
The Paradyn
Parallel Performance
Measurement Tool

Barton P. Miller
Mark D. Callaghan
Jonathan M. Cargille
Jeffrey K. Hollingsworth
R. Bruce Irvin
Karen L. Karavanic
Krishna Kunchithapadam
Tia Newhall

University of Wisconsin,
Madison

Because it inserts

instrumentation during

execution and only at the

point where it’s needed,

Paradyn identifies and

locates performance problems

in long-running applications

with little overhead.

P aradyn is a tool for measuring the performance of large-scale
parallel programs. Our goal in designing a new performance tool
was to provide detailed, flexible performance information with-

out incurring the space (and time) overhead typically associated with
trace-based tools. Paradyn achieves this goal by dynamically instru-
menting the application and automatically controlling this instrumen-
tation in search of performance problems. Dynamic instrumentation lets
us defer insertion until the moment it is needed (and remove it when it
is no longer needed); Paradyn’s Performance Consultant decides when
and where to insert instrumentation.

GUIDING PRINCIPLES AND CHARAClERlSTlCS
Seven principles guided the design of Paradyn: scalability, automated

search, well-defined data abstractions, support for heterogeneous envi-
ronments and high-level languages, open interfaces, and streamlined use.
Below, we describe these principles and summarize the features in
Paradyn that incorporate them.

Scalability
We need to measure long-running programs (hours or days) on large

(about 1,000 node) parallel machines using large data sets. For correct-
ness debugging, you can often test a program on small data sets and be
confident that it will work correctly on larger ones, but for performance
tuning, this is often not the case. In many real applications, as program
and data-set size increase, different resources saturate and become bot-
tlenecks.

We must also measure large programs that have hundreds of modules
and thousands of procedures. The mechanisms for instrumentation, pro-
gram control, and data display must gracefully handle this large number
of program components.

Paradyn uses dynamic instrumentation to instrument only those parts
of the program relevant to finding the current performance problem. It
starts looking for high-level problems (such as too much total synchro-
nization blocking, I/O blocking, or memory delays) for the whole
program. Only a small amount of instrumentation is inserted to find these
problems. Once a general problem is found, instrumentation is inserted
to find more specific causes. No detailed instrumentation is inserted for
classes of problems that do not exist.

Automate the search for performance problems
Our approach to performance measurement is to try to identify the parts

of the program that are consuming the most resources and direct the pro-
grammer to these parts. Automating the search for performance infor-

0018.91621951S4.00 0 1995 IEEE November 1995

mation enables Paradyn to dynamically select which per- mance problems at the lowest system levels, programmers
formance data to collect (and when to collect it). The goal must examine low-level problems while maintaining ref-
is for the tool to identify the parts of the program that are erences to the high-level source code.
limiting performance instead of requiring the program- Paradyn allows high-level language programmers to
mer to do it. view performance in terms of high-level

Paradyn’s Performance Consultant mod- objects (such as arrays and loops for data-
ule has a well-defined notion, called the W3 parallel Fortran) and automatically maps
search model, of the types of performance P aradyn already the high-level information to low-level
problems found in programs and of the var- works well in objects (such as nodes and messages). If
ious components contained in the current several domains users want to view the low-level informa-
program. The Performance Consultant uses and measures pro- tion, Paradyn helps them relate perfor-
W3 information to guide dynamic instru- grams running on mance data between levels.
mentation placement and modification. heterogeneous

combinations. Open interfaces for visualization
Provide well-defined
data abstractions

Simple data abstractions can unify the design of a per-
formance tool and simplify its organization. Paradyn uses
two important abstractions-metric-focus grids and time
histograms-in collecting, communicating, analyzing,
and presenting performance data.

A metric-focus grid is based on two lists (vectors) of
information. The first vector is a list of performance met-
rics, such as CPU time, blocking time, message rates, I/O
rates, or number of active processors. The second vector is
a list of individual program components, such as a selec-
tion of procedures, processor nodes, disks, message chan-
nels, or barrier instances. The combination of these two
vectors produces a matrix with each metric listed for each
program component.

The matrix elements can be single values, such as cur-
rent rate, average, and sum, or time histograms, which
record metric behavior as it varies over time. The time his-
togram is an important tool in recording time-varying data
for long-running programs.

Support heterogeneous environments
Parallel computing environments range from clusters

of workstations to massively parallel computers. Hetero-
geneity arises in processor architectures, operating sys-
tems, programming models, and programming languages.
Isolating each of these dimensions into abstractions within
the performance tool can simplify porting. For example,
adding support for the PVM programming model only
requires knowing the name of the new communication
and process creation operations; the underlying support
for the Unix operating system, chip architecture, and pro-
gramming language stays the same.

Paradyn already works well in several domains and
measures programs running on heterogeneous combina-
tions. Current hardware platforms include Thinking
Machine Corporation’s CM-S, SparcStation (including
multiprocessors), Hewlett-Packard’s PA-RISC, and IBM’s
RS/6000 and SP-2. Operating systems include Thinking
Machine’s TMC CMOST, SunOS 4.1, Solaris 2, Hewlett-
Packard’s HP/UX, and AIX. Programming models include
PVM, CM-5 CMMD, and CM Fortran CM-RTS.

