
Compiler Help for Binary Manipulation ToolsTugrul In
e and Je�rey K. HollingsworthComputer S
ien
e Department University of Maryland College Park, MD 20742{tugrul,hollings}�
s.umd.eduAbstra
t. Parsing ma
hine 
ode is the �rst step for most analyses per-formed on binary �les. These analyses build 
ontrol �ow graphs (CFGs).In this work we propose a 
ompilation me
hanism that augments binary�les with information about where ea
h basi
 blo
k is lo
ated and howthey are 
onne
ted to ea
h other. This information makes it unne
essaryto analyze most instru
tions in a binary during the initial CFG buildpro
ess. As a result, these binary analysis tools experien
e dramati
allyin
reased parsing speeds - 3.8x on average.1 Introdu
tionBinary analysis is a 
ommon operation for performan
e modeling [16℄,
omputer se
urity [18℄, maintenan
e [5℄, and binary optimization [11℄.Ea
h of these tasks requires parsing the exe
utable �le to identify fun
-tions, data segments, and their intera
tion with ea
h other. However, pars-ing exe
utables is not a straightforward task and it is painfully slow sin
eit usually requires de
oding every single instru
tion in the binary. At thehigher level, even distinguishing 
ode and data is di�
ult sin
e they areoften stored in adja
ent memory. All the information about fun
tions anddata lo
ations is a
tually known during various stages of 
ompilation.However, only some of this information is stored in the binary in the formof symbols. Binary analysis tools that operate on these exe
utables haveto regenerate the information that is thrown away by the 
ompiler.In this work, we propose a novel 
ompilation me
hanism that storesuseful information about the layout of exe
utable �les in tables inside exe-
utable �les. These tables enable identi�
ation of basi
 blo
ks and providesupport for re
onstru
tion of edges between them. Binary analysis tools,in
luding those that aid development of high performan
e appli
ations,
an parse exe
utables faster and more reliably using these tables. Wemeasured a speed-up in parsing up to 4.4x with an average speed-up of3.8x. Sin
e these tables are stored in a se
tion that is not loaded into thememory during exe
ution, the memory footprint of exe
utables do not
hange. Running times of these exe
utables also remain un
hanged sin
ewe do not in any way modify the exe
ution. The overhead in the 
ompi-lation time and the in
rease in �le size is manageable - both at around23%.



22 Di�
ulties of Binary ParsingThe pro
ess of analyzing bytes from a �le and generating abstra
tions likeinstru
tions, fun
tions and CFGs is 
alled binary parsing. It is a tedioustask with many 
hallenges, su
h as distinguishing 
ode from data. Sin
eboth 
ode and data are stored the same way, there is really no easy way ofidentifying whether a sequen
e of bytes 
orrespond to 
ode or data. Cur-rent parsing te
hniques use hints to identify 
ode and mark the remainingbytes as data. These hints usually 
ome in the form of symbols represent-ing fun
tions. From symbols, tools either follow a sweeping or a re
ursivestrategy [20℄. In the sweeping strategy, tools �rst use symbols to mark aninitial set of fun
tions, then sweep the remaining bytes from the start ofthe �le and mark sequen
es of bytes that resemble 
ode as program 
ode.In the re
ursive strategy, tools also start by using symbols to mark theinitial set of fun
tions, then lo
ate other 
ode se
tions following 
all edgesand marking 
all targets as fun
tion entry points, hen
e program 
ode. Insome 
ases, un
harted regions in the binary are then plugged into ma
hinelearning algorithms to identify even more fun
tions and 
ode regions [19℄.Fun
tions are 
omposed of one or more, usually several, basi
 blo
ks.A basi
 blo
k is a sequen
e of instru
tions that 
ontains no 
ontrol �owinstru
tions ex
ept as the last instru
tion of the blo
k. If the �rst in-stru
tion in a basi
 blo
k exe
utes, it is guaranteed that all followinginstru
tions will exe
ute. It is an abstra
tion that is used by many typesof analyses. On
e the fun
tions are identi�ed, their Control Flow Graphs(CFGs) are built. A sample CFG 
an be seen in Fig. 1. Building su
h aCFG 
orre
tly depends on 
orre
t identi�
ation of basi
 blo
ks and theedges between these basi
 blo
ks. Therefore, it requires the analysis toolto inspe
t ea
h instru
tion in a fun
tion. This operation is error-prone,espe
ially on variable-length instru
tion set ar
hite
tures where an errorin de
oding an instru
tion propagates downstream and make de
oding thefollowing instru
tions harder, or even impossible.3 Compiler HelpDuring the build pro
ess, 
ompilers 
onstru
t an internal representationof the sour
e 
ode and generate ma
hine 
ode using this internal represen-tation. However, as soon as the exe
utable �le is generated, this internalrepresentation is thrown away. In this paper, we investigate the e�e
ts ofstoring some of this information about the program inside the exe
utable.3.1 Basi
 Blo
k and Edge TablesTo speed up building basi
 blo
k abstra
tions inside binary analysis tools,we developed a 
ompilation framework that stores the start address andthe address of the last instru
tion of ea
h basi
 blo
k inside the exe
utablein what we 
all a Basi
 Blo
k Table.CFGs require identi�
ation of edges between basi
 blo
ks. Our systemstores the sour
e basi
 blo
k, the target basi
 blo
k, and the edge type of



