
1CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Introduction

l Sample data for program will be on the web today
l Reading

– Today OpenMP & HPF
– Thursday DSM papers

• one paper is only available from the library

2CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

OpenMP

l Support Parallelism for SMPs
– provide a simple portable model
– allows both shared and private data
– provides parallel do loops

l Includes
– automatic support for fork/join parallelism
– reduction variables
– atomic statement

• one processes executes at a time
– single statement

• only one process runs this code (first thread to reach it)

3CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Sample Code

program compute_pi
 integer n, i
 double precision w, x, sum, pi, f, a
c function to integrate
 f(a) = 4.d0 / (1.d0 + a*a)
 print *, \021Enter number of intervals: \021
 read *,n
c calculate the interval size
 w = 1.0d0/n
 sum = 0.0d0
!$OMP PARALLEL DO PRIVATE(x), SHARED(w)
!$OMP& REDUCTION(+: sum)
 do i = 1, n
 x = w * (i - 0.5d0)
 sum = sum + f(x)
 enddo
 pi = w * sum
 print *, \021computed pi = \021, pi
 stop
 end

4CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

HPF Model of Computation

l goal is to generate loosely synchronous program
– original target was distributed memory machines

l Explicit identification of parallel work
– forall statement

l Extensions to FORTRAN
– the forall statement has been added to the language
– the rest of the HPF features are comments

• any HPF program can be compiled serially

l Key Feature: Data Distribution
– how should data be allocated to nodes?
– critical questions for distributed memory machines
– turns out to be useful for SMP too since it defines locality

5CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

HPF Language Concepts

l Virtual processor
– an abstraction of a CPU
– can have one and two dimensional arrays of VPs
– each VP may map to a physical processor

• several VP’s may map to the same processor

l Template
– a virtual array (no data)
– used to describe how real array are aligned with each other
– templates are distributed onto to virtual processors

l Align directives
– expresses how data different arrays should be aligned
– uses affine functions

• align element I of array A with element I+3 of B

6CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Distribution Options

l BLOCK
– divide data into N (one per VP) contiguous units

l CYCLIC
– assign data in round robin fashion to each processor

l BLOCK(n)
– groups of n units of data are assigned to each processor
– must be exactly (array size)/n virtual processors

l CYCLIC(n)
– n units of contiguous data are assigned round robin
– CYCLIC is the same as CYCLIC(1)

7CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Computation

l Where should the computation be performed?
l Goals:

– do the computation near the data
• non-local data requires communication

– keep it simple
• HPF compilers are already complex

l Compromise: “owner computes”
– computation is done on the node that contains the rhs of a

statement
– non-local data for the lhs operands are send the node as

needed

8CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Finding the Data to Use

l Easy Case
– the location of the data is known at compile time

l Challenging case
– the location of the data is a known (invertable) function of

input parameters such as array size

l Difficult Case (irregular computation)
– data location is a function of data
– indirect array used to access data A[index[I],j] = ...

9CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Challenging Case

l Each processor can identify its data to send/recv
– use a pre-processing loop to identify the data to to move

for each local element I
receive_list = global_to_proc(f(I))
send_list = global_to_proc(f-1(I))

send data in send_list and receive data in receive_list
for each local rhs element I

perform the computation

10CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Irregular Computation

l Pre-processing step requires data to be sent
– since we might need to access non-local index arrays

l two possible cases
– gather a(I) = b(u(I))

• pre-processing builds a receive list for each processor
• send list is known based on data layout

– scatter a(u(I)) = b(I)
• pre-processing builds a send list for each processor
• receive list is known based on data layout

11CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Communication Library

l How is it different from pvm?
– abstraction based on distributed, but global arrays

• provides some support for index translation
• pvm has local arrays

– multicast is in one dimension of a array only
– shifts and concatenation provided
– special ops for moving vectors of send/recv lists

• precomp_read
• postcomp_write

l Goals
– written in terms of native message passing
– tries to provide a single portable abstraction to compile to

12CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Performance Results

l How good are the speedup results?
– only one application shown
– speedup is similar to hand tuned message passing program

• one extra log(n) communication operations slows perf
– how good is the hand tuned program?

• speedup is only 6 on 16 processors

l What is figure 4 showing?
– compares performance on two different machines
– no explanation

• is this showing the brand x is better then brand y?
• does it show that their compiler doesn’t work on brand y?

– lesson: figures should always tell a story
• don’t require the reader to guess the story

13CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Communitivity Analysis:Target
Environment

l Shared memory multi-processors
l Object oriented programs

– C++ class methods
– pointer based graph data structures

l Sources of parallelism
– method invocation
– methods may be invoked

• recursively
• simple looping constructs (converted to tail recursion)

14CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Analysis

l Determine if two method invocations commute
– intuitive definition: can be performed in any order
– a followed by b (a;b) is the same as b then a (b;a)

l Technique
– symbolic evaluation

• generate symbolic results of running a;b and b;a
• like running a method but expressions not data

– compare two results
• invar analysis - are the variables the same?

– Need to know basic commutative ops (e.g. addition)
• sub-method invocation

– are multi-sets of different invocations the same

15CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Performance Issues

l Method Size
– methods should be the “natural” size
– too small - not enough work for overhead
– too largew -results in a load imbalance

l Synchronization
– need to provide mutex over shared data
– granularity an important parameter

• too small - lock overhead dominates
• too large - reduce potential parallelism

– Compiler can change granularity
• start with one lock per method invocation
• user lock “coarsening” to merge locks across invocations

16CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Lock Granularity

l Hard to know correct lock size at compile time
Solution: use runtime adaptation

l Generate multiple versions of methods
– each uses a different lock granularity
– provide a way to switch between version

l Adaptation
– run one at a time and gather timing data for each one
– select best one

• need to make sure samples are representative

17CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Questions About the Technique

l Are the speedups good?
– 50% is not bad for an automatic tool

l Is the technique general?
– Has only tried two programs

• these were the target applications from the start
– works for recursive graph structures

• how big is this application domain?

l Will it work and play with other approaches?
– Can data parallelism be used for part of the code?

