel Applications
Center at KAI Software, where he works on parallel per-
formance tuning for commercial and research applica-
tions. He holds a PhD from the University of Alabama
at Birmingham. Contact him at KAl Software, 1906 Fox
Dr., Champaign, IL 61820; henry.gabb@intel.com.

Bob Kuhn is the manager of new products at KAl Soft-
ware. His current research and development areas in-
clude creating and refining MPI/OpenMP performance
analysis tools, pushing the frontiers of OpenMP, and
improving peer-to-peer computing. He has a PhD from
the University of lllinois at Urbana-Champaign. Con-
tact him at KAl Software, 1906 Fox Dr., Champaign,
IL 61820; bob.kuhn®@intel.com.

Bill Magro is the manager of the Parallel Applications
Center at KAl Software. His current work focuses on
parallelizing applications with OpenMP, MPI, and other
parallelism models. He also is a product manager for
the KAl tools for parallelizing applications. He has a
PhD in physics from the University of lllinois at Urbana-

COMPUTING IN SCIENCE & ENGINEERING

Champaign. Contact him at KAI Software, 1906 Fox
Dr., Champaign, IL 61820; bill. magro@intel.com.

Rudolf Eigenmann is an associate professor and chair-
man of the Computer Area at the Purdue University
School of Electrical and Computer Engineering. His re-
search interests include optimizing compilers, pro-
gramming methodologies and tools, and performance
evaluation for high-performance computers. He re-
ceived his PhD in electrical engineering/computer sci-
ence from ETH Zurich, Switzerland. He received a 1997
NSF Career award and serves on the editorial boards
of the International Journal of Parallel Programming and
Computing in Science & Engineering. He has also served
as the chairman and vice-chairman of the High-Per-
formance Group of the Standard Performance Evalua-
tion Corp. (SPEC). He is a member of the IEEE and the
ACM. Contact him at Purdue Univ., School of Electrical
and Computer Eng., 1285 EE Bldg., West Lafayette, IN
47907; eigenman@purdue.edu.

Greg Gaertner is a member of the Systems Quality
and Performance Engineering Group at Compag. His

Merd

?%E%%%@%%%@E%% %ﬁml Engineers

Physicists
chemists

and others:

Visit www.computer.org/cise
or http://ojps.aip.org/cise

research interests include high-performance server ar-
chitectures and applications. He also chairs the SPEC
High Performance Group. He received a BS in physics
from the University of Minnesota. Contact him at
greg.gaertner@compag.com.

Stefano Salvini is the High Performance Group Lead
and Senior Technical Consultant for the Numerical Al-
gorithms Group. He has a PhD in applied mathematics
from Queens University in Belfast. His interests include
sparse iterative solvers, SMP, and hybrid parallelism.
Contact him at The Numerical Algorithms Group, Ltd.
Wilkinson House, Jordan Hill Rd., Oxford OX2 8DR,
United Kingdom; stef.salvini@nag.co.uk.

Howard Scott is a computational physicist at Lawr-
ence Livermore National Laboratory, where he re-
searches nonlocal thermodynamic equilibrium radia-
tion transport, radiation/hydrodynamics simulations,
and parallel processing. He has a PhD in astrophysics
from Cornell University. Contact him at Lawrence Liv-
ermore National Laboratory, P.O. Box 808, L-18, Liv-
ermore, CA 94551; hascott@lInl.gov.

What is Computing in
Science & Engineering

er of TWO

magaz ine? cistisa peer-reviewed, joint
publication of the IEEE Computer Society and
the American Institute of Physics. It represents
the merger of two first-rate scientific publica-
tions—AIP’s Computers in Physics and IEEE

Computational Science & Engineering.

Now electrical engineers, physicists, chemists,
and others have a magazine that covers a
broad range of topics, emphasizing the com-
mon techniques and practical lessons that are
portable from one area of CSE to another. CiSE
is the leading interdisciplinary forum for those
who call themselves computational scientists
or engineers, or who have an interest in the
subject. Specialists from many areas find it

highly readable and accessible.

SUBSCRIBE TODAY!