3

Fig. 1. A sample CFG and asso
iated Basi
 Blo
k and Edge Tables of a fun
tion withentry basi
 blo
k, an If/Else stru
ture, a loop, and an exit blo
k.ea
h edge in the Edge Table. In this table, a basi
 blo
k is identi�ed byits start address. In some 
ases, target basi
 blo
k in an edge 
an only beknown during program exe
ution. Su
h 
ases o

ur when the value of afun
tion pointer or any other indire
t bran
h target1 depends on the userinput. In these 
ases, we leave the target basi
 blo
k �eld blank duringgeneration of the Basi
 Blo
k Table. Su
h edges 
an be �lled in by theparser after the program has laun
hed and when the value of the targetaddress 
an be 
omputed.Figure 1 illustrates what information is stored in the Basi
 Blo
k andEdge Tables based on the CFG shown on the left. For this example, assumea, b, 
, . . . are the o�sets of the last instru
tions of their 
orrespondingbasi
 blo
ks from the start of the fun
tion. Sin
e there are 6 basi
 blo
ksin the CFG, the Basi
 Blo
k table has 6 rows. The �rst row represents the�rst basi
 blo
k: it starts at o�set 0, and its last instru
tion is lo
ated ato�set a; the next row represents the se
ond basi
 blo
k, and so on. TheBasi
 Blo
k Table is followed by the Edge Table whi
h has 8 rows, onefor ea
h edge between basi
 blo
ks. The edge from the entry blo
k to theelse blo
k is represented with the triplet of <0, w, Conditional> sin
e itis a

essed by taking a 
onditional bran
h. The edge from the entry blo
kto the if blo
k is traversed when the 
onditional bran
h is not taken andwhen exe
ution simply falls-through2 to the if blo
k. The last row in the�gure represents the edge originating from the return instru
tion. Sin
ethe target of a return instru
tion 
annot be determined stati
ally, that�eld is left blank (marked with N/A in our example).1 Although indexed jump tables also use indire
t bran
hes, targets of su
h indire
tbran
h instru
tions 
an usually be identi�ed using heuristi
s.2 `Fall-through' is a type of 
ontrol transfer where the exe
ution of an instru
tion isfollowed by the exe
ution of the next instru
tion in exe
utable's address spa
e.