Support high-level parallel languages
Users of high-level parallel programming languages

need performance information that is accurate and rele-
vant to source code. When their programs exhibit perfor-

and new data sources
Graphical and tabular displays are im-

portant mechanisms for understanding performance data.
Paradyn has a set of standard visualizations (time his-
tograms, bar graphs, and tables) and provides a simple
interface to incorporate displays from other sources.

Equally important is the ability to incorporate new
sources of performance data, such as cache miss data from
the processor, network traffic from the network interfaces,
or paging activity from the operating system. Paradyn’s
instrumentation is configurable to use any performance
quantity that can be mapped into a program’s address
space. Including these new sources of data in Paradyn
requires only a change to a configuration file.

Streamlined use
Ease of installation and ease of use are important fea-

tures of any new tool. Installation should not require spe-
cial system privileges or directory modification, and tool
use should not require source code modification or spe-
cial compiling techniques. In Paradyn, dynamic instru-
mentation avoids the need to modify, recompile, or relink
an application. It also allows tools to attach to an already-
running program (such as a parallel database server),
monitor its performance for some interval, and then
detach.

DYNAMIC PERFORMANCE
MEASUREMENT

Paradyn differs from previous performance measure-
ment tools in that program instrumentation and perfor-
mance evaluation are done during execution of the
application program. Thus, comparing Paradyn to previ-
ous tools raises questions about transient effects, brief
periodic effects, and overhead for programs of shorter
duration.

The answers are implicit in the fact that we are mea-
suring long-running programs, with execution times of
hours or even days. Although it might take seconds to
insert new instrumentation and start evaluating the data,
there is little chance that interesting behaviors will be
missed. If a program runs for 10 hours, then even a 5-
minute “transient” operation is less than 1 percent of the
total execution time (and therefore not interesting for per-
formance tuning). If a program repeatedly performs a
brief (few seconds) operation, we will detect this behav-
ior if the cumulative effect is large enough. Short-running
programs might finish before Paradyn has had a chance

Computer

to isolate the performance problem(s). Although they are
not our primary target, Paradyn may also be used to per-
formance-tune these programs. To accommodate this class
of applications, we are working on the use of multiple pro-
gram runs in a single search for bottlenecks. In this case,
Paradyn would save the state of its search for performance
problems and rerun the program to complete the search.

Dynamic instrumentation differs from traditional data
collection because it defers data selection until the pro-
gram is running. Instrumentation to precisely count and
time events is inserted by dynamically modifying the
binary program. A more static approach is binary rewrit-
ing, a technique that reads an executable file and then gen-
erates a modified file with tracing inserted. This technique
is used in tools such as Quantify’ and qpt.2 Quantify and
qpt operate on static binaries, whereas dynamic instru-
mentation modifies binaries on the fly.

Trace-based tools designed for performance tuning par-
allel applications include Pablo,3 AIMS4 and IPS-2.5 These
systems require an application to be recompiled, then run
while trace data is gathered for the entire application, and
finally analyzed post-mortem using the trace data. Such
trace-based approaches may be limited by the amount of
trace data needed to analyze a single large, long-running
application.

MPP Apprentice,6 a performance tool designed for the
CrayT3D, avoids the scaling problem of trace-based tools
by using static counters and timers, but it does require
recompilation of the application to be tuned. Paradyn
avoids both recompilation and the scaling difficulties
inherent in a tracing approach.

SYSTEM OVERVIEW

Basic abstractions
Paradyn is built around two simple but

powerful data abstractions-the metric-
focus grid and time histogram-that unify
internal system structure, giving users a
consistent view of the system and the data
it presents.

Metrics are time-varying functions that
characterize some aspect of a parallel pro-
gram’s performance; examples include
CPU utilization, memory usage, and counts
of floating-point operations. A focus is a
specification of a part of a program execu-
tion expressed in terms of program
resources. Typical resource types include
synchronization objects, source code
objects (procedures, basic blocks), threads
and processes, processors, and disks.
Resources are separated into several dif-
ferent hierarchies, each representing a
class of objects in a parallel application. For
example, a resource hierarchy for CPUs
contains each processor. A focus contains
one or more components from each
resource hierarchy. One focus might be all
synchronization objects accessed by a sin-
gle procedure on one processor. The com-
bination of a list of metrics with a list of foci

forms a matrix (called a grid in Paradyn) containing the
value of each metric for each focus. The Performance
Consultant and visualizations receive performance data
by specifying one or more metric-focus grids.

Paradyn stores performance data internally in a data
structure called a time histogram,7 which is a fixed-size
array whose elements (buckets) store a metric’s values for
successive time intervals. Two parameters determine the
granularity of the data stored: initial bucket width (time
interval) and number of buckets. Both parameters are sup-
plied by higher level consumers of the performance data.
If a program runs longer than the initial bucket width
times the number of buckets, we double the bucket
width and re-bucket the previous values. The change in
bucket width can cause a corresponding change in the
sampling rate for performance data, reducing instrumen-
tation overhead. This process repeats each time we fill all
the buckets. As a result, the rate of data collection
decreases logarithmically, while maintaining a reasonable
representation of the metric’s time-varying behavior.

System components
Paradyn consists of the main Paradyn process, one

or more Paradyn daemons, and zero or more external
visualization processes. The central part of the tool is a
multithreaded process that includes the Performance
Consultant, Visualization Manager, Data Manager, and
User Interface Manager. Figure 1 shows the Paradyn archi-
tecture.

