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22 Di�ulties of Binary ParsingThe proess of analyzing bytes from a �le and generating abstrations likeinstrutions, funtions and CFGs is alled binary parsing. It is a tedioustask with many hallenges, suh as distinguishing ode from data. Sineboth ode and data are stored the same way, there is really no easy way ofidentifying whether a sequene of bytes orrespond to ode or data. Cur-rent parsing tehniques use hints to identify ode and mark the remainingbytes as data. These hints usually ome in the form of symbols represent-ing funtions. From symbols, tools either follow a sweeping or a reursivestrategy [20℄. In the sweeping strategy, tools �rst use symbols to mark aninitial set of funtions, then sweep the remaining bytes from the start ofthe �le and mark sequenes of bytes that resemble ode as program ode.In the reursive strategy, tools also start by using symbols to mark theinitial set of funtions, then loate other ode setions following all edgesand marking all targets as funtion entry points, hene program ode. Insome ases, unharted regions in the binary are then plugged into mahinelearning algorithms to identify even more funtions and ode regions [19℄.Funtions are omposed of one or more, usually several, basi bloks.A basi blok is a sequene of instrutions that ontains no ontrol �owinstrutions exept as the last instrution of the blok. If the �rst in-strution in a basi blok exeutes, it is guaranteed that all followinginstrutions will exeute. It is an abstration that is used by many typesof analyses. One the funtions are identi�ed, their Control Flow Graphs(CFGs) are built. A sample CFG an be seen in Fig. 1. Building suh aCFG orretly depends on orret identi�ation of basi bloks and theedges between these basi bloks. Therefore, it requires the analysis toolto inspet eah instrution in a funtion. This operation is error-prone,espeially on variable-length instrution set arhitetures where an errorin deoding an instrution propagates downstream and make deoding thefollowing instrutions harder, or even impossible.3 Compiler HelpDuring the build proess, ompilers onstrut an internal representationof the soure ode and generate mahine ode using this internal represen-tation. However, as soon as the exeutable �le is generated, this internalrepresentation is thrown away. In this paper, we investigate the e�ets ofstoring some of this information about the program inside the exeutable.3.1 Basi Blok and Edge TablesTo speed up building basi blok abstrations inside binary analysis tools,we developed a ompilation framework that stores the start address andthe address of the last instrution of eah basi blok inside the exeutablein what we all a Basi Blok Table.CFGs require identi�ation of edges between basi bloks. Our systemstores the soure basi blok, the target basi blok, and the edge type of
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Fig. 1. A sample CFG and assoiated Basi Blok and Edge Tables of a funtion withentry basi blok, an If/Else struture, a loop, and an exit blok.eah edge in the Edge Table. In this table, a basi blok is identi�ed byits start address. In some ases, target basi blok in an edge an only beknown during program exeution. Suh ases our when the value of afuntion pointer or any other indiret branh target1 depends on the userinput. In these ases, we leave the target basi blok �eld blank duringgeneration of the Basi Blok Table. Suh edges an be �lled in by theparser after the program has launhed and when the value of the targetaddress an be omputed.Figure 1 illustrates what information is stored in the Basi Blok andEdge Tables based on the CFG shown on the left. For this example, assumea, b, , . . . are the o�sets of the last instrutions of their orrespondingbasi bloks from the start of the funtion. Sine there are 6 basi bloksin the CFG, the Basi Blok table has 6 rows. The �rst row represents the�rst basi blok: it starts at o�set 0, and its last instrution is loated ato�set a; the next row represents the seond basi blok, and so on. TheBasi Blok Table is followed by the Edge Table whih has 8 rows, onefor eah edge between basi bloks. The edge from the entry blok to theelse blok is represented with the triplet of <0, w, Conditional> sine itis aessed by taking a onditional branh. The edge from the entry blokto the if blok is traversed when the onditional branh is not taken andwhen exeution simply falls-through2 to the if blok. The last row in the�gure represents the edge originating from the return instrution. Sinethe target of a return instrution annot be determined statially, that�eld is left blank (marked with N/A in our example).1 Although indexed jump tables also use indiret branhes, targets of suh indiretbranh instrutions an usually be identi�ed using heuristis.2 `Fall-through' is a type of ontrol transfer where the exeution of an instrution isfollowed by the exeution of the next instrution in exeutable's address spae.