43.2 Compilation Pro
essOur 
ompilation me
hanism mimi
s a standard 
ompilation pro
ess. Wedeveloped a tool that modi�es assembly �les and generates Basi
 Blo
kand Edge Tables.One issue in the implementation is the need to support position inde-pendent 
ode su
h as libraries that 
an be loaded at di�erent addressesin di�erent exe
utions of a program. Using absolute addressing does notwork for this type of 
ode. To handle this, the addresses in these tablesare stored as o�sets from the start of the fun
tion.Another issue arises when some fun
tion de�nitions are merged bythe linker. During the build pro
ess �les that are linked with the in
ludedire
tive from a sour
e �le are 
ompiled along with the a
tual sour
e �le.As a result all fun
tion de�nitions in
luded from a header �le are 
ompiledinto the resulting obje
t �le. If the same fun
tion de�nition is linked frommultiple sour
e �les, these fun
tion de�nitions appear in multiple obje
t�les that result from the 
ompilation of these sour
e �les. To avoid linkingproblems, these fun
tions are marked as weak. Linkers allow only one 
opyof these weak fun
tions to appear in the �nal exe
utable - the remainingones are dropped. Although these fun
tions are identi
al at the sour
e 
odelevel, sin
e 
ompilers perform optimizations individually on ea
h 
opy ofthe fun
tion, the resulting ma
hine 
ode may be di�erent. As a result,Basi
 Blo
k and Edge Tables for these fun
tions may di�er slightly. Unlikeweak fun
tions, tables with the same name 
annot be merged. Therefore,our 
ompilation me
hanism has to distinguish tables related to fun
tionsthat have the same name. As a result, we generate table names using a
ombination of the fun
tion name and the name of the �le that 
ontainsthat fun
tion. At the end, ea
h table has a di�erent name, and there is aone-to-one mapping between fun
tions and tables.4 EvaluationFor evaluation, we used a simple binary modi�
ation tool we built basedon Dyninst [4℄, an instrumentation and binary analysis tool for HPC ap-pli
ations. Our tool reads in a binary �le and rewrites it to disk withsimple instrumentation 
ode for basi
 blo
k 
ounting. Sin
e our analy-sis deals with every single basi
 blo
k in the exe
utable, the exe
utable�le has to be parsed from top to bottom, 
orre
tly lo
ating every basi
blo
k. We 
ompared the parsing speed of our tool with that of unmodi�edDyninst. Although Dyninst is traditionally known for its dynami
 analysis
apabilities, it also serves as a stati
 analysis tool with support for ba-si
 binary analysis and CFG generation along with binary rewriting. Likeother stati
 analysis tools, it makes use of symbols stored in the binariesto improve its analysis, although the existen
e of symbols is not requiredin many 
ases. Therefore, we expe
t our te
hnique 
an improve similarstati
 analysis tools in the same fashion.We �rst evaluated our system on SPEC CINT2006 [9,15℄. SPEC CINT2006
ontains a series of CPU-intensive exe
utables that are sele
ted to evaluatethe pro
essor(s) and the memory system. All together, SPEC CINT2006has about 1,047,000 lines of 
ode.



5Our next ben
hmarks were the PETS
 libraries [2℄. PETS
 (Portable,Extensible Toolkit for S
ienti�
 Computation) is a suite of data stru
turesand routines for the s
alable (parallel) solution of s
ienti�
 appli
ationsmodeled by partial di�erential equations. It uses MPI for parallelization. Ithas linear and non-linear equation solvers and supports C, C++, Fortranand Python. The PETS
 suite is 
omposed of about 872,000 lines of 
ode.Finally we evaluated our system on the popular web browser Fire-fox (version 9.0.1) and all the shared libraries that ship with the Firefoxsour
e 
ode. We evaluated our system on Firefox be
ause its exe
utablesare numerous and are relatively large. Moreover, it 
ontains hand-writtenassembly �les and the build pro
ess involves using many un
ommon 
om-piler options. Therefore, building Firefox has been a valuable test for therobustness of our 
ompilation me
hanism. The Firefox suite 
ontains ap-proximately 5,335,000 lines of 
ode.4.1 EnvironmentAll experiments were 
arried out on 64-bit x86 ma
hines that run theLinux operating system. SPEC CINT2006 and PETS
 ben
hmarks weretested on a system that has 4 Intel Xeon pro
essors with 6-
ores ea
hand 48GB main memory. All our exe
utables ex
ept PETS
 were serialappli
ations. Therefore, we ran most of our experiments serially on a sin-gle 
ore. We used g