The Data Manager handles requests from other threads
for data collection, delivers performance data from the
Paradyn daemon(s) to the requesting thread(s), and main-
tains and distributes information about the metrics and
resource hierarchies for the currently defined application.

Table
visualization

Histogram
visualization

Application Process Application Process

Figure 1. Overview of Paradyn
and solid ovals are processes.

structure. Dotted ovals are threads,

November 1995

The User Interface Manager provides visual access to the
system’s main controls and performance data. The
Performance Consultant controls the automated search
for performance problems, requesting and receiving per-
formance data from the Data Manager. TheVisualization
Manager starts visualization processes; one visualization
thread is created in Paradyn for every external visualiza-
tion process that is started. The job of a visualization

I. :.
thread is to handle communication between the external
visuahzation process and the other Paradyn modules.

The daemon contains Paradyn’s platform-dependent
~ parts. It is responsible for inserting the requested instru-

mentation into the executing processes it monitors. The
interface between the Paradyn process and daemon sup-
ports four main functions: process control, performance

, data delivery, performance data requests, and the delivery
of high-level language mapping data. The daemon ser-
vices requests from Paradyn for process control and per-
formance data and delivers performance data from the
application(s) to Paradyn. We currently support daemons

~
for various versions of Unix, the TMC CM-5, and networks
of workstations running PVM.

Configuration files
Paradyn configuration language (PCL) files describe all

architecture, operating system, and environment charac-
teristics of applications and platforms. PCL lets users cre-
ate new metrics and instrumentation, incorporate new
visualizations, specify alternate Paradyn daemons, set var-
ious display and analysis options, and specify command
lines for starting applications.

Paradyn’s default PCL file describes basic metrics,
instrumentation, visualizations, and daemons. Each user
can provide an additional PCL file with personalized set-

I’.
tmgs and options. Users can also create an application-

~ specific PCL file that describes details of an application
and how it is run.

DYNAMIC INSTRUMENTATION
Paradyn instruments only those parts of the program

that are relevant to the current performance problem8 and
defers instrumentation until the program is executing.

Interface
Requests for dynamic instrumentation are made in a met-

ric-focus grid, which the Paradyn daemon translates.
~ Translation is a two-step process: The Metric Manager trans-

foe 0
I addcounter (fooFlg, 1) : *I L---------_---_---__________I

________--_----_------------
: subcounter (fooFlg, 1) ‘+-----+I I--------------------~------,

r-.;iiioofi~j -----__________________: SendMsg (dest, ptr,

I
cnt, size)

I startTimer (msgTme, ProcTime) : . I__.__._........._-------~~~---~--~~-
---______________________
: if (fooFlg)

stoptimer (msgTme) 1 WI .
I--___-____-_______________I

~ Figure 2. Sample metric computation.

lates the metric-focus requests into machine-independent
abstractions, which the Instrumentation Manager then con-
verts to machine instructions.

Dynamic instrumentation provides two types of objects,
timers and counters, to extract performance information
from an application. Counters are integer counts of the
frequency of some event, and timers measure the amount
of time spent performing various tasks (in either wall-time
or process-time units).

Points, primitives, and predicates
Points, primitives, and predicates provide a simple,

machine-independent set of abstractions that are used as
building blocks for dynamic instrumentation. Points are
locations in the application’s code where instrumentation
can be inserted. Primitives are simple operations that
change the value of a counter or a timer. Predicates are
Boolean expressions that guard the execution of primi-
tives (essentially, If statements). By inserting predicates
and primitives at the correct points in a program, we can
compute a wide variety of metrics.

The points currently available in our system are proce-
dure entry, procedure exit, and individual call statements,
but we are extending them to include basic blocks and
individual statements. We provide six primitives: set
counter, add to counter, subtract from counter, set timer,
start timer, and stop timer. We also provide a primitive,
used primarily to discover resources and to record map-
ping information, to call arbitrary functions. To compute
the predicate, we use counters, constants, parameters to
a procedure, a procedure returnvalue, and combinations
of these, using relational and numeric operators.
Predicates support constraints by limiting when opera-
tions on counters and timers can occur.

Figure 2 shows how primitives and predicates can be
combined to create metrics. It computes the time spent
sending messages on behalf of the procedurefoo and its
descendants. ThefooFlg counter keeps track of whether
foe is on the stack; it is incremented on entry and decre-
mented on exit fromfoo. The value offooFlg is then used
as a predicate to control whether the rugTime timer prim-
itives will be called upon entry and exit from SendA4sg.
Whenfoo is not active, the primitives will not be executed.

The translation from metric-focus specifications to
points, primitives, and predicates is described by metric
definitions contained in the configuration language’s files.
These definitions simplify the addition of new metrics,
porting of Paradyn to new systems, and user customiza-
tion. We provide a standard library of metric descriptions,
and users (and other tools) can add to this library. The
metric descriptions consist of definitions and constraints.
Some metric definitions and resource constraints are
generic and apply to all platforms; others are specific to a
platform or programming model.

A metric definition is a template that describes how to
compute a metric for different resource combinations. It
consists of a series of code fragments that create the prim-
itives and predicates to compute the desired metric. We
need to be able to compute each metric for any combina-
tion of resource constraints. To make these metric defin-
itions compact and modular, we divide metric definition
into two parts: a base metric and a series of resource con-

Computer

straints. The base metric defines how a metric is computed
for an entire application (all procedures, processes, or
processors). A resource constraint defines how to restrict
the base metric to an instance of a resource in one of the
resource hierarchies. Resource constraints usually trans-
late to an instrumentation predicate.