43.2 Compilation ProessOur ompilation mehanism mimis a standard ompilation proess. Wedeveloped a tool that modi�es assembly �les and generates Basi Blokand Edge Tables.One issue in the implementation is the need to support position inde-pendent ode suh as libraries that an be loaded at di�erent addressesin di�erent exeutions of a program. Using absolute addressing does notwork for this type of ode. To handle this, the addresses in these tablesare stored as o�sets from the start of the funtion.Another issue arises when some funtion de�nitions are merged bythe linker. During the build proess �les that are linked with the inludediretive from a soure �le are ompiled along with the atual soure �le.As a result all funtion de�nitions inluded from a header �le are ompiledinto the resulting objet �le. If the same funtion de�nition is linked frommultiple soure �les, these funtion de�nitions appear in multiple objet�les that result from the ompilation of these soure �les. To avoid linkingproblems, these funtions are marked as weak. Linkers allow only one opyof these weak funtions to appear in the �nal exeutable - the remainingones are dropped. Although these funtions are idential at the soure odelevel, sine ompilers perform optimizations individually on eah opy ofthe funtion, the resulting mahine ode may be di�erent. As a result,Basi Blok and Edge Tables for these funtions may di�er slightly. Unlikeweak funtions, tables with the same name annot be merged. Therefore,our ompilation mehanism has to distinguish tables related to funtionsthat have the same name. As a result, we generate table names using aombination of the funtion name and the name of the �le that ontainsthat funtion. At the end, eah table has a di�erent name, and there is aone-to-one mapping between funtions and tables.4 EvaluationFor evaluation, we used a simple binary modi�ation tool we built basedon Dyninst [4℄, an instrumentation and binary analysis tool for HPC ap-pliations. Our tool reads in a binary �le and rewrites it to disk withsimple instrumentation ode for basi blok ounting. Sine our analy-sis deals with every single basi blok in the exeutable, the exeutable�le has to be parsed from top to bottom, orretly loating every basiblok. We ompared the parsing speed of our tool with that of unmodi�edDyninst. Although Dyninst is traditionally known for its dynami analysisapabilities, it also serves as a stati analysis tool with support for ba-si binary analysis and CFG generation along with binary rewriting. Likeother stati analysis tools, it makes use of symbols stored in the binariesto improve its analysis, although the existene of symbols is not requiredin many ases. Therefore, we expet our tehnique an improve similarstati analysis tools in the same fashion.We �rst evaluated our system on SPEC CINT2006 [9,15℄. SPEC CINT2006ontains a series of CPU-intensive exeutables that are seleted to evaluatethe proessor(s) and the memory system. All together, SPEC CINT2006has about 1,047,000 lines of ode.



5Our next benhmarks were the PETS libraries [2℄. PETS (Portable,Extensible Toolkit for Sienti� Computation) is a suite of data struturesand routines for the salable (parallel) solution of sienti� appliationsmodeled by partial di�erential equations. It uses MPI for parallelization. Ithas linear and non-linear equation solvers and supports C, C++, Fortranand Python. The PETS suite is omposed of about 872,000 lines of ode.Finally we evaluated our system on the popular web browser Fire-fox (version 9.0.1) and all the shared libraries that ship with the Firefoxsoure ode. We evaluated our system on Firefox beause its exeutablesare numerous and are relatively large. Moreover, it ontains hand-writtenassembly �les and the build proess involves using many unommon om-piler options. Therefore, building Firefox has been a valuable test for therobustness of our ompilation mehanism. The Firefox suite ontains ap-proximately 5,335,000 lines of ode.4.1 EnvironmentAll experiments were arried out on 64-bit x86 mahines that run theLinux operating system. SPEC CINT2006 and PETS benhmarks weretested on a system that has 4 Intel Xeon proessors with 6-ores eahand 48GB main memory. All our exeutables exept PETS were serialappliations. Therefore, we ran most of our experiments serially on a sin-gle ore. We used g 4.1.2 for building referene exeutables and as abak-end to our ompilation mehanism. Firefox experiments were run ona separate mahine due to the idiosynrati requirements of the Firefoxbuild environment. As a result, Firefox runs were taken on a dual-ore ma-hine with an AMD Turion proessor at 1.8 GHz with 2GB main memory.On this system, we used g 4.6.1 for building referene exeutables andas our bak-end. Sine we never ompare results aross these mahinesdiretly, the results are not a�eted due to using two separate mahines.4.2 Experimental ResultsOur �rst experiment was designed to alulate the time it takes to parsea spei� exeutable using our analysis tool to show how muh our toolimproves parsing speed. We then ran other experiments to evaluate prop-erties of exeutables built using our ompilation mehanism and identifyany trade-o�s. Similarly, we ompared �le sizes after the ompilation pro-ess. At the end, we tested the runtime performane of these exeutablesin terms of time and memory usage. We ran eah timed experiment 5 timesand omputed the mean. We then normalized our �ndings with respetto the exeutables ompiled with the gnu ompiler suite.In our experiments, we observed that using basi blok and edge ta-bles redued the parsing time between 58% and 77%, and on average by73%. Although the �le sizes inrease by 23% on average, we believe thissituation is not prohibitive sine the basi blok and edge tables are notloaded into memory during the exeution of these binary �les. We alsoobserved about 23% inrease in the ompilation time. Sine this is onlya one time ost that appears while building exeutables, and it an be



6improved drastially by integrating the reation of basi blok and edgetables into the ompiler rather than a separate assembly pass, we believethis inrease is aeptable.Experimental Parsing Results Figure 2 shows the normalized parsingtimes with SPEC CINT2006 benhmarks with respet to regular parsing.We observed a high perentage of speed-up aross the board while theaverage binary parse speed-up is 3.7x (73% improvement over originalparsing time).

