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Abstract. Parsing machine code is the first step for most analyses per-
formed on binary files. These analyses build control flow graphs (CFGs).
In this work we propose a compilation mechanism that augments binary
files with information about where each basic block is located and how
they are connected to each other. This information makes it unnecessary
to analyze most instructions in a binary during the initial CFG build
process. As a result, these binary analysis tools experience dramatically
increased parsing speeds - 3.8x on average.

1 Introduction

Binary analysis is a common operation for performance modeling [16],
computer security [18], maintenance [5], and binary optimization [LI].
Each of these tasks requires parsing the executable file to identify func-
tions, data segments, and their interaction with each other. However, pars-
ing executables is not a straightforward task and it is painfully slow since
it usually requires decoding every single instruction in the binary. At the
higher level, even distinguishing code and data is difficult since they are
often stored in adjacent memory. All the information about functions and
data locations is actually known during various stages of compilation.
However, only some of this information is stored in the binary in the form
of symbols. Binary analysis tools that operate on these executables have
to regenerate the information that is thrown away by the compiler.

In this work, we propose a novel compilation mechanism that stores
useful information about the layout of executable files in tables inside exe-
cutable files. These tables enable identification of basic blocks and provide
support for reconstruction of edges between them. Binary analysis tools,
including those that aid development of high performance applications,
can parse executables faster and more reliably using these tables. We
measured a speed-up in parsing up to 4.4x with an average speed-up of
3.8x. Since these tables are stored in a section that is not loaded into the
memory during execution, the memory footprint of executables do not
change. Running times of these executables also remain unchanged since
we do not in any way modify the execution. The overhead in the compi-
lat(;)n time and the increase in file size is manageable - both at around
23%.



2 Difficulties of Binary Parsing

The process of analyzing bytes from a file and generating abstractions like
instructions, functions and CFGs is called binary parsing. It is a tedious
task with many challenges, such as distinguishing code from data. Since
both code and data are stored the same way, there is really no easy way of
identifying whether a sequence of bytes correspond to code or data. Cur-
rent parsing techniques use hints to identify code and mark the remaining
bytes as data. These hints usually come in the form of symbols represent-
ing functions. From symbols, tools either follow a sweeping or a recursive
strategy [20]. In the sweeping strategy, tools first use symbols to mark an
initial set of functions, then sweep the remaining bytes from the start of
the file and mark sequences of bytes that resemble code as program code.
In the recursive strategy, tools also start by using symbols to mark the
initial set of functions, then locate other code sections following call edges
and marking call targets as function entry points, hence program code. In
some cases, uncharted regions in the binary are then plugged into machine
learning algorithms to identify even more functions and code regions [19].

Functions are composed of one or more, usually several, basic blocks.
A basic block is a sequence of instructions that contains no control flow
instructions except as the last instruction of the block. If the first in-
struction in a basic block executes, it is guaranteed that all following
instructions will execute. It is an abstraction that is used by many types
of analyses. Once the functions are identified, their Control Flow Graphs
(CFGs) are built. A sample CFG can be seen in Fig. Il Building such a
CFG correctly depends on correct identification of basic blocks and the
edges between these basic blocks. Therefore, it requires the analysis tool
to inspect each instruction in a function. This operation is error-prone,
especially on variable-length instruction set architectures where an error
in decoding an instruction propagates downstream and make decoding the
following instructions harder, or even impossible.

3 Compiler Help

During the build process, compilers construct an internal representation
of the source code and generate machine code using this internal represen-
tation. However, as soon as the executable file is generated, this internal
representation is thrown away. In this paper, we investigate the effects of
storing some of this information about the program inside the executable.

3.1 Basic Block and Edge Tables

To speed up building basic block abstractions inside binary analysis tools,
we developed a compilation framework that stores the start address and
the address of the last instruction of each basic block inside the executable
in what we call a Basic Block Table.

CFGs require identification of edges between basic blocks. Our system
stores the source basic block, the target basic block, and the edge type of
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Fig. 1. A sample CFG and associated Basic Block and Edge Tables of a function with
entry basic block, an If/Else structure, a loop, and an exit block.

each edge in the FEdge Tuable. In this table, a basic block is identified by
its start address. In some cases, target basic block in an edge can only be
known during program execution. Such cases occur when the value of a
function pointer or any other indirect branch target] depends on the user
input. In these cases, we leave the target basic block field blank during
generation of the Basic Block Table. Such edges can be filled in by the
parser after the program has launched and when the value of the target
address can be computed.

Figure [l illustrates what information is stored in the Basic Block and
Edge Tables based on the CFG shown on the left. For this example, assume
a, b, ¢, ... are the offsets of the last instructions of their corresponding
basic blocks from the start of the function. Since there are 6 basic blocks
in the CFG, the Basic Block table has 6 rows. The first row represents the
first basic block: it starts at offset 0, and its last instruction is located at
offset a; the next row represents the second basic block, and so on. The
Basic Block Table is followed by the Edge Table which has 8 rows, one
for each edge between basic blocks. The edge from the entry block to the
else block is represented with the triplet of <0, w, Conditional> since it
is accessed by taking a conditional branch. The edge from the entry block
to the if block is traversed when the conditional branch is not taken and
when execution simply falls-through? to the if block. The last row in the
figure represents the edge originating from the return instruction. Since
the target of a return instruction cannot be determined statically, that
field is left blank (marked with N/A in our example).

! Although indexed jump tables also use indirect branches, targets of such indirect
branch instructions can usually be identified using heuristics.

2 ‘Fall-through’ is a type of control transfer where the execution of an instruction is
followed by the execution of the next instruction in executable’s address space.



3.2 Compilation Process

Our compilation mechanism mimics a standard compilation process. We
developed a tool that modifies assembly files and generates Basic Block
and Edge Tables.

One issue in the implementation is the need to support position inde-
pendent code such as libraries that can be loaded at different addresses
in different executions of a program. Using absolute addressing does not
work for this type of code. To handle this, the addresses in these tables
are stored as offsets from the start of the function.

Another issue arises when some function definitions are merged by
the linker. During the build process files that are linked with the include
directive from a source file are compiled along with the actual source file.
As a result all function definitions included from a header file are compiled
into the resulting object file. If the same function definition is linked from
multiple source files, these function definitions appear in multiple object
files that result from the compilation of these source files. To avoid linking
problems, these functions are marked as weak. Linkers allow only one copy
of these weak functions to appear in the final executable - the remaining
ones are dropped. Although these functions are identical at the source code
level, since compilers perform optimizations individually on each copy of
the function, the resulting machine code may be different. As a result,
Basic Block and Edge Tables for these functions may differ slightly. Unlike
weak functions, tables with the same name cannot be merged. Therefore,
our compilation mechanism has to distinguish tables related to functions
that have the same name. As a result, we generate table names using a
combination of the function name and the name of the file that contains
that function. At the end, each table has a different name, and there is a
one-to-one mapping between functions and tables.

4 Evaluation

For evaluation, we used a simple binary modification tool we built based
on Dyninst [4], an instrumentation and binary analysis tool for HPC ap-
plications. Our tool reads in a binary file and rewrites it to disk with
simple instrumentation code for basic block counting. Since our analy-
sis deals with every single basic block in the executable, the executable
file has to be parsed from top to bottom, correctly locating every basic
block. We compared the parsing speed of our tool with that of unmodified
Dyninst. Although Dyninst is traditionally known for its dynamic analysis
capabilities, it also serves as a static analysis tool with support for ba-
sic binary analysis and CFG generation along with binary rewriting. Like
other static analysis tools, it makes use of symbols stored in the binaries
to improve its analysis, although the existence of symbols is not required
in many cases. Therefore, we expect our technique can improve similar
static analysis tools in the same fashion.

We first evaluated our system on SPEC CINT2006 [9/15]. SPEC CINT2006
contains a series of CPU-intensive executables that are selected to evaluate
the processor(s) and the memory system. All together, SPEC CINT2006
has about 1,047,000 lines of code.



Our next benchmarks were the PETSc libraries [2]. PETSc (Portable,
Extensible Toolkit for Scientific Computation) is a suite of data structures
and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. It uses MPI for parallelization. It
has linear and non-linear equation solvers and supports C, C++, Fortran
and Python. The PETSc suite is composed of about 872,000 lines of code.

Finally we evaluated our system on the popular web browser Fire-
fox (version 9.0.1) and all the shared libraries that ship with the Firefox
source code. We evaluated our system on Firefox because its executables
are numerous and are relatively large. Moreover, it contains hand-written
assembly files and the build process involves using many uncommon com-
piler options. Therefore, building Firefox has been a valuable test for the
robustness of our compilation mechanism. The Firefox suite contains ap-
proximately 5,335,000 lines of code.

4.1 Environment

All experiments were carried out on 64-bit x86 machines that run the
Linux operating system. SPEC CINT2006 and PETSc benchmarks were
tested on a system that has 4 Intel Xeon processors with 6-cores each
and 48GB main memory. All our executables except PETSc were serial
applications. Therefore, we ran most of our experiments serially on a sin-
gle core. We used gcc 4.1.2 for building reference executables and as a
back-end to our compilation mechanism. Firefox experiments were run on
a separate machine due to the idiosyncratic requirements of the Firefox
build environment. As a result, Firefox runs were taken on a dual-core ma-
chine with an AMD Turion processor at 1.8 GHz with 2GB main memory.
On this system, we used gcc 4.6.1 for building reference executables and
as our back-end. Since we never compare results across these machines
directly, the results are not affected due to using two separate machines.

4.2 Experimental Results

Our first experiment was designed to calculate the time it takes to parse
a specific executable using our analysis tool to show how much our tool
improves parsing speed. We then ran other experiments to evaluate prop-
erties of executables built using our compilation mechanism and identify
any trade-offs. Similarly, we compared file sizes after the compilation pro-
cess. At the end, we tested the runtime performance of these executables
in terms of time and memory usage. We ran each timed experiment 5 times
and computed the mean. We then normalized our findings with respect
to the executables compiled with the gnu compiler suite.

In our experiments, we observed that using basic block and edge ta-
bles reduced the parsing time between 58% and 77%, and on average by
73%. Although the file sizes increase by 23% on average, we believe this
situation is not prohibitive since the basic block and edge tables are not
loaded into memory during the execution of these binary files. We also
observed about 23% increase in the compilation time. Since this is only
a one time cost that appears while building executables, and it can be



improved drastically by integrating the creation of basic block and edge
tables into the compiler rather than a separate assembly pass, we believe
this increase is acceptable.

Experimental Parsing Results Figure 2l shows the normalized parsing
times with SPEC CINT2006 benchmarks with respect to regular parsing.
We observed a high percentage of speed-up across the board while the
average binary parse speed-up is 3.7x (73% improvement over original
parsing time).
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Fig. 2. SPEC CINT2006 Benchmarks: Normalized Parsing Times by Executable.

Our next tests were carried out on executables in snes package of
PETSc suite. One interesting characteristic of PETSc executables is that
PETSc libraries are statically linked into the executable files by default. As
a result, each executable contains all functions in PETSc libraries. One can
argue that the total cost of parsing these statically-linked executables is
higher than the cost if these executables were linked with shared libraries.
However, with the help of our compilation mechanism, we reduced the
parsing time 76% on average (4.2x speed-up). Due to static linking of all
these PETSc libraries in every executable, parsing time is more or less flat
across all executables in this set because our tool parses mostly the same
set of functions for each executable.

As a final set of executables, we decided to use the Firefox executable
and all shared libraries that ship with Firefox. For this set of runs, we
operated on those executables that reside in memory when the Firefox
web browser is launched. We see a major improvement in parsing time
once more as expected. The average drop in the parsing time is 71% (3.5x
speed-up) with the worst case reduction of 58%.

As the previous results show, our system considerably increases the
parsing speed. Now we want to discuss other evaluation metrics such as
file size, compilation time, and memory footprint of executables.



Build Time Metrics Table[Ilgives an overview of our experimental results
regarding build time and runtime metrics. In this section, we will discuss
the build time metrics: file size and compilation time.

Table 1. Various Properties of our System (All numbers are normalized)

File Size Growth Compilation|Running| Memor

Benchmark Set vs. Standard|vs. Debug TIi)me Time ’ Footprir}:t
SPEC CINT2006 2.21 1.38 1.25 0.97 1.00
PETSc 1.50 1.09 1.32 0.95 1.00
Firefox 1.17 1.21 1.13 0.94 1.00
Overall Average 1.63 1.23 1.23 0.95 1.00

Since we are adding extra data to executable files, the size on disk
unavoidably increases. On average, we are adding about 20 bytes of data
to the executable for each basic block, and two extra symbols to the
symbol table for each function. Table [I] shows the normalized file sizes
across three sets of benchmarks along with the overall average. Standard
shows the comparison of file sizes when they are built with no debug flag on
while Debug shows the comparison with the debug flag (-g) on. We show
both numbers since we realize executables are often built with debug flag
on to improve debugging and other binary analyses on these files. The
highest increase was observed by the SPEC CINT2006 benchmarks with
121% increase in the average file size with no debug flag on. On average,
we observed an increase of 63% with no debug flag on, and 23% with the
debug flag on. We assert that this increase is manageable since it does not
impact the memory used during execution.

Another evaluation metric we used is the compilation time. Since our
compilation mechanism uses an intermediate step to process the assembly
code generated by the gcc, our compilations take more time than the
original compilations. The bulk of the increase in compilation time comes
from the cost of processing an assembly file as text, and writing out a
modified assembly file, again as text. Currently, this step is costly and
our experiments showed a 23% increase in the compilation time (Table
). We believe our system can easily be integrated into a mainstream
compiler such as gcc. Since compilers already maintain the information
we generate using our mechanism, the added cost would be minimal -
expected to be the same as the cost of writing those tables to the binary.
This improvement remains as future work.

Running Time Metrics We next looked at the running times of the
executables built using our compilation mechanism and their memory
footprint. The results are presented in Table [II

In our experiments we have not experienced any measurable increase
in the execution time of the benchmarks. The slight improvement we ob-
served in the running time after using our compilation mechanism is well
within the noise of the experiment.



To measure memory footprint change, we evaluated each executable
under Valgrind’s massif tool [I7] and measured heap memory and stack
memory usage with --pages-as-heap=yes flag. Results indicate that both
stack and heap memory used by the programs remain about the same, as
shown in the final column in Table [

5 Related Work

Parsing binary code has been studied extensively in the past. Several re-
searchers created higher level representations of machine code following
binary parsing and the disassembly of code. Examples of this approach
include Cifuentes and Gough with their decompiler, dcc [5], and Emmerik
and Waddington with their Boomerang-based decompiler [7|. More recent
work concentrates on disassembly of obfuscated code to identify malicious
software [12]. Some researchers, such as Aaraj et al. [1], combine static
disassembly techniques with dynamic analysis to cope with malware. Sim-
ilarly, Bruschi et al. attempt to identify malware by building a CFG from
binary code and comparing it with those of the known malware [3]. Disas-
sembly techniques also made their way into the mainstream applications:
Many common tools such as gdb, objdump, and IDA [10] generate disas-
sembly of binary files. Many researchers build CFGs once the executable
file is disassembled. De Sutter’s [6] and Theiling’s [23] control flow gener-
ation algorithms are such examples.

All these systems, including Dyninst [4], make use of the debugging
symbols whenever possible. Many tools also perform a best-effort approach
to identify function locations if the symbols are not present, such as Harris
and Miller’s tool [§].

With this work, we let binary analysis tools benefit from the knowledge
compilers gather about executables during the build phase. There are
several binary analysis tools that can make use of our system. Examples
include ATOM [22], EEL [13], Pin [I4], Valgrind [17], and Vulcan [21].
All these tools create some sort of internal representation of the binary.
Therefore, they all can benefit from using the data stored in Basic Block
and Edge tables as much as Dyninst does.

6 Discussion

Parsing executable files is the first step for any CFG-based binary analy-
sis. Our experimental results show that our mechanism clearly speeds up
parsing executable files. It is not hard to imagine bundling more informa-
tion with the binary to speed up other binary analyses, or improve their
precision, such as liveness analysis of registers or dependency analysis.
However, there are also shortcomings of our work. One such shortcom-
ing is that our system adds 2n more symbols into the symbol table where
n is the number of functions. Since symbol tables are highly-optimized,
this issue is more of a nuisance than a technical problem. Increased compi-
lation times might also be annoying for large frameworks such as Firefox.



However, we expect that integrating our system with a full compiler will
substantially speed up compilation.

One improvement to our plain text table based system would be com-
pressing Basic Block and Edge Tables to reduce disk space demand. In
our preliminary experiments, we observed that compressing Basic Block
and Edge Tables reduced the size of these tables by about 78%. However,
since binary analysis tools cannot read compressed tables directly, they
would need to decompress them before first use. We plan to investigate
effects of using compressed tables in terms of parsing performance and
disk space in our future work.

7 Conclusion

Parsing binary code is the first step for most binary analyses. However,
it is costly and imprecise especially on variable-length instruction set ar-
chitectures. In this work we introduced a novel compilation mechanism
that improves the parsing speed of binary files when they are examined
by binary analysis tools. Our compiler creates intermediate assembly files,
augments them with information about basic blocks and edges between
them, and generates executable files using this augmented assembly code.

We implemented an instrumentation program for basic block counting
that rewrites a binary to the disk with the instrumentation code using the
Dyninst library. We showed that running this analysis code on various
benchmarks resulted in up to 4.4x speed-up in parsing time, with an
average of 3.8x. Although the size of the binary files increase with extra
data in the tables we generate, since these tables are not loaded into
memory during execution, the size of the runtime memory image of the
executable remains the same as before. Moreover, there is no runtime
performance degradation due to these tables.
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