 4.1.2 for building referen
e exe
utables and as aba
k-end to our 
ompilation me
hanism. Firefox experiments were run ona separate ma
hine due to the idiosyn
rati
 requirements of the Firefoxbuild environment. As a result, Firefox runs were taken on a dual-
ore ma-
hine with an AMD Turion pro
essor at 1.8 GHz with 2GB main memory.On this system, we used g

 4.6.1 for building referen
e exe
utables andas our ba
k-end. Sin
e we never 
ompare results a
ross these ma
hinesdire
tly, the results are not a�e
ted due to using two separate ma
hines.4.2 Experimental ResultsOur �rst experiment was designed to 
al
ulate the time it takes to parsea spe
i�
 exe
utable using our analysis tool to show how mu
h our toolimproves parsing speed. We then ran other experiments to evaluate prop-erties of exe
utables built using our 
ompilation me
hanism and identifyany trade-o�s. Similarly, we 
ompared �le sizes after the 
ompilation pro-
ess. At the end, we tested the runtime performan
e of these exe
utablesin terms of time and memory usage. We ran ea
h timed experiment 5 timesand 
omputed the mean. We then normalized our �ndings with respe
tto the exe
utables 
ompiled with the gnu 
ompiler suite.In our experiments, we observed that using basi
 blo
k and edge ta-bles redu
ed the parsing time between 58% and 77%, and on average by73%. Although the �le sizes in
rease by 23% on average, we believe thissituation is not prohibitive sin
e the basi
 blo
k and edge tables are notloaded into memory during the exe
ution of these binary �les. We alsoobserved about 23% in
rease in the 
ompilation time. Sin
e this is onlya one time 
ost that appears while building exe
utables, and it 
an be



6improved drasti
ally by integrating the 
reation of basi
 blo
k and edgetables into the 
ompiler rather than a separate assembly pass, we believethis in
rease is a

eptable.Experimental Parsing Results Figure 2 shows the normalized parsingtimes with SPEC CINT2006 ben
hmarks with respe
t to regular parsing.We observed a high per
entage of speed-up a
ross the board while theaverage binary parse speed-up is 3.7x (73% improvement over originalparsing time).

Fig. 2. SPEC CINT2006 Ben
hmarks: Normalized Parsing Times by Exe
utable.Our next tests were 
arried out on exe
utables in snes pa
kage ofPETS
 suite. One interesting 
hara
teristi
 of PETS
 exe
utables is thatPETS
 libraries are stati
ally linked into the exe
utable �les by default. Asa result, ea
h exe
utable 
ontains all fun
tions in PETS
 libraries. One 
anargue that the total 
ost of parsing these stati
ally-linked exe
utables ishigher than the 
ost if these exe
utables were linked with shared libraries.However, with the help of our 
ompilation me
hanism, we redu
ed theparsing time 76% on average (4.2x speed-up). Due to stati
 linking of allthese PETS
 libraries in every exe
utable, parsing time is more or less �ata
ross all exe
utables in this set be
ause our tool parses mostly the sameset of fun
tions for ea
h exe
utable.As a �nal set of exe
utables, we de
ided to use the Firefox exe
utableand all shared libraries that ship with Firefox. For this set of runs, weoperated on those exe
utables that reside in memory when the Firefoxweb browser is laun
hed. We see a major improvement in parsing timeon
e more as expe
ted. The average drop in the parsing time is 71% (3.5xspeed-up) with the worst 
ase redu
tion of 58%.As the previous results show, our system 
onsiderably in
reases theparsing speed. Now we want to dis
uss other evaluation metri
s su
h as�le size, 
ompilation time, and memory footprint of exe
utables.