Fig. 2. SPEC CINT2006 Benhmarks: Normalized Parsing Times by Exeutable.Our next tests were arried out on exeutables in snes pakage ofPETS suite. One interesting harateristi of PETS exeutables is thatPETS libraries are statially linked into the exeutable �les by default. Asa result, eah exeutable ontains all funtions in PETS libraries. One anargue that the total ost of parsing these statially-linked exeutables ishigher than the ost if these exeutables were linked with shared libraries.However, with the help of our ompilation mehanism, we redued theparsing time 76% on average (4.2x speed-up). Due to stati linking of allthese PETS libraries in every exeutable, parsing time is more or less �ataross all exeutables in this set beause our tool parses mostly the sameset of funtions for eah exeutable.As a �nal set of exeutables, we deided to use the Firefox exeutableand all shared libraries that ship with Firefox. For this set of runs, weoperated on those exeutables that reside in memory when the Firefoxweb browser is launhed. We see a major improvement in parsing timeone more as expeted. The average drop in the parsing time is 71% (3.5xspeed-up) with the worst ase redution of 58%.As the previous results show, our system onsiderably inreases theparsing speed. Now we want to disuss other evaluation metris suh as�le size, ompilation time, and memory footprint of exeutables.



7Build TimeMetris Table 1 gives an overview of our experimental resultsregarding build time and runtime metris. In this setion, we will disussthe build time metris: �le size and ompilation time.Table 1. Various Properties of our System (All numbers are normalized)Benhmark Set File Size Growth Compilation Running Memoryvs. Standard vs. Debug Time Time FootprintSPEC CINT2006 2.21 1.38 1.25 0.97 1.00PETS 1.50 1.09 1.32 0.95 1.00Firefox 1.17 1.21 1.13 0.94 1.00Overall Average 1.63 1.23 1.23 0.95 1.00Sine we are adding extra data to exeutable �les, the size on diskunavoidably inreases. On average, we are adding about 20 bytes of datato the exeutable for eah basi blok, and two extra symbols to thesymbol table for eah funtion. Table 1 shows the normalized �le sizesaross three sets of benhmarks along with the overall average. Standardshows the omparison of �le sizes when they are built with no debug �ag onwhile Debug shows the omparison with the debug �ag (-g) on. We showboth numbers sine we realize exeutables are often built with debug �agon to improve debugging and other binary analyses on these �les. Thehighest inrease was observed by the SPEC CINT2006 benhmarks with121% inrease in the average �le size with no debug �ag on. On average,we observed an inrease of 63% with no debug �ag on, and 23% with thedebug �ag on. We assert that this inrease is manageable sine it does notimpat the memory used during exeution.Another evaluation metri we used is the ompilation time. Sine ourompilation mehanism uses an intermediate step to proess the assemblyode generated by the g, our ompilations take more time than theoriginal ompilations. The bulk of the inrease in ompilation time omesfrom the ost of proessing an assembly �le as text, and writing out amodi�ed assembly �le, again as text. Currently, this step is ostly andour experiments showed a 23% inrease in the ompilation time (Table1). We believe our system an easily be integrated into a mainstreamompiler suh as g. Sine ompilers already maintain the informationwe generate using our mehanism, the added ost would be minimal -expeted to be the same as the ost of writing those tables to the binary.This improvement remains as future work.Running Time Metris We next looked at the running times of theexeutables built using our ompilation mehanism and their memoryfootprint. The results are presented in Table 1.In our experiments we have not experiened any measurable inreasein the exeution time of the benhmarks. The slight improvement we ob-served in the running time after using our ompilation mehanism is wellwithin the noise of the experiment.