Instrumentation generation
The Instrumentation Manager encapsulates the archi-

tecture-specific knowledge; it locates the allowable instru-
mentation points and performs the final translation of
points, primitives, and predicates into machine-level
instrumentation. When Paradyn is initially connected to an
application process, the Instrumentation Manager identi-
fies all potential instrumentation points by scanning the
application(s) binary image(s). Procedure entry and exit, as
well as procedure call sites, are detected and noted as points.

After Paradyn is connected to the application, the
Instrumentation Manager waits for requests from the
daemon’s Metric Manager, translates them into small
code fragments, called trampolines, and inserts them
into the program. Two types of trampolines, base tram-
polines and mini-trampolines, are used. There is one base
trampoline per point with active instrumentation. A base
trampoline is inserted into the program by replacing the
machine instruction at the point with a branch to the
trampoline, and relocating the replaced instruction to
the base trampoline. A base trampoline has slots for call-
ing mini-trampolines both before and after the relocated
instruction.

Mini-trampolines contain the code to evaluate a specific
predicate or invoke a single primitive. There is one mini-
trampoline for each primitive or predicate at each point.
Creating a mini-trampoline requires generating appro-
priate machine instructions for the primitives and predi-
cates requested by the Metric Manager. The Instru-
mentation Manager assembles the necessary instructions,
which are transferred to the application process by a vari-
ation of the Unix ptrace interface. The generated code also
includes appropriate register save and restore operations.

Data collection
Once instrumentation has been inserted into the appli-

cation, data begins flowing back to the higher level clients.
The current value of each active timer and counter is peri-
odically sampled and transported by the Paradyn daemon
to the Data Manager. Note that the instrumentation keeps
track of the precise value of each performance metric, and
the sampling rate determines only how often Paradyn sees
the new value.

It is easy to integrate performance data from external
sources into Paradyn. Instrumentation is inserted to read
the external source and store the result in a counter or a
timer. For example, most operating systems keep a variety
of performance data that can be read by user processes;
examples include statistics about I/O, virtual memory, and
CPU use. Several machines also provide hardware-based
counters. For example, the IBM Power2, Cray Y-MP, and
Sequent Symmetry systems provide detailed counters of
processor events. Data from external sources is treated
identically to Paradyn’s own instrumentation. External
data can be constrained in the same way as other perfor-

mance metrics, to relate it back to specific parts of a pro-
gram. For example, if we have a way to read the cumulative
number of page faults taken by a process, we can read this

1

counter before and after a procedure call to approximate
the number of page faults taken by that procedure. I

Internal uses I

Resource discovery is an important use of dynamic
instrumentation. It determines which resources an appli-
cation uses and builds the resource hierarchies from this
information. Much resource information
can be determined statically when Paradyn I

is first connected to the application; for
example, at this point we know all of the P aradyn’s goal
procedures that might be called and what is to assist the
types of synchronization libraries are user in locating
linked into the application. However, some program perfor-
aspects of resource discovery must be mance prob-
deferred until the program is executing. For lems-that is,
example, information about which files are parts of the pro-
read or written during execution can only gram that
be determined when the files are first contribute sig-
accessed. To collect this runtime resource nificant time to
information, instrumentation is inserted its execution.
into the application program. We insert
instrumentation (using the same technique
as performance data instrumentation) to record the file ~
names on open requests.

Another important use of dynamic instrumentation is
the collection of dynamic mapping information for high-
level languages. Many parallel languages defer mapping
data structures to processor nodes until runtime, and some
languages change data mappings during execution. In ’
these cases, we dynamically instrument runtime mapping
routines, and the Paradyn daemons send the collected
mapping information to the Data Manager. The Data
Manager uses the information to support language-
specific views of performance data.

SEARCH MODEL AND PERFORMANCE
CONSULTANT

Paradyn’s goal is to assist the user in locating program
performance problems-that is, parts of the program that
contribute significant time to its execution. To assist in
finding these problems, Paradyn has a well-defined model,
W3,9 that organizes information about a program’s per-
formance. Paradyn’s Performance Consultant module uses
the W ” search module to automate the identification of
performance problems by using data gathered via dy-
namic instrumentation.

W3 search model
The W3 search model abstracts aspects of a parallel pro-

gram that can affect performance on the basis of three
questions: Why is the application performing poorly?
Where is the performance problem? When does the prob-
lem occur?

To answer the “why” question, our system includes
hypotheses about potential performance problems in par-
allel programs. We collect performance data to test
whether these problems exist in the program. To answer
the “where” question, we isolate a performance problem

November 1995

to a specific program component or machine resource.
(We use the term “resource” to mean either a machine
resource or a program component-for example, a disk
system, a synchronization variable, or a procedure.) To
identify“when” a problem occurs, we try to isolate a prob-
lem to a specific time interval during the program’s exe-
cution. Isolating a performance problem is an iterative
process of refining our answers to these three questions.
Our model treats the three questions as orthogonal axes of
a multidimensional search space.

“WHY” AXIS. The first performance question pro-
grammers ask is often “Why is my application running so
slowly?” The “why” axis represents broad problems that
can cause slow execution. Potential performance prob-
lems are represented by hypotheses and tests. Because our
model decouples the type of problem (“why”) from its
location (“where”), hypotheses encode general types of
performance problems. One hypothesis, for example,

r
1 TopLevelHypothesis 1

1 FrequentSyncOperations 1 1 HighSyncBlockingTimeI
I

HighSyncHoldingTime HighSyncContention

Figure 3. A portion of the “why” axis representing
several types of synchronization bottlenecks. The
shaded node shows the hypothesis currently being
considered.

might be that a program is synchronization bound. Since
hypotheses represent activities universal to all parallel
computation, they are independent of the program being
studied and the algorithms it uses. Hence, a small set of
hypotheses (a couple dozen), provided by the tool builder,
can cover most types of performance problems.

Hypotheses can be refined into more precise hypothe-
ses. The dependence relationships between hypotheses
define the search hierarchy for the “why” axis. These
dependencies form a directed acyclic graph, and axis
searching involves traversing this graph. Figure 3 shows
a partial “why” axis hierarchy; the current hypothesis is
HighSyncBlockingTime. This hypothesis was reached
after first concluding that a SyncBottleneck exists.

Tests are Boolean functions that evaluate the validity of
a hypothesis. Tests are expressed in terms of a threshold
and one or more metrics (for example, synchronization
blocking time is greater than 20 percent of the execution
time).

“WHERE” AXIS. The second performance question
most programmers ask is “What part of my application is
running slowly?” The “where” axis represents the differ-
ent program components and machine resources that can
be used to isolate a problem source. Searching along the
“why” axis classifies the problem, while searching along
the “where” axis pinpoints its location. For example, a
“why” search may show that a program is synchroniza-
tion bound, and a subsequent “where” search may isolate
one hot synchronization object among many thousands
in the program.

The “where” axis represents the different foci that can
be measured. Each axis hierarchy has multiple levels, with
the leaf nodes being the instances of the resources used
by the application. Isolating a performance problem to a
leaf node indicates that a specific resource instance is
responsible for the problem. Higher level nodes represent

Semaphores Messages

I\

\/Spy i”‘;‘\ / BaT(rs\

1 pp,, n ivi u
message

tags

clm l m l
Individual Individual

locks barriers

Other
CPUS

Individual
semaphores

Figure 4. A sample “where” axis with three class hierarchies. The shaded nodes show the current focus. The
; oval objects are defined in the W3 search model. The triangles represent static entities based on the appli-

cation, and the rectangles represent dynamically (runtime) identified entities. The shaded nodes indicate
the current focus (all SpinLocks on CPU #I, in any procedure). The Paradyn resource hierarchies include sev-
eral other classes, such as 110, memory, and process, which are not shown.

Computer

collections of resource instances. For exam-
ple, a leaf resource might be a procedure
and its parent a module (that is, a source
file in the C programming language).
Isolating a performance problem to a mod-
ule indicates that the problem is due to the
collective performance of the module’s pro-
cedures. Each resource hierarchy can be
refined independently.

The trees in Figure 4 represent sample
resource hierarchies. The root of the left-
most hierarchy is SyncObjects. The next
level contains four types of synchroniza-
tion: Semaphores, Messages, SpinLocks,
and Barriers. Below the SpinLocks and
Barriers nodes are the individual locks and
barriers used by the application. The chil-
dren of the Messages node are the types
of messages used. The children of the
Semaphores node are the semaphore
groups used in the application. Below each
semaphore group are the individual sema-
phores. Different components of the
“where” axis may be created at different
times. Some nodes are defined statically,

mit Fewhed at 370.4
= 21

..applicatian paused

/ P#tctcd

Figure 5. Performance Consultant search for the graph-coloring
application.

some when the application starts, and others during the
application’s execution. The root of each resource hierar-
chy is statically defined.

W3 can also represent resources specific to high-level
parallel programming languages, by representing each
high-level language abstraction with its own “where” axis.
A language-specific axis contains only those resource hier-
archies that correspond to resources found in that lan-
guage. For example, a data-parallel Fortran “where” axis
would include a data-parallel array hierarchy. Language-
specific resource information is imported via PCL config-
uration files. Each language’s compiler may emit a PCL file
that describes the resources and metrics for each program
that it compiles.

Abstract resources must ultimately map to resources
and metrics that Paradyn can measure. For example,
a high-level matrix reduction might map to the com-
putations and messages used for reductions in a runtime
system. Therefore, PCL files written by compilers must
also include mappings that explain how high-level
resources and metrics map to lower level resources and
metrics. Paradyn uses the mappings to satisfy high-level
focus-metric requests. If the user (or the Performance
Consultant module) wants to measure time spent reduc-
ing a matrix, then Paradyn will use the compiler-supplied
information to automatically map the request to measure
time spent in all the routines that perform matrix
reductions.

“WHEN” AXIS. The third performance question pro-
grammers may ask is “At what time did my application run
slowly?” Programs have distinct execution phases. Within
each phase, performance tends to be uniform, but behav-
ior may differ radically from phase to phase. The “when”
axis represents an application’s execution time as a series
of distinct phases, which can be independently tested for
performance problems.

Performance Consultant
Paradyn’s Performance Consultant module discovers

performance problems by automatically searching through
the space defined by the W3 search model. Refinements are
made across the “where, ” “when,” and “why” axes without
user involvement. Since there is a cost associated in eval-
uating refinements (due to collecting different metrics),
we need to select a subset of the possible refinements to
evaluate at once. We determine a list of possible refine-
ments by considering the children of the current nodes
along each axis, then order this list using internally defined
hints. Finally, we select one or more refinements from the
ordered list. If a selected refinement is not true, we con-
sider the next one. Paradyn will conduct a fully automatic
search, let the user make individual manual refinements
to direct the search, or combine these two methods.

The search history graph (SHG) provides feedback
about the search process currently underway. This graph
records refinements considered along the “why,” “where,”
and “when”axes and the result of testing the refinements.
Figure 5 shows an SHG display from one of our sample
application programs.

Each node in the graph represents a single step in the
overall search process, which is a refinement along one of
the three axes. The nodes are colored according to the cur-
rent state of the particular hypothesis it represents: cur-
rently being tested (pink), tested true (blue), tested false
(green), or never tested (orange). The arcs indicate refine-
ments and are color-coded according to axis. Refinements
made along the “why” axis are in blue, and refinements
along the “where” axis are in purple. The node label indi-
cates a particular node being explored; for example,
refinements considered from the root node include a node
from the “why” axis for cpuBottleneck. Because each step
of the search is limited to a single refinement, the com-
plete focus of any node can be determined by the path
from the root node to the desired node.

November 1995

The SHG is useful because it represents the refinements
made, those tried and rejected, and those possible but not
tried. The current exploration path can easily be deter-
mined by following the blue (“true”) nodes from the root
to a leaf. If you follow the blue nodes in Figure 5, you’ll see
that the search discovered that the program was CPU
bound in procedure PostCallBookwork in module X-
noncom-new.C for machine partition mendota.

OPEN VISUALIZATION INTERFACE
Paradyn’s visualization interface provides a mechanism

to easily add new visualizations (visis) to the system. Many
commercial data visualization packages are currently
available. Rather than redevelop much of this work, we
provided an interface that lets a programmer use existing
visualizations. It is straightforward to build visis that pro-
vide data to commercial datavisualization packages such
as AVS,‘O or incorporate displays from systems such as

T he
Performance

Consultant
discovered and
isolated a CPU
bottleneck in the
coloring applica-
tion. It discovered
two synchroniza-
tion problems and
a CPU bottleneck
in the linear pro-
gramming code.

ParaGraphI or Pablo.3 The visi interface
has been used for evaluating performance
predicates for application steering and log-
ging performance data for experiment
management.

Paradyn provides a simple library and
remote procedure call interface to access
performance data in real time. Visis in
Paradyn are external processes that use
this library and interface, and all perfor-
mance visualizations are implemented as
visis. Paradyn currently provides visis for
time histograms (strip plots), bar charts,
and tables.

After the user selects a visi from the
menu, Paradyn provides the menus to
select foci (program components) and met-
rics for display. The visi library isolates the

visi from the details of Paradyn’s internal structure and
user interface. The selection of a list of performance met-
rics for a list of foci can most easily be pictured as a two-
dimensional array. The visi library provides a C + + class,
called the DataGrid, which is the visi programmer’s inter-
face to performance data. Each element of the DataGrid is
a time histogram, representing the metric’s time-varying
behavior. The library also provides aggregation functions,
such as minimum, maximum, current, average, and total,
that can be invoked over each DataGrid element.

EXAMPLES OF USE
We’ve used Paradyn to study several parallel, distrib-

uted, and sequential applications. To demonstrate Para-
dyn’s basic features and show how programmers use
Paradyn to find performance problems, we’ll look at two
applications, a graph-coloring program based on a branch-
and-bound search and a linear programming optimiza-
tion code that uses a domain decomposition method. Both
programs were written by people outside the Paradyn pro-
ject and were intended to solve real application problems;
both ran on a TMC CM-5 in a 32.node partition.

When we ran these applications with Paradyn, the
Performance Consultant discovered and isolated a CPU
bottleneck in the coloring application. It discovered mul-
tiple problems (two synchronization problems and a CPU

bottleneck) in the linear programming code.
When a programmer starts an application, Paradyn dis-

plays an initial “where” axis and is ready to accept user
commands to control the application, display visualiza-
tions of performance data, or invoke the Performance
Consultant to find bottlenecks. The user may start or stop
the application as many times as desired during execu-
tion. Stopping the application stops the flow of data to
visualizations and also stops the Performance Consultant.

The “where” axis display shows each resource hierarchy.
To select a particular focus, a user selects up to one node
from each resource hierarchy. For example, selecting the
root of the procedure hierarchy and a leaf node in the
machine hierarchy requests all procedures on a particular
machine. To display a visualization of a metric for a focus,
a user simply selects a focus in the “where” axis display and
selects avisualization from the StartVisual menu. Paradyn
then prompts the user for a list of metrics and starts the
visualization.

Alternate high-level language “where” axis views are
displayed in separate windows. Paradyn uses static and
dynamic mapping information to map each abstract focus
to the base view. When the user selects a focus in an
abstract view, Paradyn automatically highlights the cor-
responding resources in the base view.

Typically, users start the Performance Consultant on an
automated search and wait for Paradyn to find a perfor-
mance bottleneck. When the Performance Consultant is
running, it displays a window similar to the one shown in
Figure 5. The top row of the Performance Consultant win-
dow contains pull down menus for display configuration.
The middle area reports the status of the search (such as
a description of the current bottleneck, an indication that
a previously true bottleneck is no longer present, or notice
that a new set of refinements is being considered). The
largest area is a display of the search history graph. Nodes
in the graph are colored to indicate the state of their cor-
responding hypotheses, as discussed above. Nodes are
added to the SHG as refinements are made, and the nodes
change color to reflect the current state of the search for
bottlenecks. The bottom of the window contains buttons
for controlling the search process.

Graph-coloring application
Our first example demonstrates Paradyn’s analysis of a

graph-coloring program. Called match-maker, it is a
branch-and-bound search program with a central manager
that brokers work to idle processors. It uses CMMD, the
CM-5 explicit message-passing library. The program is
written in C+ + and contains 4,600 lines of code in 37 files.

The Performance Consultant discovered an initial CPU
bottleneck in match-maker after 10 seconds of execution.
Figure 5 shows some of the hypotheses and foci considered
by the Performance Consultant. Starting from the root
node, the Performance Consultant considered several types
of bottlenecks (synchronization, I/O, CPU, virtual mem-
ory, and instrumentation). At this point, it identified a CPU
bottleneck. At the next step, it considered refinements to
the CPU bottleneck and confirmed that the program was
CPU bound. Next, the Performance Consultant refined the
CPU bottleneck to a specific module in the program,
X-noncom-new.C. The Performance Consultant then iso-

1 Computer

lated the bottleneck to the procedure
PostCallBookwork in that module. Finally,
it (trivially) isolated the problem to the sin-
gle partition used. The partition refinement
is labeled mendota, the name of the parti-
tion’s manager. Since the problem was dif-
fused across all the processes, the Perfor-
mance Consultant could not further refine
the bottleneck.

We then displayed a visualization of the
bottleneck in the graph coloring applica-
tion with a time histogram display of CPU
time for procedure PostCallBookwork
and for the whole program. The time his-
togram display in Figure 6 verifies that
PostCallBookwork was responsible for a
large percentage of the application’s CPU
time.

Message-passing optimization
application

Figure 6. Visualization of bottleneck in graph-coloring
application.

Our second application, called Msolv, uses
a domain decomposition method for opti-
mizing large-scale linear models. The appli-
cation consists of 1,793 lines of code in the
C programming language and uses a sequen-
tial, constrained-optimization library pack-
age called Minos. Uninstrumented, Msolv
runs for 1 hour 48 seconds on a 32.node CM-
5 partition. Instrumentation overhead dur-
ing the Performance Consultant search was
less than the program’s normal, approxi-
mately 2 percent variation in runtime.

Paradyn found three bottlenecks in this
program. First, it found a synchronization
bottleneck as the nodes initialized. This
bottleneck, which lasted less than one
minute, was not further refined by the
Performance Consultant. Second, it found
a CPU bottleneck in the module minos-
part.c during an initial computation phase.
Third, the Performance Consultant located
a key synchronization bottleneck that per-
sisted for the rest of the program’s execu-
tion. The search history graph of the

HEFIN I AUTOSEARCH I N-IT FC

Figure 7. Performance Consultant search for the Msolv
application.

isolation of this third bottleneck appears in Figure 7. synchronization time for the entire program, and others
The Performance Consultant made five refinements showed times for each node. The display showed that the

while locating the synchronization bottleneck. First, it dis- synchronization bottleneck was diffused across all nodes
covered a synchronization bottleneck in the program. and could not be refined further.
Second, it identified that the bottleneck was due to
ExcessiveBlockingTime (as opposed to many short syn-
chronization operations performed too frequently). Third,
it isolated the synchronization bottleneck to the file
mso1v.c. Fourth, it refined the bottleneck to the procedure
do-active-node. Again, it made the trivial refinement to
the single partition used, mendota. The Performance
Consultant attempted to isolate the bottleneck to a par-
ticular processor node, but the refinement failed because
the bottleneck was diffused across all the processors.

THE PAFWDYN PARALLEL PERFORMANCE MEASUREMENT TOOLS
incorporate several novel technologies. Dynamic instru-
mentation offers the chance to significantly reduce mea-
surement overhead, and the W3 search model, as embodied
in the Performance Consultant, provides instrumentation
control. The synergy between these two technologies
results in a performance tool that can automatically search
for performance problems in large-scale parallel programs.
Paradyn’s support for high-level parallel languages lets pro-
grammers study the performance of their programs using
the language’s native abstractions. In addition, we provide

To gain a better understanding of the synchronization
problem, we displayed a bar chart showing the time the
application spent on synchronization. One bar represented

November 1995

detailed, time-varying data about a program’s perfor-
mance. As a result, programmers with large applications
can use Paradyn as easily as someone with a small proto-
type application. Uniform data abstractions, such as the
metric-focus grid and time histogram, allow simple in-
terfaces within Paradyn and provide easy-to-understand
interfaces to the program.

Although Paradyn is a working system, many directions
remain for growth. Over the next few years, we will be
expanding to new machine environments, new high-level
languages, and new problem domains. I

Acknowledgments
We thank the authors of the applications used in our

study, Gary Lewandowski (graph coloring) and Spyros
Kontogiorgis (Msolv).

This work is supported in part by Wright Laboratory
Avionics Directorate, Air Force Material Command, USAF,
under Grant F33615-94-l-1525 (ARPAOrder No. BSSO),
NSF Grants CCR-9100968 and CDA-9024618, Department
of Energy Grant DE-FG02-93ER25176, and Office of Naval
Research Grant N00014-89-J-1222. Hollingsworth was
supported in part by an ARPA graduate fellowship in high-
performance computing.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements,
either expressed or implied, of the Wright Laboratory
Avionics Directorate or the US government.

References
1. Quantify User’s Guide, Pure Software Inc., 1993.
2. J.R. Larus and T. Ball, “Rewriting Executable Files to Mea-

sure Program Behavior,” Software-Practice &Experience,
Vol. 24, No. 2, Feb. 1994, pp. 197-218.

3. D.A. Reed et al., “Scalable Performance Analysis: The Pablo
Performance Analysis Environment,“Proc. IEEEScalablePar-
allel Libraries Conf., IEEE Service Center, Piscataway, N.J.,
1993.

4. J. Yan, S. Sarukkai, and P. Mehra, “Performance Measure-
mentvisualization and Modeling of Parallel and Distributed
Programs Using the AIMS Toolkit,” Software--Practice &
Experience, Vol. 25, No. 5, Apr. 1995, pp. 429-461.

5. B.P. Miller et al., “The Second Generation of a Parallel Pro-
gram Measurement System,” IEEE Trans. Parallel and Dis-
tributed Systems, Vol. 1, No. 2, Apr. 1990, pp. 206-217.

6. W. Will iams, T. Hoel, and D. Pase, “The M P P Apprentice Per-
formance Tool: Delivering the Performance of the Cray T3D,”
in Programming Environments ,for Massively Parallel Dis-
tributed Systems, K.M. Decker and R.M. Rehmann, eds.,
Birkaeuser Verlag, Basel, Switzerland, 1994.

7. J.K. Hollingsworth, R.B. Irvin, and B.P. Miller, “Integration
of Application and System Based Metrics in a Parallel Pro-
gram Performance Tool,“ACM SIGPlan Notices Symp. Princi-
ples and Practice ofParallel Programming, ACM, New York,
1991, pp. 189-200.

8. J.K. Hollingsworth, B.P. Miller, and J. Cargille, “Dynamic Pro-
gram Instrumentation for Scalable Performance Tools,“Proc.
ScalabIeHigh-Performance Computing Conf., Knoxville, Tenn.,
1994, pp. 841-850.

9. J.K. Hollingsworth and B.P. Miller, “Dynamic Control ofPer-
formance Monitoring on Large-Scale Parallel Systems,“Proc.
Seventh ACA4 Int’l Conf Supercomputing, ACM, New York,
1993, pp. 185-194.

10. C. Upson et al., “The Application Visualization System: A
Computational Environment for Scientific Visualization.”
IEEE Computer Graphics and Applications, Vol. 9, No. 4, July
1989, pp. 30-42.

11. M.T. Heath and J.A. Etheridge, “Visualizing Performance of
Parallel Programs,” IEEE So&ware, Vol. 8, No. 5, Sept. 1991,
pp. 29-39.

Barton P. Miller is a professor in the Computer Sciences
Department at the University of Wisconsin, Madison. He
received a BAfrom the University of California, San Diego,
and an MS and PhDfrom the Universiqof California, Berke-
ley; all three degrees are in computer science.

Mark D. Callaghan is a working toward a doctoral degree
at the University of Wisconsin, Madison. He received a BS in
computer sciencefrom San Diego State University in 1992.
He is astudent member of the ACM.

Jonathan M. Cargille is an associate researcher in the
ComputerSciences Departmentat the University of Wiscon-
sin, Madison. He received BS and MS degrees in computer
sciencefrom the University of Wisconsin, Madison, and the
University of Southwestern Louisiana, respectively.

JeffreyK Hollingsworth is an assistantprofessor in the
Computer Science Department at the University of Mary-
land, College Park. He received a BSEEfrom the University
of California, Berkeley, and MS and PhD degrees in computer
sciencefiom the University of Wisconsin.

R. Bruce Irvin is a member of the technical staff at
Informix. He received a BS degree in computer sciencefrom
Carnegie Mellon University and MS and PhD degreesfrom
the University of Wisconsin.

Karen L. Karavanic is a doctoral student at the Univer-
sity of Wisconsin, Madison. She received BA and MS degrees
in computer sciencefrom New York University and the Uni-
versity of Wisconsin, respectively. She is a member ofACM.

Krishna Kunchithapadam is working toward a doc-
toral degree at the University of Wisconsin, Madison. He
received a bachelor of technology in computer sciencefrom
the Indian Institute of Technology, Madras, and an MS in
computer sciencefrom the University of Wisconsin, Madison.

Tia Newhall is working toward a doctoral degree at the
University of Wisconsin, Madison, where she received a BS
in mathematics and an MS in computer science.

The authors can be contacted at the Computer Sciences Dept.,
University of Wisconsin, Madison, 1210 W. Dayton Street,
Madison, WI 53706; e-mail {hart, markc, jon, karavan,
krishna, newhall}@cs.wisc.edu, holl ings@cs.umd.edu, and
rbi@informix.com.

Computer