7Build TimeMetri
s Table 1 gives an overview of our experimental resultsregarding build time and runtime metri
s. In this se
tion, we will dis
ussthe build time metri
s: �le size and 
ompilation time.Table 1. Various Properties of our System (All numbers are normalized)Ben
hmark Set File Size Growth Compilation Running Memoryvs. Standard vs. Debug Time Time FootprintSPEC CINT2006 2.21 1.38 1.25 0.97 1.00PETS
 1.50 1.09 1.32 0.95 1.00Firefox 1.17 1.21 1.13 0.94 1.00Overall Average 1.63 1.23 1.23 0.95 1.00Sin
e we are adding extra data to exe
utable �les, the size on diskunavoidably in
reases. On average, we are adding about 20 bytes of datato the exe
utable for ea
h basi
 blo
k, and two extra symbols to thesymbol table for ea
h fun
tion. Table 1 shows the normalized �le sizesa
ross three sets of ben
hmarks along with the overall average. Standardshows the 
omparison of �le sizes when they are built with no debug �ag onwhile Debug shows the 
omparison with the debug �ag (-g) on. We showboth numbers sin
e we realize exe
utables are often built with debug �agon to improve debugging and other binary analyses on these �les. Thehighest in
rease was observed by the SPEC CINT2006 ben
hmarks with121% in
rease in the average �le size with no debug �ag on. On average,we observed an in
rease of 63% with no debug �ag on, and 23% with thedebug �ag on. We assert that this in
rease is manageable sin
e it does notimpa
t the memory used during exe
ution.Another evaluation metri
 we used is the 
ompilation time. Sin
e our
ompilation me
hanism uses an intermediate step to pro
ess the assembly
ode generated by the g

, our 
ompilations take more time than theoriginal 
ompilations. The bulk of the in
rease in 
ompilation time 
omesfrom the 
ost of pro
essing an assembly �le as text, and writing out amodi�ed assembly �le, again as text. Currently, this step is 
ostly andour experiments showed a 23% in
rease in the 
ompilation time (Table1). We believe our system 
an easily be integrated into a mainstream
ompiler su
h as g

. Sin
e 
ompilers already maintain the informationwe generate using our me
hanism, the added 
ost would be minimal -expe
ted to be the same as the 
ost of writing those tables to the binary.This improvement remains as future work.Running Time Metri
s We next looked at the running times of theexe
utables built using our 
ompilation me
hanism and their memoryfootprint. The results are presented in Table 1.In our experiments we have not experien
ed any measurable in
reasein the exe
ution time of the ben
hmarks. The slight improvement we ob-served in the running time after using our 
ompilation me
hanism is wellwithin the noise of the experiment.



8 To measure memory footprint 
hange, we evaluated ea
h exe
utableunder Valgrind's massif tool [17℄ and measured heap memory and sta
kmemory usage with --pages-as-heap=yes �ag. Results indi
ate that bothsta
k and heap memory used by the programs remain about the same, asshown in the �nal 
olumn in Table 1.5 Related WorkParsing binary 
ode has been studied extensively in the past. Several re-sear
hers 
reated higher level representations of ma
hine 
ode followingbinary parsing and the disassembly of 
ode. Examples of this approa
hin
lude Cifuentes and Gough with their de
ompiler, d

 [5℄, and Emmerikand Waddington with their Boomerang-based de
ompiler [7℄. More re
entwork 
on
entrates on disassembly of obfus
ated 
ode to identify mali
ioussoftware [12℄. Some resear
hers, su
h as Aaraj et al. [1℄, 
ombine stati
disassembly te
hniques with dynami
 analysis to 
ope with malware. Sim-ilarly, Brus
hi et al. attempt to identify malware by building a CFG frombinary 
ode and 
omparing it with those of the known malware [3℄. Disas-sembly te
hniques also made their way into the mainstream appli
ations:Many 
ommon tools su
h as gdb, objdump, and IDA [10℄ generate disas-sembly of binary �les. Many resear
hers build CFGs on
e the exe
utable�le is disassembled. De Sutter's [6℄ and Theiling's [23℄ 
ontrol �ow gener-ation algorithms are su
h examples.All these systems, in
luding Dyninst [4℄, make use of the debuggingsymbols whenever possible. Many tools also perform a best-e�ort approa
hto identify fun
tion lo
ations if the symbols are not present, su
h as Harrisand Miller's tool [8℄.With this work, we let binary analysis tools bene�t from the knowledge
ompilers gather about exe
utables during the build phase. There areseveral binary analysis tools that 
an make use of our system. Examplesin
lude ATOM [22℄, EEL [13℄, Pin [14℄, Valgrind [17℄, and Vul
an [21℄.All these tools 
reate some sort of internal representation of the binary.Therefore, they all 
an bene�t from using the data stored in Basi
 Blo
kand Edge tables as mu
h as Dyninst does.6 Dis
ussionParsing exe
utable �les is the �rst step for any CFG-based binary analy-sis. Our experimental results show that our me
hanism 
learly speeds upparsing exe
utable �les. It is not hard to imagine bundling more informa-tion with the binary to speed up other binary analyses, or improve theirpre
ision, su
h as liveness analysis of registers or dependen
y analysis.However, there are also short
omings of our work. One su
h short
om-ing is that our system adds 2n more symbols into the symbol table wheren is the number of fun
tions. Sin
e symbol tables are highly-optimized,this issue is more of a nuisan
e than a te
hni
al problem. In
reased 
ompi-lation times might also be annoying for large frameworks su
h as Firefox.



