
Utilization and Predictability in Scheduling

the IBM SP2 with Back�lling

Dror G. Feitelson Ahuva Mu'alem Weil

Institute of Computer Science

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

ffeit,ahumug@cs.huji.ac.il

Abstract

Scheduling jobs on the IBM SP2 system is usually done by giving each job a par-
tition of the machine for its exclusive use. Allocating such partitions in the order that
the jobs arrive (FCFS scheduling) is fair and predictable, but su�ers from severe frag-
mentation, leading to low utilization. This motivated Argonne National Lab, where
the �rst large SP1 was installed, to develop the EASY scheduler. This scheduler, which
has since been adopted by many other SP2 sites, uses aggressive back�lling: small jobs
are moved ahead to �ll in holes in the schedule, provided they do not delay the �rst job
in the queue. We show that a more conservative approach, in which small jobs move
ahead only if they do not delay any job in the queue, produces essentially the same
bene�ts in terms of utilization. Our conservative scheme has the added advantage that
queueing times can be predicted in advance, whereas in EASY the queueing time is
unbounded.

1 Introduction

The scheduling scheme used on most distributed-memory parallel supercomputers is variable
partitioning, meaning that each job receives a partition of the machine with its desired
number of processors [2]. Such partitions are allocated in a �rst-come �rst-serve (FCFS)
manner to interactive jobs that are submitted directly, and to batch jobs that are submitted
via a queueing system such as NQS. But this approach su�ers from fragmentation, where
processors cannot meet the requirements of the next queued job and therefore remain idle.
As a result system utilization is typically in the range of 50{80% [12, 9, 4, 7].

It is well known that the best solutions for this problem are to use dynamic partitioning
[11] or gang scheduling [3]. However, these schemes have practical limitations. The only

1

e�cient and widely used implementation of gang scheduling was the one on the CM-5 Con-
nection Machine; other implementations are too coarse-grained for real interactive support,
and do not enjoy much use. Dynamic partitioning has not been implemented on production
machines at all.

A simpler approach is to just re-order the jobs in the queue, that is, to use non-FCFS
policies [5]. Consider the following scenario, where a number of jobs are running side by
side, and the next queued job requires all the processors in the system. A FCFS scheduler
would then reserve all the processors that are freed for this queued job, and leave them
idle. A non-FCFS scheduler would schedule some other smaller jobs, that are behind the
big job in the queue, rather than letting the processors idle [8, 1]. Of course, this runs the
danger of starving the large job, as small jobs continue to pass it by. The typical solution
to this problem is to allow only a limited number of jobs to leapfrog a job that cannot be
serviced, and then start to reserve (and idle) the processors. The point at which the policies
are switched can be chosen so as to amortize the idleness over more useful computation, by
causing jobs that create signi�cant idleness to wait more before making a reservation.

A somewhat more sophisticated policy is to require users to estimate the runtime of their
jobs. Using this information, only short jobs | that are expected to terminate in time |
are allowed to leapfrog a waiting large job. This approach, which is called back�lling, was
developed for the IBM SP1 parallel supercomputer installed at Argonne National Lab as part
of EASY (the Extensible Argonne Scheduling sYstem) [10], which has since been integrated
with the LoadLeveler scheduler from IBM for the SP2 [13].

The EASY back�lling algorithm only checks that jobs that move ahead in the queue
do not delay the �rst queued job. We show that this approach can lead to unbounded
queueing delays for other queued jobs, and therefore prevents the system frommaking de�nite
predictions as to when each job will run. We then go on to show that an alternative approach,
in which short jobs are moved ahead only if they do not delay any job in the queue, has
essentially the same bene�ts as the more aggressive EASY algorithm. As this approach has
the additional bene�t of making an exact reservation for each job immediately when it is
submitted, it is preferable to the EASY algorithm. The comparison of the algorithms is done
both with a general workload model and with speci�c workload traces from SP2 installations.

2 Back�lling

Back�lling is an optimization in the framework of variable partitioning. In this framework,
users de�ne the number of processors required for each job and also provide an estimate
of the runtime; thus jobs can be described as requiring a rectangle in processor/time space
(Fig. 1). The jobs then run on dedicated partitions of the requested size. Note that users
are motivated to provide an accurate estimate of the runtime, because lower estimates mean
that the job may be able to run sooner, but if the estimate is too low the job will be killed
when it overruns its allocation.

Once runtime estimates are available, it is possible to predict when jobs will terminate,

2

runtim
e

processors

F
igu

re
1:

G
rap

h
ical

rep
resen

tation
of

a
job

in
p
rocessor/tim

e
sp
ace.

an
d
th
u
s
w
h
en

th
e
n
ex
t
q
u
eu
ed

job
s
w
ill

b
e
ab
le
to

ru
n
.
W
ith

F
C
F
S
sch

ed
u
lin

g,
q
u
eu
ein

g
tim

e
is
estim

ated
b
ased

on
p
rev

iou
s
job

s
in

th
e
q
u
eu
e.

H
ow

ever,
F
C
F
S
su
�
ers

from
fragm

en
-

tation
an
d
d
elay

s
to

sh
ort

job
s
th
at

are
stu

ck
b
eh
in
d
lon

g
on
es.

B
ack

�
llin

g
im

p
roves

u
p
on

th
is
b
y
m
ov
in
g
sh
ort

job
s
ah
ead

in
th
e
q
u
eu
e
to

u
tilize

\h
oles"

in
th
e
sch

ed
u
le.

T
h
e
n
am

e
\b
ack

�
llin

g"
w
as

coin
ed

b
y
L
ifka

to
d
escrib

e
th
e
E
A
S
Y
sch

ed
u
ler

for
th
e
A
rgon

n
e
S
P
1
[10],

alth
ou
gh

th
e
con

cep
t
w
as

also
p
resen

t
in

earlier
sy
stem

s
(e.g.

[8]).
It
is
d
esirab

le
th
at

a
sch

ed
u
ler

w
ith

b
ack

�
llin

g
w
ill

su
p
p
ort

tw
o
con

ictin

g
goals:

on
on
e

h
an
d
,
it
is
d
esirab

le
to

m
ove

as
m
an
y
sh
ort

job
s
forw

ard
,
in

ord
er

to
im

p
rove

u
tilization

an
d

resp
on
siven

ess.
O
n
th
e
oth

er
h
an
d
,
it
is
also

d
esirab

le
to

avoid
starvation

for
large

job
s,
an
d

in
p
articu

lar,
to

b
e
ab
le
to

p
red

ict
w
h
en

each
job

w
ill

ru
n
.
D
i�
eren

t
version

s
of

b
ack

�
llin

g
b
alan

ce
th
ese

goals
in

d
i�
eren

t
w
ay
s.

2
.1

C
o
n
se
rv
a
tiv

e
B
a
ck
�
llin

g

C
on
servative

b
ack

�
llin

g
is
th
e
van

illa
version

u
su
ally

assu
m
ed

in
th
e
literatu

re
(e.g.

[6,
3]),

alth
ou
gh

it
seem

s
n
ot

to
b
e
u
sed

.
In

th
is
version

,
b
ack

�
llin

g
is
d
on
e
su
b
ject

to
ch
eck

in
g

th
at

it
d
oes

n
ot

d
elay

a
n
y
p
rev

iou
s
job

in
th
e
q
u
eu
e.

W
e
call

th
is
v
ersion

\con
servative"

b
ack

�
llin

g
to

d
istin

gu
ish

it
from

th
e
m
ore

aggressiv
e
version

u
sed

b
y
E
A
S
Y
,
as

d
escrib

ed
b
elow

.
Its

ad
van

tage
is
th
at

it
allow

s
sch

ed
u
lin

g
d
ecision

s
to

b
e
m
ad
e
u
p
on

job
su
b
m
ittal,

an
d
th
u
s
h
as

th
e
cap

ab
ility

of
p
red

ictin
g
w
h
en

each
job

w
ill

ru
n
an
d
giv

in
g
u
sers

ex
ecu

tion
gu
aran

tees.
U
sers

can
th
en

p
lan

ah
ead

b
ased

on
th
ese

gu
aran

teed
resp

on
se

tim
es.

O
b
v
iou

sly
th
ere

is
n
o
d
an
ger

of
starvation

,
as

a
reservation

is
m
ad
e
for

each
job

w
h
en

it
is
su
b
m
itted

.
It
is
easier

to
d
escrib

e
th
e
algorith

m
to

d
ecid

e
if
a
certain

job
can

b
e
u
sed

for
b
ack

�
llin

g
as

if
it
starts

from
scratch

at
each

sch
ed
u
lin

g
op
eration

,
w
ith

n
o
in
form

ation
ab
ou
t
p
rior

com
m
itm

en
ts

(F
ig.

2).
T
h
is
algorith

m
creates

a
p
ro�

le
of

free
p
rocessors

in
fu
tu
re

tim
es

as
a
lin

ked
list.

In
itially,

th
is
is
a
m
on
oton

ically
d
ecreasin

g
p
ro�

le
b
ased

on
th
e
cu
rren

tly
ru
n
n
in
g
job

s
(top

of
F
ig.3).

T
h
en

th
e
q
u
eu
ed

job
s
are

ch
ecked

in
ord

er
of
arrival,to

see
if
th
ey

can
b
ack

�
ll
an
d
start

ex
ecu

tion
im

m
ed
iately.

H
ow

ever,
job

s
th
at

can
n
ot

start
im

m
ed
iately

can
n
ot

b
e
ign

ored
.
R
ath

er,
th
e
p
ro�

le
is
scan

n
ed

to
�
n
d
w
h
en

en
ou
gh

p
rocessors

w
ill

b
e

availab
le
for

each
q
u
eu
ed

job
to

start
(th

is
p
oin

t
in

tim
e
is
called

th
e
a
n
ch
o
r
po
in
t
for

th
at

job
).

T
h
en

scan
n
in
g
is
con

tin
u
ed

to
see

th
at

th
e
req

u
ired

p
rocessors

w
ill

stay
availab

le
till

it
term

in
ates.

If
so,

th
e
job

is
assign

ed
to

th
is
an
ch
or

p
oin

t,
an
d
th
e
p
ro�

le
is
u
p
d
ated

to
re

ect
th
e
p
rocessors

allocated
to

it.

3

input:

� list of queued jobs with nodes and time requirements
� list of running jobs with node usage and expected termination times
� number of free nodes

algorithm conservative back�ll from scratch:

1. generate processor usage pro�le of running jobs

(a) sort the list of running jobs according to their expected termination time
(b) loop over the list dividing the future into periods according to job ter-

minations, and list the number of processors used in each period; this is
the usage pro�le

2. try to back�ll with queued jobs

(a) loop on the list of queued jobs in order of arrival
(b) for each one, scan the pro�le and �nd the �rst point where enough

processors are available to run this job. this is called the anchor point

i. starting from this point, continue scanning the pro�le to ascertain
that the processors remain available until the job's expected termi-
nation

ii. if so, update the pro�le to reect the allocation of processors to this
job

iii. if not, continue the scan to �nd the next possible anchor point, and
repeat the check

(c) the �rst job found that can start immediately is used for back�lling

Figure 2: The conservative back�lling algorithm, when run from scratch disregarding previ-
ous execution guarantees.

An example is given in Fig. 3. The �rst job in the queue does not have enough processors
to run, so a reservation for it is made after the �rst two running jobs terminate. The second
queued job has a potential anchor point after only one job terminates, but that would delay
the �rst job; therefore the second anchor point is preferred. Thus adding job reservations
to the pro�le is the mechanism that guarantees that future arrivals do not delay previously
queued jobs. The third job can be scheduled immediately, so it is used for back�lling.

It is most convenient to maintain the pro�le in a linked list, as it may be necessary to
split items into two when a newly scheduled job is expected to terminate in the middle of a
given period. In addition, an item may have to be added at the end of the pro�le whenever
a job extends beyond the current end of the pro�le. The length of the pro�le is therefore
proportional to the number of jobs in the system (both queued and running), because each

4

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

free

now
timerunning jobs

free

now
time

free

now

free

now
time

usage profile

anchor

time
anchor 1 anchor 2

1st queued job

2nd queued job

3rd queued job

backfill

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

��������
��������
��������

��������
��������
��������

Figure 3: Example of conservative back�lling.

5

job adds at most one item to the pro�le. As the pro�le is scanned once for each queued job,
the complexity of the algorithm is quadratic in the number of jobs.

The above algorithm leaves one question unanswered. Jobs are assigned a start time
when they are submitted, based on the current usage pro�le. But they may actually be able
to run sooner because previous jobs terminated earlier than expected. The question is what
to do when this happens. Options are

� do nothing, and allow future arrivals to use the idle processors via back�lling, or use
this to increase the exibility of the scheduling, as described below.

� initiate a new round of back�lling when these resources become available. this can
move small jobs way ahead of their originally assigned start time.

� retain the original schedule, but compress it. This stays closest to the start times
decided when the jobs were submitted so it may be the most convenient for users.

The second option | re-scheduling all the jobs | sounds very promising, but turns out
to violate the execution guarantees made by conservative back�lling. The guarantee is
embodied in the system's prediction of when each job will run. As each job is submitted,
the system scans the usage pro�le, �nds the earliest time that the new job can run without
delaying any previous job, and guarantees that the job will start at this time or earlier. In
some cases, this guaranteed time will be the result of back�lling with this job. If a new
round of back�lling is done later, with di�erent data about job runtimes due to an early
termination, the same job may not be back�lled and will therefore run much later than
the guaranteed time. An example is given in Fig. 4: according to the original schedule,
the second queued job can back�ll and start at time T1, but after the bottom running job
terminates much earlier than expected, the �rst queued job can start earlier too, leaving no
space for back�lling. The second queued job therefore has to start at the later time T3.

The preferred choice is therefore compression, meaning that the original schedule is re-
tained, but each job is moved forward as much as possible. This can be done in either of
two ways. In the �rst, the pro�le is re-generated from scratch, but the jobs are considered in
the order they appear in the original schedule, rather than in the order of arrival. Returning
to the example in Fig. 4, the second queued job stays in front and moves up from T1 to
the time of the early termination, while the �rst queued job moves up from T2 to T4. The
second option is to retain the pro�le and update it one job at a time. For each job, we
remove it from the pro�le, and then re-insert it at the earliest possible time. This approach
has two advantages: �rst, the jobs can be considered in the order of arrival, so jobs that
are waiting longer get a better chance to move forward. Second, jobs provably do not get
delayed, because at worse each job will be re-inserted in the same position is held previously.

The use of compression also has another implication: as the schedule is maintained and
isn't changed by future events, it also makes sense to maintain the usage pro�le continuously.
As jobs arrive and terminate, the pro�le is updated rather than being re-generated from
scratch each time. Thus the algorithm in Fig. 2 is replaced by two separate procedures:

6

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

queued jobs
now

timerunning jobs
first

T1

original
schedule

backfill

T2

queued jobs
first

now T3
time

repeated

termination
after early
backfilling

queued jobs
first

now
time

T4

compressed
original
schedule

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����

����
����
����
����

Figure 4: Repeated back�lling after a running job terminates earlier than expected may
cause a job that was expected to back�ll to actually run later than the original prediction.
It is therefore better to just compress the original schedule.

7

input:

� list of queued jobs with nodes and time requirements
� list of running jobs with node usage and expected termination times
� number of free nodes

algorithm EASY back�ll:

1. �nd the shadow time and extra nodes

(a) sort the list of running jobs according to their expected termination time
(b) loop over the list and collect nodes until the number of available nodes

is su�cient for the �rst job in the queue
(c) the time at which this happens is the shadow time
(d) if at this time more nodes are available than needed by the �rst queued

job, the ones left over are the extra nodes

2. �nd a back�ll job

(a) loop on the list of queued jobs in order of arrival
(b) for each one, check whether either of the following conditions hold:

i. it requires no more than the currently free nodes, and will terminate
by the shadow time, or

ii. it requires no more than the minimum of the currently free nodes
and the extra nodes

(c) the �rst such job can be used for back�lling

Figure 5: The EASY back�lling algorithm.

� Upon arrival, the �rst possible starting time for the new job is found based on the
current pro�le, and the pro�le is updated. This is just the inner loop of the original
algorithm.

� Upon termination, the pro�le is scanned and the schedule is compressed.

The complexity of the insertion procedure is only linear in the number of jobs, rather than
quadratic. The complexity of compression is quadratic, because the pro�le is scanned again
for each job.

2.2 EASY Back�lling

Conservative back�lling moves jobs forward only if they do not delay any previously queued
job. EASY back�lling takes a more aggressive approach, and allows short jobs to skip ahead
provided they do not delay the job at the head of the queue [10]. Interaction with other

8

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

��������
��������
��������

��������
��������
��������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������
���������
���������

���������
���������
���������

first

queued jobs

backfill

shadow time

free

now
timerunning jobs

first

queued jobs

free extra

now
timerunning jobs

backfill

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

Figure 6: The two conditions for back�lling in the EASY algorithm.

jobs is not checked, and they may be delayed, as shown below. The objective is to improve
the current utilization as much as possible, subject to some consideration of queue order.
The price is that execution guarantees cannot be made, because it is impossible to predict
how much each job will be delayed in the queue. Thus the algorithm is actually not as
deterministic as stated in its documentation.

The algorithm is shown schematically in Fig. 5. This algorithm is executed if the �rst
job in the queue cannot start, and identi�es a job that can back�ll if one exists. Such a job
must require no more than the currently available processors, and in addition it must satisfy
either of two conditions that guarantee that it will not delay the �rst job in the queue (Fig.
6): either it will terminate before the time when the �rst job is expected to commence (the
\shadow" time), or else it will only use nodes that are left over after the �rst job has been
allocated its nodes (the \extra" nodes).

This algorithm has two properties that together create an interesting combination.

Property 1 Queued jobs may su�er an unbounded delay.

9

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
�����������

��������
��������

��������
��������
��������

��������
��������
��������
��������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

queued jobs

free

now
timerunning jobs

queued jobs

free

now
timerunning jobs

backfill

delay

FCFS

first

first

EASY

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��������
��������
��������
��������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��������
��������
��������

��������
��������
��������

Figure 7: In EASY, back�lling may delay queued jobs.

Proof sketch: The reason for this is that if a job is not the �rst in the queue, new jobs
that arrive later may skip it in the queue. While such jobs are guaranteed not to delay the
�rst job in the queue, they may indeed delay all other jobs. This is the reason that the
system cannot predict when a queued job will eventually run. An example is shown in Fig.
7: the back�ll job does not delay the �rst job in the queue, but it does delay the second
job. The length of the delay depends on the length of the back�ll job, which in principle is
unbounded.

In practice, though, the job at the head of the queue only waits for currently running
jobs, so if there is a limit on job runtimes then the bound on the queueing time is the product
of this limit and the rank in the queue.

Property 2 There is no starvation.

Proof sketch: The queueing delay for the job at the head of the queue depends only on
jobs that are already running, because back�lled jobs will not delay it. Thus it is guaranteed
to eventually run (because the running jobs will either terminate or be killed when they
exceed their declared runtime). Then the next job becomes �rst. This next job may have
su�ered various delays due to jobs back�lled earlier, but such delays stop accumulating once

10

it becomes �rst. Thus it too is guaranteed to eventually run. The same arguments show
that every job in the queue will eventually run.

As noted, EASY sacri�ces predictability for potentially improved utilization, by using
more aggressive back�lling. However, it is not clear that increasing themomentary utilization
at a given instant also contributes to the overall utilization over a long time. A counter
example is shown in Fig. 8. Therefore detailed simulations are required to evaluate the real
contribution of this approach. The results of such simulations are presented below.

3 Experimental Results

A number of experiments were conducted to compare the di�erent versions of back�lling
described above. The �rst was based on a general parallel workload model, and assumed
perfect knowledge about job runtimes. The second made direct use of workload traces
collected from SP2 sites using EASY.

3.1 Evaluation with Workload Model

The �rst simulation used a workload model derived from traces taken on several production
systems, and used previously in [3]. Such a model allows the load on the simulated system
to be modi�ed in a controlled manner, to see how performance depends on system load. As
the model does not contain user estimates of the runtime, we use the actual times as the
estimate. This means that both algorithms bene�t from accurate estimates.

The performance metric used is the functional relationship of bounded slowdown on
load. This should be understood as a queueing system, where load causes jobs to be delayed.
Slowdown is used rather than response time to normalize all jobs to the same range. Bounded
slowdown eliminates the emphasis on very short jobs [5]; a threshold of 10 seconds was used.
For the record, the equation is

b sld =

8>>>>><
>>>>>:

T`

Td

if Td > 10

T`

10
otherwise

where b sld is the bounded slowdown, Td is the job's runtime on a dedicated system, and T`

is the job's runtime on the loaded system (i.e. the actual runtime plus the time waiting in
the queue).

Results are that the performance of conservative back�lling and EASY back�lling is
practically identical, indicating that the aggressiveness of EASY back�lling is unwarranted
(Fig. 9). The conservative algorithm only has a slight advantage at very high, practically
unrealistic, loads. Interestingly, both algorithms also perform about the same amount of
back�lling, with the conservative one doing a bit more than the more aggressive EASY!

11

���������
���������
���������
���������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��������
��������
��������
��������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

now

running jobs

backfillnow

running jobs

70% utilization

EASY

conservative

57% utilization

68% utilization
queued jobs

first

queued jobs

first

90% utilization

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

Figure 8: EASY back�lling is more aggressive than conservative back�lling, so it improves

the utilization on the short run. However, it may degrade utilization on the long run.

12

0

200

400

600

800

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n

system load

conservative
EASY

Figure 9: Experimental results comparing conservative back�lling and EASY back�lling.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ba
ck

fil
lin

g
ra

te

system load

conservative
EASY

Figure 10: The amount of back�lling done by the two schemes.

(Fig. 10) In any case, at high loads nearly all jobs are back�lled, which explains the big
improvement that is observed relative to FCFS.

3.2 Evaluation with Real Workload

Using a real workload for evaluating a scheduler is important for two reasons. First, work-
loads change from installation to installation, so this sort of evaluation is the most accurate
for a speci�c site. Second, the observed workload actually depends on the scheduler being
used, because users adapt their requests to what the system supports. Thus it is best to

13

33 49 58
month jobs EASY cons EASY cons EASY cons
Jan 635 8176 8306 1769 1586 492 413
Feb 562 1886 2580 328 318 201 201
Mar 1406 10077 10366 1088 1137 540 519
Apr 493 510 496 112 119 39 38
May 529 2954 2850 410 397 145 145
Jun 566 2551 2508 438 421 213 213
Jul 550 4075 3341 623 607 315 312
Aug 462 3238 3540 807 860 251 251

Table 1: Average bounded slowdown results for the IUCC workload.

compare back�lling algorithms for the SP2 using a direct trace from an SP2 system using
EASY. An additional advantage is that actual user estimates are then available. We used
two traces: one from the 64-node machine installed at the Inter-University Computation
Center (IUCC) in Tel-Aviv, Israel, and the other from the 100-node machine installed at the
Royal Institute of Technology (KTH) in Stockholm, Sweden.

The workload trace recorded at IUCC covers the period of January through August of
1997, and includes 5203 useful jobs. During this time, the machine was scheduled by IBM's
LoadLeveler, and EASY was not used. Therefore this trace does not include data about user
estimates, and we again used the real times as the estimates. The workload trace from KTH
spans the period from October 1996 to August 1997, and includes 28240 jobs. This system
was scheduled using EASY, and the user estimates were recorded in the trace and used by
us.

Given that all the details | including each job's time of arrival | are part of the workload
data, the simulations just provide a single data point. To better characterize the relationship
between the algorithms we therefore do two things: �rst, we report the results for each month
separately, leading to multiple data points for somewhat di�erent workloads. Second, in the
case of the IUCC machine, we simulate the system at three di�erent sizes, thus (arti�cially)
creating di�erent load conditions. The sizes used are 33, 49, and 58 nodes. This reects
the actual division of nodes into pools: 6 nodes are used for interactive work and as a �le
server, leaving 58 for all the batch jobs. Of these, 9 nodes are used as the general batch
pool, leaving 49 nodes for a special pool used exclusively by large jobs with 16/17 or 32/33
nodes (17 and 33 nodes are used by master-slave type jobs). Previously, this pool only had
33 nodes.

The results for IUCC are shown in Table 1. In most cases, the results indicate that both
algorithms lead to similar or even identical average bounded slowdown values. In some cases
the conservative algorithm has a lower average slowdown, and in some the EASY algorithm
leads to a lower average slowdown. The only trend is that the EASY algorithm tends to
perform better under high loads (that is, when less nodes are assumed). In the 33-node
simulation, EASY beat conservative half of the time, whereas in the 58-node simulation

14

month jobs EASY cons
Sep 86 2 2
Oct 2377 93 76
Nov 1988 128 135
Dec 2294 86 124
Jan 2899 97 81
Feb 2908 122 134
Mar 2078 104 118
Apr 2820 83 92
May 4061 67 60
Jun 2694 37 31
Jul 2160 32 34
Aug 1925 50 57

Table 2: Average bounded slowdown results for the KTH workload.

conservative won half of the time the the rest were a tie. In any rate, it seems that the
conservative algorithm does not degrade performance relative to the more aggressive EASY
algorithm.

The results for KTH are shown in Table 2. Again, the performance of both algorithms
is similar, with a slight and non-decisive advantage for EASY (it is better in 7 cases, while
conservative is only better in 4).

To summarize, the results of the simulations using real workload traces agree with the re-
sults of the simulations using the workload model: both show that the performance obtained
from the two algorithms is similar. In other words, the performance of the conservative
algorithm is about as good as that of the EASY algorithm, and the added predictability
comes at no cost in performance.

3.3 User Estimates of Runtime

The concept of back�lling is based on estimates of job runtimes. It has been assumed that
users would be motivated to provide accurate estimates, because jobs would run faster if the
estimates are tight, but would be killed if the estimates are too low. Using the data contained
in the EASY workload traces from KTH, we can check the validity of this assumption.

The data is shown in Fig. 11, and includes records of 20054 jobs. On the left is a histogram
showing what percentage of the requested time was actually used. At �rst glance this seems
promising, as it has a very pronounced component at exactly 100% (with 3215 jobs, or 16%
of the total). However, this is largely attributed to jobs that reached their allocated time
and where then killed by the system | this happened to 3204 of the 3215 jobs, or 99.7%1.

1Note that this is not necessarily bad: applications may checkpoint their state periodically, and then be

restarted from the last checkpoint after being killed. However, there is no direct data about how often this

is actually done. Indirect data is that 793 of the jobs killed by the system had requested 4 hours, which

15

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

nu
m

be
r

of
 jo

bs

percentage of requested time used

15m

30m

45m

1h

1.5h

2h

15m 30m 45m 1h 1.5h 2h

ac
tu

al
 ti

m
e

requested time

Figure 11: User runtime estimates and actual runtimes, from the SP2 at the Royal Institute
of Technology (KTH), Stockholm, Sweden.

As the rest of the distribution is quite at, the conclusion is that user estimates are actually
rather poor.

The same data is shown again in the scatter plot on the right of the �gure, which shows
actual pairs of estimated runtime and the corresponding actual runtime (actually only jobs
requesting up to 2 hours are shown, but this is the vast majority of jobs. The highest requests
were for 60 hours). This shows that users often, but not always, round their estimates to a
\nice" number (typically multiples of 5 minutes up to about an hour and a half). However,
despite the relatively wide repertoire of estimates that are used, all of them are equally
inaccurate: for every popular estimate, there is a nearly continuous line of dots representing
jobs with runtimes ranging uniformly from zero up to the estimate. The system typically
kills jobs that do not terminate by the estimated time, leading to the triangular shape of
the scatter plot.

In order to check the sensitivity of the back�lling algorithms to such poor estimates, we
tested them with estimates of various qualities. Using the KTH workload, we generated
new user estimates that (for each job) are chosen at random from a uniform distribution
in the range [r; f � r], where r is the job's actual runtime, and f is a \badness" factor (the
larger f , the less accurate the estimates). The results are shown in Table 3, where f = 1
indicates completely accurate estimates, and the bottom line gives the results of the actual
user estimates from the trace. Three conclusions can be reached:

� Our model of inaccuracy does not capture the full badness of real user estimates. The
results for the original estimates are worse than those with our worst estimates.

is the limit imposed during the daytime. It is plausible that many of these were restartable, leading to an

estimate of about 1 in 4 jobs.

16

f EASY cons
1 62 61
4 57 53
11 51 44
31 57 45
101 62 57
301 59 52
users 81 84

Table 3: Average bounded slowdown for the complete KTH workload with varying runtime
estimates.

� Accurate estimates are not necessarily the best. It seems that if the estimates are
somewhat inaccurate, this gives the algorithms some exibility that leads to better
schedules. We are looking into this phenomenon in a followup study.

� The conservative algorithm seems to operate better than the EASY algorithm when
faced with our inaccurate estimates. However, it should be remembered that this is
not necessarily true with the inaccurate user estimates.

4 Conclusions

Back�lling is advantageous because it provides improved responsiveness for short jobs com-
bined with no starvation for large ones. This is done by making processor reservations for the
large jobs, and then allowing short jobs to leapfrog them if they are expected to terminate
in time. The expected termination time is based on user input.

SP2 installations using EASY, which introduced back�lling, report much improved sup-
port for large jobs relative to early versions of LoadLeveler. However, EASY still does not
allow the time at which a job will run to be estimated with any degree of accuracy, because
of its aggressive back�lling algorithm. We showed that it is possible to add predictability
without loss of utilization by using a more conservative form of back�lling, in which short
jobs can start running provided they do not delay any previously queued job.

While back�lling was developed for the SP2, and our evaluations used workload traces
from SP2 sites, this work is applicable to any other system using variable partitioning. This
includes most distributed memory parallel systems in the market today.

5 Acknowledgements

This research was supported by the Ministry of Science and Technology. Thanks to Jonathan
Horen and Gabriel Koren of IUCC and Lars Malinowsky of KTH for their help with the
workload traces.

17

References

[1] D. Das Sharma and D. K. Pradhan, \Job scheduling in mesh multicomputers". In Intl.
Conf. Parallel Processing, vol. II, pp. 251{258, Aug 1994.

[2] D. G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems. Research
Report RC 19790 (87657), IBM T. J. Watson Research Center, Oct 1994.

[3] D. G. Feitelson and M. A. Jette, \Improved utilization and responsiveness with gang
scheduling". In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 238{261, Springer Verlag, 1997. Lect. Notes Comput. Sci.
vol. 1291.

[4] D. G. Feitelson and B. Nitzberg, \Job characteristics of a production parallel scienti�c
workload on the NASA Ames iPSC/860". In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 337{360, Springer-Verlag, 1995.
Lect. Notes Comput. Sci. vol. 949.

[5] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong, \Theory
and practice in parallel job scheduling". In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 1{34, Springer Verlag, 1997. Lect.
Notes Comput. Sci. vol. 1291.

[6] R. Gibbons, \A historical application pro�ler for use by parallel schedulers". In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 58{77, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[7] S. Hotovy, \Workload evolution on the Cornell Theory Center IBM SP2". In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 27{40, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[8] Intel Corp., iPSC/860 Multi-User Accounting, Control, and Scheduling Utilities Manual.
Order number 312261-002, May 1992.

[9] P. Krueger, T-H. Lai, and V. A. Dixit-Radiya, \Job scheduling is more important than
processor allocation for hypercube computers". IEEE Trans. Parallel & Distributed
Syst. 5(5), pp. 488{497, May 1994.

[10] D. Lifka, \The ANL/IBM SP scheduling system". In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295{303, Springer-Verlag,
1995. Lect. Notes Comput. Sci. vol. 949.

[11] C. McCann, R. Vaswani, and J. Zahorjan, \A dynamic processor allocation policy for
multiprogrammed shared-memory multiprocessors". ACM Trans. Comput. Syst. 11(2),
pp. 146{178, May 1993.

18

[12] P. Messina, \The Concurrent Supercomputing Consortium: year 1". IEEE Parallel &
Distributed Technology 1(1), pp. 9{16, Feb 1993.

[13] J. Skovira, W. Chan, H. Zhou, and D. Lifka, \The EASY - LoadLeveler API project".
In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 41{47, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

19