8 To measure memory footprint hange, we evaluated eah exeutableunder Valgrind's massif tool [17℄ and measured heap memory and stakmemory usage with --pages-as-heap=yes �ag. Results indiate that bothstak and heap memory used by the programs remain about the same, asshown in the �nal olumn in Table 1.5 Related WorkParsing binary ode has been studied extensively in the past. Several re-searhers reated higher level representations of mahine ode followingbinary parsing and the disassembly of ode. Examples of this approahinlude Cifuentes and Gough with their deompiler, d [5℄, and Emmerikand Waddington with their Boomerang-based deompiler [7℄. More reentwork onentrates on disassembly of obfusated ode to identify maliioussoftware [12℄. Some researhers, suh as Aaraj et al. [1℄, ombine statidisassembly tehniques with dynami analysis to ope with malware. Sim-ilarly, Brushi et al. attempt to identify malware by building a CFG frombinary ode and omparing it with those of the known malware [3℄. Disas-sembly tehniques also made their way into the mainstream appliations:Many ommon tools suh as gdb, objdump, and IDA [10℄ generate disas-sembly of binary �les. Many researhers build CFGs one the exeutable�le is disassembled. De Sutter's [6℄ and Theiling's [23℄ ontrol �ow gener-ation algorithms are suh examples.All these systems, inluding Dyninst [4℄, make use of the debuggingsymbols whenever possible. Many tools also perform a best-e�ort approahto identify funtion loations if the symbols are not present, suh as Harrisand Miller's tool [8℄.With this work, we let binary analysis tools bene�t from the knowledgeompilers gather about exeutables during the build phase. There areseveral binary analysis tools that an make use of our system. Examplesinlude ATOM [22℄, EEL [13℄, Pin [14℄, Valgrind [17℄, and Vulan [21℄.All these tools reate some sort of internal representation of the binary.Therefore, they all an bene�t from using the data stored in Basi Blokand Edge tables as muh as Dyninst does.6 DisussionParsing exeutable �les is the �rst step for any CFG-based binary analy-sis. Our experimental results show that our mehanism learly speeds upparsing exeutable �les. It is not hard to imagine bundling more informa-tion with the binary to speed up other binary analyses, or improve theirpreision, suh as liveness analysis of registers or dependeny analysis.However, there are also shortomings of our work. One suh shortom-ing is that our system adds 2n more symbols into the symbol table wheren is the number of funtions. Sine symbol tables are highly-optimized,this issue is more of a nuisane than a tehnial problem. Inreased ompi-lation times might also be annoying for large frameworks suh as Firefox.



9However, we expet that integrating our system with a full ompiler willsubstantially speed up ompilation.One improvement to our plain text table based system would be om-pressing Basi Blok and Edge Tables to redue disk spae demand. Inour preliminary experiments, we observed that ompressing Basi Blokand Edge Tables redued the size of these tables by about 78%. However,sine binary analysis tools annot read ompressed tables diretly, theywould need to deompress them before �rst use. We plan to investigatee�ets of using ompressed tables in terms of parsing performane anddisk spae in our future work.7 ConlusionParsing binary ode is the �rst step for most binary analyses. However,it is ostly and impreise espeially on variable-length instrution set ar-hitetures. In this work we introdued a novel ompilation mehanismthat improves the parsing speed of binary �les when they are examinedby binary analysis tools. Our ompiler reates intermediate assembly �les,augments them with information about basi bloks and edges betweenthem, and generates exeutable �les using this augmented assembly ode.We implemented an instrumentation program for basi blok ountingthat rewrites a binary to the disk with the instrumentation ode using theDyninst library. We showed that running this analysis ode on variousbenhmarks resulted in up to 4.4x speed-up in parsing time, with anaverage of 3.8x. Although the size of the binary �les inrease with extradata in the tables we generate, sine these tables are not loaded intomemory during exeution, the size of the runtime memory image of theexeutable remains the same as before. Moreover, there is no runtimeperformane degradation due to these tables.Referenes1. Aaraj, N., Raghunathan, A., Jha, N.: Dynami binary instrumentation-basedframework for malware defense. In Zamboni, D., ed.: Detetion of Intrusions andMalware, and Vulnerability Assessment. Volume 5137 of Leture Notes in Com-puter Siene. Springer Berlin / Heidelberg (2008) 64�872. Balay, S., Bushelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G.,MInnes, L.C., Smith, B.F., Zhang, H.: PETS Web page (2009)http://www.ms.anl.gov/pets.3. Brushi, D., Martignoni, L., Monga, M.: Deteting self-mutating malware usingontrol-�ow graph mathing. In Bushkes, R., Laskov, P., eds.: Detetion of Intru-sions and Malware & Vulnerability Assessment. Volume 4064 of Leture Notes inComputer Siene. Springer Berlin / Heidelberg (2006) 129�1434. Buk, B., Hollingsworth, J.K.: An api for runtime ode pathing. Int. J. HighPerform. Comput. Appl. 14 (November 2000) 317�3295. Cifuentes, C., Gough, K.J.: Deompilation of binary programs. Software: Pratieand Experiene 25(7) (1995) 811�829
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