9However, we expe
t that integrating our system with a full 
ompiler willsubstantially speed up 
ompilation.One improvement to our plain text table based system would be 
om-pressing Basi
 Blo
k and Edge Tables to redu
e disk spa
e demand. Inour preliminary experiments, we observed that 
ompressing Basi
 Blo
kand Edge Tables redu
ed the size of these tables by about 78%. However,sin
e binary analysis tools 
annot read 
ompressed tables dire
tly, theywould need to de
ompress them before �rst use. We plan to investigatee�e
ts of using 
ompressed tables in terms of parsing performan
e anddisk spa
e in our future work.7 Con
lusionParsing binary 
ode is the �rst step for most binary analyses. However,it is 
ostly and impre
ise espe
ially on variable-length instru
tion set ar-
hite
tures. In this work we introdu
ed a novel 
ompilation me
hanismthat improves the parsing speed of binary �les when they are examinedby binary analysis tools. Our 
ompiler 
reates intermediate assembly �les,augments them with information about basi
 blo
ks and edges betweenthem, and generates exe
utable �les using this augmented assembly 
ode.We implemented an instrumentation program for basi
 blo
k 
ountingthat rewrites a binary to the disk with the instrumentation 
ode using theDyninst library. We showed that running this analysis 
ode on variousben
hmarks resulted in up to 4.4x speed-up in parsing time, with anaverage of 3.8x. Although the size of the binary �les in
rease with extradata in the tables we generate, sin
e these tables are not loaded intomemory during exe
ution, the size of the runtime memory image of theexe
utable remains the same as before. Moreover, there is no runtimeperforman
e degradation due to these tables.Referen
es1. Aaraj, N., Raghunathan, A., Jha, N.: Dynami
 binary instrumentation-basedframework for malware defense. In Zamboni, D., ed.: Dete
tion of Intrusions andMalware, and Vulnerability Assessment. Volume 5137 of Le
ture Notes in Com-puter S
ien
e. Springer Berlin / Heidelberg (2008) 64�872. Balay, S., Bus
helman, K., Gropp, W.D., Kaushik, D., Knepley, M.G.,M
Innes, L.C., Smith, B.F., Zhang, H.: PETS
 Web page (2009)http://www.m
s.anl.gov/pets
.3. Brus
hi, D., Martignoni, L., Monga, M.: Dete
ting self-mutating malware using
ontrol-�ow graph mat
hing. In Bus
hkes, R., Laskov, P., eds.: Dete
tion of Intru-sions and Malware & Vulnerability Assessment. Volume 4064 of Le
ture Notes inComputer S
ien
e. Springer Berlin / Heidelberg (2006) 129�1434. Bu
k, B., Hollingsworth, J.K.: An api for runtime 
ode pat
hing. Int. J. HighPerform. Comput. Appl. 14 (November 2000) 317�3295. Cifuentes, C., Gough, K.J.: De
ompilation of binary programs. Software: Pra
ti
eand Experien
e 25(7) (1995) 811�829



106. De Sutter, B., De Bus, B., De Boss
here, K., Keyngnaert, P., Demoen, B.: Onthe stati
 analysis of indire
t 
ontrol transfers in binaries. In: Pro
eedings of theInternational Conferen
e on Parallel and Distributed Pro
essing Te
hniques andAppli
ations, PDPTA 2000, June 24-29, 2000, Las Vegas, Nevada, USA. (2000)1013�10197. Emmerik, M., Waddington, T.: Using a de
ompiler for real-world sour
e re
overy.In: Reverse Engineering, 2004. Pro
eedings. 11th Working Conferen
e on. (nov.2004) 27 � 368. Harris, L.C., Miller, B.P.: Pra
ti
al analysis of stripped binary 
ode. SIGARCHComput. Ar
hit. News 33 (De
ember 2005) 63�689. Henning, J.L.: Guest editor's introdu
tion. SIGARCH Comput. Ar
hit. News35(1) (Mar
h 2007) 63�6410. IDA: About: http://www.hex-rays.
om/produ
ts/ida/. Retrieved: Mar
h 21, 2012.11. In
e, T., Hollingsworth, J.K.: Pro�le-driven sele
tive program loading. In: Pro-
eedings of the 16th international Euro-Par 
onferen
e on Parallel pro
essing: PartI. EuroPar'10, Berlin, Heidelberg, Springer-Verlag (2010) 62�7312. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Stati
 disassembly of obfus
atedbinaries. In: Pro
eedings of the 13th 
onferen
e on USENIX Se
urity Symposium- Volume 13. SSYM'04, Berkeley, CA, USA, USENIX Asso
iation (2004) 18�1813. Larus, J.R., S
hnarr, E.: EEL: ma
hine-independent exe
utable editing. In: PLDI'95: Pro
eedings of the ACM SIGPLAN 1995 
onferen
e on Programming languagedesign and implementation, New York, NY, USA, ACM (1995) 291�30014. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Walla
e, S.,Reddi, V.J., Hazelwood, K.: Pin: building 
ustomized program analysis tools withdynami
 instrumentation. In: PLDI '05: Pro
eedings of the 2005 ACM SIGPLAN
onferen
e on Programming language design and implementation, New York, NY,USA, ACM (2005) 190�20015. M
Ghan, H.: SPEC CPU2006 ben
hmark suite. Mi
ropro
essor Report (2006)16. Miller, B., Callaghan, M., Cargille, J., Hollingsworth, J., Irvin, R., Karavani
, K.,Kun
hithapadam, K., Newhall, T.: The Paradyn parallel performan
e measure-ment tool. Computer 28(11) (nov 1995) 37 �4617. Nether
ote, N., Seward, J.: Valgrind: A program supervision framework. In: InThird Workshop on Runtime Veri�
ation (RV'03). (2003)18. Prasad, M., Chiueh, T.: A binary rewriting defense against sta
k based over�owatta
ks. In: Pro
eedings of the USENIX Annual Te
hni
al Conferen
e. (2003)211�22419. Rosenblum, N., Zhu, X., Miller, B., Hunt, K.: Learning to analyze binary 
omputer
ode. In: Pro
eedings of the 23rd national 
onferen
e on Arti�
ial intelligen
e -Volume 2. AAAI'08, AAAI Press (2008) 798�80420. S
hwarz, B., Debray, S., Andrews, G.: Disassembly of exe
utable 
ode revisited. In:Pro
eedings of the Ninth Working Conferen
e on Reverse Engineering (WCRE'02).WCRE '02, Washington, DC, USA, IEEE Computer So
iety (2002) 45�21. Srivastava, A., Edwards, A., Vo, H.: Vul
an binary transformation in a distributedenvironment. Te
hni
al report, Mi
rosoft Resear
h (2001)22. Srivastava, A., Eusta
e, A.: ATOM: a system for building 
ustomized programanalysis tools. In: PLDI '94: Pro
eedings of the ACM SIGPLAN 1994 
onferen
eon Programming language design and implementation, New York, NY, USA, ACM(1994) 196�20523. Theiling, H.: Extra
ting safe and pre
ise 
ontrol �ow from binaries. In: Pro
eedingsof the Seventh International Conferen
e on Real-Time Systems and Appli
ations.RTCSA '00, Washington, DC, USA, IEEE Computer So
iety (2000) 23�


