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Because it inserts 

instrumentation during 

execution and only at the 

point where it’s needed, 

Paradyn identifies and 

locates performance problems 

in long-running applications 

with little overhead. 

P aradyn is a tool for measuring the performance of large-scale 
parallel programs. Our goal in designing a new performance tool 
was to provide detailed, flexible performance information with- 

out incurring the space (and time) overhead typically associated with 
trace-based tools. Paradyn achieves this goal by dynamically instru- 
menting the application and automatically controlling this instrumen- 
tation in search of performance problems. Dynamic instrumentation lets 
us defer insertion until the moment it is needed (and remove it when it 
is no longer needed); Paradyn’s Performance Consultant decides when 
and where to insert instrumentation. 

GUIDING PRINCIPLES AND CHARAClERlSTlCS 
Seven principles guided the design of Paradyn: scalability, automated 

search, well-defined data abstractions, support for heterogeneous envi- 
ronments and high-level languages, open interfaces, and streamlined use. 
Below, we describe these principles and summarize the features in 
Paradyn that incorporate them. 

Scalability 
We need to measure long-running programs (hours or days) on large 

(about 1,000 node) parallel machines using large data sets. For correct- 
ness debugging, you can often test a program on small data sets and be 
confident that it will work correctly on larger ones, but for performance 
tuning, this is often not the case. In many real applications, as program 
and data-set size increase, different resources saturate and become bot- 
tlenecks. 

We must also measure large programs that have hundreds of modules 
and thousands of procedures. The mechanisms for instrumentation, pro- 
gram control, and data display must gracefully handle this large number 
of program components. 

Paradyn uses dynamic instrumentation to instrument only those parts 
of the program relevant to finding the current performance problem. It 
starts looking for high-level problems (such as too much total synchro- 
nization blocking, I/O blocking, or memory delays) for the whole 
program. Only a small amount of instrumentation is inserted to find these 
problems. Once a general problem is found, instrumentation is inserted 
to find more specific causes. No detailed instrumentation is inserted for 
classes of problems that do not exist. 

Automate the search for performance problems 
Our approach to performance measurement is to try to identify the parts 

of the program that are consuming the most resources and direct the pro- 
grammer to these parts. Automating the search for performance infor- 
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mation enables Paradyn to dynamically select which per- mance problems at the lowest system levels, programmers 
formance data to collect (and when to collect it). The goal must examine low-level problems while maintaining ref- 
is for the tool to identify the parts of the program that are erences to the high-level source code. 
limiting performance instead of requiring the program- Paradyn allows high-level language programmers to 
mer to do it. view performance in terms of high-level 

Paradyn’s Performance Consultant mod- objects (such as arrays and loops for data- 
ule has a well-defined notion, called the W3 parallel Fortran) and automatically maps 
search model, of the types of performance P aradyn already the high-level information to low-level 
problems found in programs and of the var- works well in objects (such as nodes and messages). If 
ious components contained in the current several domains users want to view the low-level informa- 
program. The Performance Consultant uses and measures pro- tion, Paradyn helps them relate perfor- 
W3 information to guide dynamic instru- grams running on mance data between levels. 
mentation placement and modification. heterogeneous 

combinations. Open interfaces for visualization 
Provide well-defined 
data abstractions 

Simple data abstractions can unify the design of a per- 
formance tool and simplify its organization. Paradyn uses 
two important abstractions-metric-focus grids and time 
histograms-in collecting, communicating, analyzing, 
and presenting performance data. 

A metric-focus grid is based on two lists (vectors) of 
information. The first vector is a list of performance met- 
rics, such as CPU time, blocking time, message rates, I/O 
rates, or number of active processors. The second vector is 
a list of individual program components, such as a selec- 
tion of procedures, processor nodes, disks, message chan- 
nels, or barrier instances. The combination of these two 
vectors produces a matrix with each metric listed for each 
program component. 

The matrix elements can be single values, such as cur- 
rent rate, average, and sum, or time histograms, which 
record metric behavior as it varies over time. The time his- 
togram is an important tool in recording time-varying data 
for long-running programs. 

Support heterogeneous environments 
Parallel computing environments range from clusters 

of workstations to massively parallel computers. Hetero- 
geneity arises in processor architectures, operating sys- 
tems, programming models, and programming languages. 
Isolating each of these dimensions into abstractions within 
the performance tool can simplify porting. For example, 
adding support for the PVM programming model only 
requires knowing the name of the new communication 
and process creation operations; the underlying support 
for the Unix operating system, chip architecture, and pro- 
gramming language stays the same. 

Paradyn already works well in several domains and 
measures programs running on heterogeneous combina- 
tions. Current hardware platforms include Thinking 
Machine Corporation’s CM-S, SparcStation (including 
multiprocessors), Hewlett-Packard’s PA-RISC, and IBM’s 
RS/6000 and SP-2. Operating systems include Thinking 
Machine’s TMC CMOST, SunOS 4.1, Solaris 2, Hewlett- 
Packard’s HP/UX, and AIX. Programming models include 
PVM, CM-5 CMMD, and CM Fortran CM-RTS. 

Support high-level parallel languages 
Users of high-level parallel programming languages 

need performance information that is accurate and rele- 
vant to source code. When their programs exhibit perfor- 

and new data sources 
Graphical and tabular displays are im- 

portant mechanisms for understanding performance data. 
Paradyn has a set of standard visualizations (time his- 
tograms, bar graphs, and tables) and provides a simple 
interface to incorporate displays from other sources. 

Equally important is the ability to incorporate new 
sources of performance data, such as cache miss data from 
the processor, network traffic from the network interfaces, 
or paging activity from the operating system. Paradyn’s 
instrumentation is configurable to use any performance 
quantity that can be mapped into a program’s address 
space. Including these new sources of data in Paradyn 
requires only a change to a configuration file. 

Streamlined use 
Ease of installation and ease of use are important fea- 

tures of any new tool. Installation should not require spe- 
cial system privileges or directory modification, and tool 
use should not require source code modification or spe- 
cial compiling techniques. In Paradyn, dynamic instru- 
mentation avoids the need to modify, recompile, or relink 
an application. It also allows tools to attach to an already- 
running program (such as a parallel database server), 
monitor its performance for some interval, and then 
detach. 

DYNAMIC PERFORMANCE 
MEASUREMENT 

Paradyn differs from previous performance measure- 
ment tools in that program instrumentation and perfor- 
mance evaluation are done during execution of the 
application program. Thus, comparing Paradyn to previ- 
ous tools raises questions about transient effects, brief 
periodic effects, and overhead for programs of shorter 
duration. 

The answers are implicit in the fact that we are mea- 
suring long-running programs, with execution times of 
hours or even days. Although it might take seconds to 
insert new instrumentation and start evaluating the data, 
there is little chance that interesting behaviors will be 
missed. If a program runs for 10 hours, then even a 5- 
minute “transient” operation is less than 1 percent of the 
total execution time (and therefore not interesting for per- 
formance tuning). If a program repeatedly performs a 
brief (few seconds) operation, we will detect this behav- 
ior if the cumulative effect is large enough. Short-running 
programs might finish before Paradyn has had a chance 
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to isolate the performance problem(s). Although they are 
not our primary target, Paradyn may also be used to per- 
formance-tune these programs. To accommodate this class 
of applications, we are working on the use of multiple pro- 
gram runs in a single search for bottlenecks. In this case, 
Paradyn would save the state of its search for performance 
problems and rerun the program to complete the search. 

Dynamic instrumentation differs from traditional data 
collection because it defers data selection until the pro- 
gram is running. Instrumentation to precisely count and 
time events is inserted by dynamically modifying the 
binary program. A more static approach is binary rewrit- 
ing, a technique that reads an executable file and then gen- 
erates a modified file with tracing inserted. This technique 
is used in tools such as Quantify’ and qpt.2 Quantify and 
qpt operate on static binaries, whereas dynamic instru- 
mentation modifies binaries on the fly. 

Trace-based tools designed for performance tuning par- 
allel applications include Pablo,3 AIMS4 and IPS-2.5 These 
systems require an application to be recompiled, then run 
while trace data is gathered for the entire application, and 
finally analyzed post-mortem using the trace data. Such 
trace-based approaches may be limited by the amount of 
trace data needed to analyze a single large, long-running 
application. 

MPP Apprentice,6 a performance tool designed for the 
CrayT3D, avoids the scaling problem of trace-based tools 
by using static counters and timers, but it does require 
recompilation of the application to be tuned. Paradyn 
avoids both recompilation and the scaling difficulties 
inherent in a tracing approach. 

SYSTEM OVERVIEW 

Basic abstractions 
Paradyn is built around two simple but 

powerful data abstractions-the metric- 
focus grid and time histogram-that unify 
internal system structure, giving users a 
consistent view of the system and the data 
it presents. 

Metrics are time-varying functions that 
characterize some aspect of a parallel pro- 
gram’s performance; examples include 
CPU utilization, memory usage, and counts 
of floating-point operations. A focus is a 
specification of a part of a program execu- 
tion expressed in terms of program 
resources. Typical resource types include 
synchronization objects, source code 
objects (procedures, basic blocks), threads 
and processes, processors, and disks. 
Resources are separated into several dif- 
ferent hierarchies, each representing a 
class of objects in a parallel application. For 
example, a resource hierarchy for CPUs 
contains each processor. A focus contains 
one or more components from each 
resource hierarchy. One focus might be all 
synchronization objects accessed by a sin- 
gle procedure on one processor. The com- 
bination of a list of metrics with a list of foci 

forms a matrix (called a grid in Paradyn) containing the 
value of each metric for each focus. The Performance 
Consultant and visualizations receive performance data 
by specifying one or more metric-focus grids. 

Paradyn stores performance data internally in a data 
structure called a time histogram,7 which is a fixed-size 
array whose elements (buckets) store a metric’s values for 
successive time intervals. Two parameters determine the 
granularity of the data stored: initial bucket width (time 
interval) and number of buckets. Both parameters are sup- 
plied by higher level consumers of the performance data. 
If a program runs longer than the initial bucket width 
times the number of buckets, we double the bucket 
width and re-bucket the previous values. The change in 
bucket width can cause a corresponding change in the 
sampling rate for performance data, reducing instrumen- 
tation overhead. This process repeats each time we fill all 
the buckets. As a result, the rate of data collection 
decreases logarithmically, while maintaining a reasonable 
representation of the metric’s time-varying behavior. 

System components 
Paradyn consists of the main Paradyn process, one 

or more Paradyn daemons, and zero or more external 
visualization processes. The central part of the tool is a 
multithreaded process that includes the Performance 
Consultant, Visualization Manager, Data Manager, and 
User Interface Manager. Figure 1 shows the Paradyn archi- 
tecture. 

The Data Manager handles requests from other threads 
for data collection, delivers performance data from the 
Paradyn daemon(s) to the requesting thread(s), and main- 
tains and distributes information about the metrics and 
resource hierarchies for the currently defined application. 

Table 
visualization 

Histogram 
visualization 

Application Process Application Process 

Figure 1. Overview of Paradyn 
and solid ovals are processes. 

structure. Dotted ovals are threads, 
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The User Interface Manager provides visual access to the 
system’s main controls and performance data. The 
Performance Consultant controls the automated search 
for performance problems, requesting and receiving per- 
formance data from the Data Manager. TheVisualization 
Manager starts visualization processes; one visualization 
thread is created in Paradyn for every external visualiza- 
tion process that is started. The job of a visualization 

I. :. 
thread is to handle communication between the external 
visuahzation process and the other Paradyn modules. 

The daemon contains Paradyn’s platform-dependent 
~ parts. It is responsible for inserting the requested instru- 

mentation into the executing processes it monitors. The 
interface between the Paradyn process and daemon sup- 
ports four main functions: process control, performance 

, data delivery, performance data requests, and the delivery 
of high-level language mapping data. The daemon ser- 
vices requests from Paradyn for process control and per- 
formance data and delivers performance data from the 
application(s) to Paradyn. We currently support daemons 

~ 
for various versions of Unix, the TMC CM-5, and networks 
of workstations running PVM. 

Configuration files 
Paradyn configuration language (PCL) files describe all 

architecture, operating system, and environment charac- 
teristics of applications and platforms. PCL lets users cre- 
ate new metrics and instrumentation, incorporate new 
visualizations, specify alternate Paradyn daemons, set var- 
ious display and analysis options, and specify command 
lines for starting applications. 

Paradyn’s default PCL file describes basic metrics, 
instrumentation, visualizations, and daemons. Each user 
can provide an additional PCL file with personalized set- 

I’. 
tmgs and options. Users can also create an application- 

~ specific PCL file that describes details of an application 
and how it is run. 

DYNAMIC INSTRUMENTATION 
Paradyn instruments only those parts of the program 

that are relevant to the current performance problem8 and 
defers instrumentation until the program is executing. 

Interface 
Requests for dynamic instrumentation are made in a met- 

ric-focus grid, which the Paradyn daemon translates. 
~ Translation is a two-step process: The Metric Manager trans- 

foe 0 
I addcounter (fooFlg, 1) : *I L---------_---_---__________I 

________--_----_------------ 
: subcounter (fooFlg, 1) ‘+-----+I I--------------------~------, 

r-.;iiioofi~j -----__________________: SendMsg (dest, ptr, 

I 
cnt, size) 

I startTimer (msgTme, ProcTime) : . I__.__._........._-------~~~---~--~~- 
_--_-______________________ 
: if (fooFlg) 

stoptimer (msgTme) 1 WI . 
I--___-____-_______________I 

~ Figure 2. Sample metric computation. 

lates the metric-focus requests into machine-independent 
abstractions, which the Instrumentation Manager then con- 
verts to machine instructions. 

Dynamic instrumentation provides two types of objects, 
timers and counters, to extract performance information 
from an application. Counters are integer counts of the 
frequency of some event, and timers measure the amount 
of time spent performing various tasks (in either wall-time 
or process-time units). 

Points, primitives, and predicates 
Points, primitives, and predicates provide a simple, 

machine-independent set of abstractions that are used as 
building blocks for dynamic instrumentation. Points are 
locations in the application’s code where instrumentation 
can be inserted. Primitives are simple operations that 
change the value of a counter or a timer. Predicates are 
Boolean expressions that guard the execution of primi- 
tives (essentially, If statements). By inserting predicates 
and primitives at the correct points in a program, we can 
compute a wide variety of metrics. 

The points currently available in our system are proce- 
dure entry, procedure exit, and individual call statements, 
but we are extending them to include basic blocks and 
individual statements. We provide six primitives: set 
counter, add to counter, subtract from counter, set timer, 
start timer, and stop timer. We also provide a primitive, 
used primarily to discover resources and to record map- 
ping information, to call arbitrary functions. To compute 
the predicate, we use counters, constants, parameters to 
a procedure, a procedure returnvalue, and combinations 
of these, using relational and numeric operators. 
Predicates support constraints by limiting when opera- 
tions on counters and timers can occur. 

Figure 2 shows how primitives and predicates can be 
combined to create metrics. It computes the time spent 
sending messages on behalf of the procedurefoo and its 
descendants. ThefooFlg counter keeps track of whether 
foe is on the stack; it is incremented on entry and decre- 
mented on exit fromfoo. The value offooFlg is then used 
as a predicate to control whether the rugTime timer prim- 
itives will be called upon entry and exit from SendA4sg. 
Whenfoo is not active, the primitives will not be executed. 

The translation from metric-focus specifications to 
points, primitives, and predicates is described by metric 
definitions contained in the configuration language’s files. 
These definitions simplify the addition of new metrics, 
porting of Paradyn to new systems, and user customiza- 
tion. We provide a standard library of metric descriptions, 
and users (and other tools) can add to this library. The 
metric descriptions consist of definitions and constraints. 
Some metric definitions and resource constraints are 
generic and apply to all platforms; others are specific to a 
platform or programming model. 

A metric definition is a template that describes how to 
compute a metric for different resource combinations. It 
consists of a series of code fragments that create the prim- 
itives and predicates to compute the desired metric. We 
need to be able to compute each metric for any combina- 
tion of resource constraints. To make these metric defin- 
itions compact and modular, we divide metric definition 
into two parts: a base metric and a series of resource con- 
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straints. The base metric defines how a metric is computed 
for an entire application (all procedures, processes, or 
processors). A resource constraint defines how to restrict 
the base metric to an instance of a resource in one of the 
resource hierarchies. Resource constraints usually trans- 
late to an instrumentation predicate. 

Instrumentation generation 
The Instrumentation Manager encapsulates the archi- 

tecture-specific knowledge; it locates the allowable instru- 
mentation points and performs the final translation of 
points, primitives, and predicates into machine-level 
instrumentation. When Paradyn is initially connected to an 
application process, the Instrumentation Manager identi- 
fies all potential instrumentation points by scanning the 
application(s) binary image(s). Procedure entry and exit, as 
well as procedure call sites, are detected and noted as points. 

After Paradyn is connected to the application, the 
Instrumentation Manager waits for requests from the 
daemon’s Metric Manager, translates them into small 
code fragments, called trampolines, and inserts them 
into the program. Two types of trampolines, base tram- 
polines and mini-trampolines, are used. There is one base 
trampoline per point with active instrumentation. A base 
trampoline is inserted into the program by replacing the 
machine instruction at the point with a branch to the 
trampoline, and relocating the replaced instruction to 
the base trampoline. A base trampoline has slots for call- 
ing mini-trampolines both before and after the relocated 
instruction. 

Mini-trampolines contain the code to evaluate a specific 
predicate or invoke a single primitive. There is one mini- 
trampoline for each primitive or predicate at each point. 
Creating a mini-trampoline requires generating appro- 
priate machine instructions for the primitives and predi- 
cates requested by the Metric Manager. The Instru- 
mentation Manager assembles the necessary instructions, 
which are transferred to the application process by a vari- 
ation of the Unix ptrace interface. The generated code also 
includes appropriate register save and restore operations. 

Data collection 
Once instrumentation has been inserted into the appli- 

cation, data begins flowing back to the higher level clients. 
The current value of each active timer and counter is peri- 
odically sampled and transported by the Paradyn daemon 
to the Data Manager. Note that the instrumentation keeps 
track of the precise value of each performance metric, and 
the sampling rate determines only how often Paradyn sees 
the new value. 

It is easy to integrate performance data from external 
sources into Paradyn. Instrumentation is inserted to read 
the external source and store the result in a counter or a 
timer. For example, most operating systems keep a variety 
of performance data that can be read by user processes; 
examples include statistics about I/O, virtual memory, and 
CPU use. Several machines also provide hardware-based 
counters. For example, the IBM Power2, Cray Y-MP, and 
Sequent Symmetry systems provide detailed counters of 
processor events. Data from external sources is treated 
identically to Paradyn’s own instrumentation. External 
data can be constrained in the same way as other perfor- 

mance metrics, to relate it back to specific parts of a pro- 
gram. For example, if we have a way to read the cumulative 
number of page faults taken by a process, we can read this 

1 

counter before and after a procedure call to approximate 
the number of page faults taken by that procedure. I 

Internal uses I 

Resource discovery is an important use of dynamic 
instrumentation. It determines which resources an appli- 
cation uses and builds the resource hierarchies from this 
information. Much resource information 
can be determined statically when Paradyn I 

is first connected to the application; for 
example, at this point we know all of the P aradyn’s goal 
procedures that might be called and what is to assist the 
types of synchronization libraries are user in locating 
linked into the application. However, some program perfor- 
aspects of resource discovery must be mance prob- 
deferred until the program is executing. For lems-that is, 
example, information about which files are parts of the pro- 
read or written during execution can only gram that 
be determined when the files are first contribute sig- 
accessed. To collect this runtime resource nificant time to 
information, instrumentation is inserted its execution. 
into the application program. We insert 
instrumentation (using the same technique 
as performance data instrumentation) to record the file ~ 
names on open requests. 

Another important use of dynamic instrumentation is 
the collection of dynamic mapping information for high- 
level languages. Many parallel languages defer mapping 
data structures to processor nodes until runtime, and some 
languages change data mappings during execution. In ’ 
these cases, we dynamically instrument runtime mapping 
routines, and the Paradyn daemons send the collected 
mapping information to the Data Manager. The Data 
Manager uses the information to support language- 
specific views of performance data. 

SEARCH MODEL AND PERFORMANCE 
CONSULTANT 

Paradyn’s goal is to assist the user in locating program 
performance problems-that is, parts of the program that 
contribute significant time to its execution. To assist in 
finding these problems, Paradyn has a well-defined model, 
W3,9 that organizes information about a program’s per- 
formance. Paradyn’s Performance Consultant module uses 
the W ” search module to automate the identification of 
performance problems by using data gathered via dy- 
namic instrumentation. 

W3 search model 
The W3 search model abstracts aspects of a parallel pro- 

gram that can affect performance on the basis of three 
questions: Why is the application performing poorly? 
Where is the performance problem? When does the prob- 
lem occur? 

To answer the “why” question, our system includes 
hypotheses about potential performance problems in par- 
allel programs. We collect performance data to test 
whether these problems exist in the program. To answer 
the “where” question, we isolate a performance problem 
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to a specific program component or machine resource. 
(We use the term “resource” to mean either a machine 
resource or a program component-for example, a disk 
system, a synchronization variable, or a procedure.) To 
identify“when” a problem occurs, we try to isolate a prob- 
lem to a specific time interval during the program’s exe- 
cution. Isolating a performance problem is an iterative 
process of refining our answers to these three questions. 
Our model treats the three questions as orthogonal axes of 
a multidimensional search space. 

“WHY” AXIS. The first performance question pro- 
grammers ask is often “Why is my application running so 
slowly?” The “why” axis represents broad problems that 
can cause slow execution. Potential performance prob- 
lems are represented by hypotheses and tests. Because our 
model decouples the type of problem (“why”) from its 
location (“where”), hypotheses encode general types of 
performance problems. One hypothesis, for example, 

r 
1 TopLevelHypothesis 1 

1 FrequentSyncOperations 1 1 HighSyncBlockingTimeI 
I 

HighSyncHoldingTime HighSyncContention 

Figure 3. A  portion of the “why” axis representing 
several types of synchronization bottlenecks. The 
shaded node shows the hypothesis currently being 
considered. 

might be that a program is synchronization bound. Since 
hypotheses represent activities universal to all parallel 
computation, they are independent of the program being 
studied and the algorithms it uses. Hence, a small set of 
hypotheses (a couple dozen), provided by the tool builder, 
can cover most types of performance problems. 

Hypotheses can be refined into more precise hypothe- 
ses. The dependence relationships between hypotheses 
define the search hierarchy for the “why” axis. These 
dependencies form a directed acyclic graph, and axis 
searching involves traversing this graph. Figure 3 shows 
a partial “why” axis hierarchy; the current hypothesis is 
HighSyncBlockingTime. This hypothesis was reached 
after first concluding that a SyncBottleneck exists. 

Tests are Boolean functions that evaluate the validity of 
a hypothesis. Tests are expressed in terms of a threshold 
and one or more metrics (for example, synchronization 
blocking time is greater than 20 percent of the execution 
time). 

“WHERE” AXIS. The second performance question 
most programmers ask is “What part of my application is 
running slowly?” The “where” axis represents the differ- 
ent program components and machine resources that can 
be used to isolate a problem source. Searching along the 
“why” axis classifies the problem, while searching along 
the “where” axis pinpoints its location. For example, a 
“why” search may show that a program is synchroniza- 
tion bound, and a subsequent “where” search may isolate 
one hot synchronization object among many thousands 
in the program. 

The “where” axis represents the different foci that can 
be measured. Each axis hierarchy has multiple levels, with 
the leaf nodes being the instances of the resources used 
by the application. Isolating a performance problem to a 
leaf node indicates that a specific resource instance is 
responsible for the problem. Higher level nodes represent 

Semaphores Messages 

I\ 

\/Spy i”‘;‘\ / BaT(rs\ 

1 pp,, n ivi u 
message 

tags 

clm l m l 
Individual Individual 

locks barriers 

Other 
CPUS 

Individual 
semaphores 

Figure 4. A  sample “where” axis with three class hierarchies. The shaded nodes show the current focus. The 
; oval objects are defined in the W3 search model. The triangles represent static entities based on the appli- 

cation, and the rectangles represent dynamically (runtime) identified entities. The shaded nodes indicate 
the current focus (all SpinLocks on CPU #I, in any procedure). The Paradyn resource hierarchies include sev- 
eral other classes, such as 110, memory, and process, which are not shown. 
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collections of resource instances. For exam- 
ple, a leaf resource might be a procedure 
and its parent a module (that is, a source 
file in the C programming language). 
Isolating a performance problem to a mod- 
ule indicates that the problem is due to the 
collective performance of the module’s pro- 
cedures. Each resource hierarchy can be 
refined independently. 

The trees in Figure 4 represent sample 
resource hierarchies. The root of the left- 
most hierarchy is SyncObjects. The next 
level contains four types of synchroniza- 
tion: Semaphores, Messages, SpinLocks, 
and Barriers. Below the SpinLocks and 
Barriers nodes are the individual locks and 
barriers used by the application. The chil- 
dren of the Messages node are the types 
of messages used. The children of the 
Semaphores node are the semaphore 
groups used in the application. Below each 
semaphore group are the individual sema- 
phores. Different components of the 
“where” axis may be created at different 
times. Some nodes are defined statically, 

mit Fewhed at 370.4 
= 21 

..applicatian paused 

/ P#tctcd 

Figure 5. Performance Consultant search for the graph-coloring 
application. 

some when the application starts, and others during the 
application’s execution. The root of each resource hierar- 
chy is statically defined. 

W3 can also represent resources specific to high-level 
parallel programming languages, by representing each 
high-level language abstraction with its own “where” axis. 
A language-specific axis contains only those resource hier- 
archies that correspond to resources found in that lan- 
guage. For example, a data-parallel Fortran “where” axis 
would include a data-parallel array hierarchy. Language- 
specific resource information is imported via PCL config- 
uration files. Each language’s compiler may emit a PCL file 
that describes the resources and metrics for each program 
that it compiles. 

Abstract resources must ultimately map to resources 
and metrics that Paradyn can measure. For example, 
a high-level matrix reduction might map to the com- 
putations and messages used for reductions in a runtime 
system. Therefore, PCL files written by compilers must 
also include mappings that explain how high-level 
resources and metrics map to lower level resources and 
metrics. Paradyn uses the mappings to satisfy high-level 
focus-metric requests. If the user (or the Performance 
Consultant module) wants to measure time spent reduc- 
ing a matrix, then Paradyn will use the compiler-supplied 
information to automatically map the request to measure 
time spent in all the routines that perform matrix 
reductions. 

“WHEN” AXIS. The third performance question pro- 
grammers may ask is “At what time did my application run 
slowly?” Programs have distinct execution phases. Within 
each phase, performance tends to be uniform, but behav- 
ior may differ radically from phase to phase. The “when” 
axis represents an application’s execution time as a series 
of distinct phases, which can be independently tested for 
performance problems. 

Performance Consultant 
Paradyn’s Performance Consultant module discovers 

performance problems by automatically searching through 
the space defined by the W3 search model. Refinements are 
made across the “where, ” “when,” and “why” axes without 
user involvement. Since there is a cost associated in eval- 
uating refinements (due to collecting different metrics), 
we need to select a subset of the possible refinements to 
evaluate at once. We determine a list of possible refine- 
ments by considering the children of the current nodes 
along each axis, then order this list using internally defined 
hints. Finally, we select one or more refinements from the 
ordered list. If a selected refinement is not true, we con- 
sider the next one. Paradyn will conduct a fully automatic 
search, let the user make individual manual refinements 
to direct the search, or combine these two methods. 

The search history graph (SHG) provides feedback 
about the search process currently underway. This graph 
records refinements considered along the “why,” “where,” 
and “when”axes and the result of testing the refinements. 
Figure 5 shows an SHG display from one of our sample 
application programs. 

Each node in the graph represents a single step in the 
overall search process, which is a refinement along one of 
the three axes. The nodes are colored according to the cur- 
rent state of the particular hypothesis it represents: cur- 
rently being tested (pink), tested true (blue), tested false 
(green), or never tested (orange). The arcs indicate refine- 
ments and are color-coded according to axis. Refinements 
made along the “why” axis are in blue, and refinements 
along the “where” axis are in purple. The node label indi- 
cates a particular node being explored; for example, 
refinements considered from the root node include a node 
from the “why” axis for cpuBottleneck. Because each step 
of the search is limited to a single refinement, the com- 
plete focus of any node can be determined by the path 
from the root node to the desired node. 
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The SHG is useful because it represents the refinements 
made, those tried and rejected, and those possible but not 
tried. The current exploration path can easily be deter- 
mined by following the blue (“true”) nodes from the root 
to a leaf. If you follow the blue nodes in Figure 5, you’ll see 
that the search discovered that the program was CPU 
bound in procedure PostCallBookwork in module X- 
noncom-new.C for machine partition mendota. 

OPEN VISUALIZATION INTERFACE 
Paradyn’s visualization interface provides a mechanism 

to easily add new visualizations (visis) to the system. Many 
commercial data visualization packages are currently 
available. Rather than redevelop much of this work, we 
provided an interface that lets a programmer use existing 
visualizations. It is straightforward to build visis that pro- 
vide data to commercial datavisualization packages such 
as AVS,‘O or incorporate displays from systems such as 

T he 
Performance 

Consultant 
discovered and 
isolated a CPU 
bottleneck in the 
coloring applica- 
tion. It discovered 
two synchroniza- 
tion problems and 
a CPU bottleneck 
in the linear pro- 
gramming code. 

ParaGraphI or Pablo.3 The visi interface 
has been used for evaluating performance 
predicates for application steering and log- 
ging performance data for experiment 
management. 

Paradyn provides a simple library and 
remote procedure call interface to access 
performance data in real time. Visis in 
Paradyn are external processes that use 
this library and interface, and all perfor- 
mance visualizations are implemented as 
visis. Paradyn currently provides visis for 
time histograms (strip plots), bar charts, 
and tables. 

After the user selects a visi from the 
menu, Paradyn provides the menus to 
select foci (program components) and met- 
rics for display. The visi library isolates the 

visi from the details of Paradyn’s internal structure and 
user interface. The selection of a list of performance met- 
rics for a list of foci can most easily be pictured as a two- 
dimensional array. The visi library provides a C + + class, 
called the DataGrid, which is the visi programmer’s inter- 
face to performance data. Each element of the DataGrid is 
a time histogram, representing the metric’s time-varying 
behavior. The library also provides aggregation functions, 
such as minimum, maximum, current, average, and total, 
that can be invoked over each DataGrid element. 

EXAMPLES OF USE 
We’ve used Paradyn to study several parallel, distrib- 

uted, and sequential applications. To demonstrate Para- 
dyn’s basic features and show how programmers use 
Paradyn to find performance problems, we’ll look at two 
applications, a graph-coloring program based on a branch- 
and-bound search and a linear programming optimiza- 
tion code that uses a domain decomposition method. Both 
programs were written by people outside the Paradyn pro- 
ject and were intended to solve real application problems; 
both ran on a TMC CM-5 in a 32.node partition. 

When we ran these applications with Paradyn, the 
Performance Consultant discovered and isolated a CPU 
bottleneck in the coloring application. It discovered mul- 
tiple problems (two synchronization problems and a CPU 

bottleneck) in the linear programming code. 
When a programmer starts an application, Paradyn dis- 

plays an initial “where” axis and is ready to accept user 
commands to control the application, display visualiza- 
tions of performance data, or invoke the Performance 
Consultant to find bottlenecks. The user may start or stop 
the application as many times as desired during execu- 
tion. Stopping the application stops the flow of data to 
visualizations and also stops the Performance Consultant. 

The “where” axis display shows each resource hierarchy. 
To select a particular focus, a user selects up to one node 
from each resource hierarchy. For example, selecting the 
root of the procedure hierarchy and a leaf node in the 
machine hierarchy requests all procedures on a particular 
machine. To display a visualization of a metric for a focus, 
a user simply selects a focus in the “where” axis display and 
selects avisualization from the StartVisual menu. Paradyn 
then prompts the user for a list of metrics and starts the 
visualization. 

Alternate high-level language “where” axis views are 
displayed in separate windows. Paradyn uses static and 
dynamic mapping information to map each abstract focus 
to the base view. When the user selects a focus in an 
abstract view, Paradyn automatically highlights the cor- 
responding resources in the base view. 

Typically, users start the Performance Consultant on an 
automated search and wait for Paradyn to find a perfor- 
mance bottleneck. When the Performance Consultant is 
running, it displays a window similar to the one shown in 
Figure 5. The top row of the Performance Consultant win- 
dow contains pull down menus for display configuration. 
The middle area reports the status of the search (such as 
a description of the current bottleneck, an indication that 
a previously true bottleneck is no longer present, or notice 
that a new set of refinements is being considered). The 
largest area is a display of the search history graph. Nodes 
in the graph are colored to indicate the state of their cor- 
responding hypotheses, as discussed above. Nodes are 
added to the SHG as refinements are made, and the nodes 
change color to reflect the current state of the search for 
bottlenecks. The bottom of the window contains buttons 
for controlling the search process. 

Graph-coloring application 
Our first example demonstrates Paradyn’s analysis of a 

graph-coloring program. Called match-maker, it is a 
branch-and-bound search program with a central manager 
that brokers work to idle processors. It uses CMMD, the 
CM-5 explicit message-passing library. The program is 
written in C+ + and contains 4,600 lines of code in 37 files. 

The Performance Consultant discovered an initial CPU 
bottleneck in match-maker after 10 seconds of execution. 
Figure 5 shows some of the hypotheses and foci considered 
by the Performance Consultant. Starting from the root 
node, the Performance Consultant considered several types 
of bottlenecks (synchronization, I/O, CPU, virtual mem- 
ory, and instrumentation). At this point, it identified a CPU 
bottleneck. At the next step, it considered refinements to 
the CPU bottleneck and confirmed that the program was 
CPU bound. Next, the Performance Consultant refined the 
CPU bottleneck to a specific module in the program, 
X-noncom-new.C. The Performance Consultant then iso- 
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lated the bottleneck to the procedure 
PostCallBookwork in that module. Finally, 
it (trivially) isolated the problem to the sin- 
gle partition used. The partition refinement 
is labeled mendota, the name of the parti- 
tion’s manager. Since the problem was dif- 
fused across all the processes, the Perfor- 
mance Consultant could not further refine 
the bottleneck. 

We then displayed a visualization of the 
bottleneck in the graph coloring applica- 
tion with a time histogram display of CPU 
time for procedure PostCallBookwork 
and for the whole program. The time his- 
togram display in Figure 6 verifies that 
PostCallBookwork was responsible for a 
large percentage of the application’s CPU 
time. 

Message-passing optimization 
application 

Figure 6. Visualization of bottleneck in graph-coloring 
application. 

Our second application, called Msolv, uses 
a domain decomposition method for opti- 
mizing large-scale linear models. The appli- 
cation consists of 1,793 lines of code in the 
C programming language and uses a sequen- 
tial, constrained-optimization library pack- 
age called Minos. Uninstrumented, Msolv 
runs for 1 hour 48 seconds on a 32.node CM- 
5 partition. Instrumentation overhead dur- 
ing the Performance Consultant search was 
less than the program’s normal, approxi- 
mately 2 percent variation in runtime. 

Paradyn found three bottlenecks in this 
program. First, it found a synchronization 
bottleneck as the nodes initialized. This 
bottleneck, which lasted less than one 
minute, was not further refined by the 
Performance Consultant. Second, it found 
a CPU bottleneck in the module minos- 
part.c during an initial computation phase. 
Third, the Performance Consultant located 
a key synchronization bottleneck that per- 
sisted for the rest of the program’s execu- 
tion. The search history graph of the 
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Figure 7. Performance Consultant search for the Msolv 
application. 

isolation of this third bottleneck appears in Figure 7. synchronization time for the entire program, and others 
The Performance Consultant made five refinements showed times for each node. The display showed that the 

while locating the synchronization bottleneck. First, it dis- synchronization bottleneck was diffused across all nodes 
covered a synchronization bottleneck in the program. and could not be refined further. 
Second, it identified that the bottleneck was due to 
ExcessiveBlockingTime (as opposed to many short syn- 
chronization operations performed too frequently). Third, 
it isolated the synchronization bottleneck to the file 
mso1v.c. Fourth, it refined the bottleneck to the procedure 
do-active-node. Again, it made the trivial refinement to 
the single partition used, mendota. The Performance 
Consultant attempted to isolate the bottleneck to a par- 
ticular processor node, but the refinement failed because 
the bottleneck was diffused across all the processors. 

THE PAFWDYN PARALLEL PERFORMANCE MEASUREMENT TOOLS 
incorporate several novel technologies. Dynamic instru- 
mentation offers the chance to significantly reduce mea- 
surement overhead, and the W3 search model, as embodied 
in the Performance Consultant, provides instrumentation 
control. The synergy between these two technologies 
results in a performance tool that can automatically search 
for performance problems in large-scale parallel programs. 
Paradyn’s support for high-level parallel languages lets pro- 
grammers study the performance of their programs using 
the language’s native abstractions. In addition, we provide 

To gain a better understanding of the synchronization 
problem, we displayed a bar chart showing the time the 
application spent on synchronization. One bar represented 
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detailed, time-varying data about a program’s perfor- 
mance. As a result, programmers with large applications 
can use Paradyn as easily as someone with a small proto- 
type application. Uniform data abstractions, such as the 
metric-focus grid and time histogram, allow simple in- 
terfaces within Paradyn and provide easy-to-understand 
interfaces to the program. 

Although Paradyn is a working system, many directions 
remain for growth. Over the next few years, we will be 
expanding to new machine environments, new high-level 
languages, and new problem domains. I 

Acknowledgments 
We thank the authors of the applications used in our 

study, Gary Lewandowski (graph coloring) and Spyros 
Kontogiorgis (Msolv). 

This work is supported in part by Wright Laboratory 
Avionics Directorate, Air Force Material Command, USAF, 
under Grant F33615-94-l-1525 (ARPAOrder No. BSSO), 
NSF Grants CCR-9100968 and CDA-9024618, Department 
of Energy Grant DE-FG02-93ER25176, and Office of Naval 
Research Grant N00014-89-J-1222. Hollingsworth was 
supported in part by an ARPA graduate fellowship in high- 
performance computing. 

The views and conclusions contained herein are those 
of the authors and should not be interpreted as necessar- 
ily representing the official policies or endorsements, 
either expressed or implied, of the Wright Laboratory 
Avionics Directorate or the US government. 

References 
1. Quantify User’s Guide, Pure Software Inc., 1993. 
2. J.R. Larus and T. Ball, “Rewriting Executable Files to Mea- 

sure Program Behavior,” Software-Practice &Experience, 
Vol. 24, No. 2, Feb. 1994, pp. 197-218. 

3. D.A. Reed et al., “Scalable Performance Analysis: The Pablo 
Performance Analysis Environment,“Proc. IEEEScalablePar- 
allel Libraries Conf., IEEE Service Center, Piscataway, N.J., 
1993. 

4. J. Yan, S. Sarukkai, and P. Mehra, “Performance Measure- 
mentvisualization and Modeling of Parallel and Distributed 
Programs Using the AIMS Toolkit,” Software--Practice & 
Experience, Vol. 25, No. 5, Apr. 1995, pp. 429-461. 

5. B.P. Miller et al., “The Second Generation of a Parallel Pro- 
gram Measurement System,” IEEE Trans. Parallel and Dis- 
tributed Systems, Vol. 1, No. 2, Apr. 1990, pp. 206-217. 

6. W. Will iams, T. Hoel, and D. Pase, “The M P P  Apprentice Per- 
formance Tool: Delivering the Performance of the Cray T3D,” 
in Programming Environments ,for Massively Parallel Dis- 
tributed Systems, K.M. Decker and R.M. Rehmann, eds., 
Birkaeuser Verlag, Basel, Switzerland, 1994. 

7. J.K. Hollingsworth, R.B. Irvin, and B.P. Miller, “Integration 
of Application and System Based Metrics in a Parallel Pro- 
gram Performance Tool,“ACM SIGPlan Notices Symp. Princi- 
ples and Practice ofParallel Programming, ACM, New York, 
1991, pp. 189-200. 

8. J.K. Hollingsworth, B.P. Miller, and J. Cargille, “Dynamic Pro- 
gram Instrumentation for Scalable Performance Tools,“Proc. 
ScalabIeHigh-Performance Computing Conf., Knoxville, Tenn., 
1994, pp. 841-850. 

9. J.K. Hollingsworth and B.P. Miller, “Dynamic Control ofPer- 
formance Monitoring on Large-Scale Parallel Systems,“Proc. 
Seventh ACA4 Int’l Conf Supercomputing, ACM, New York, 
1993, pp. 185-194. 

10. C. Upson et al., “The Application Visualization System: A  
Computational Environment for Scientific Visualization.” 
IEEE Computer Graphics and Applications, Vol. 9, No. 4, July 
1989, pp. 30-42. 

11. M.T. Heath and J.A. Etheridge, “Visualizing Performance of 
Parallel Programs,” IEEE So&ware, Vol. 8, No. 5, Sept. 1991, 
pp. 29-39. 

Barton P. Miller is a professor in the Computer Sciences 
Department at the University of Wisconsin, Madison. He 
received a BAfrom the University of California, San Diego, 
and an MS and PhDfrom the Universiqof California, Berke- 
ley; all three degrees are in computer science. 

Mark D. Callaghan is a working toward a doctoral degree 
at the University of Wisconsin, Madison. He received a BS in 
computer sciencefrom San Diego State University in 1992. 
He is astudent member of the ACM. 

Jonathan M. Cargille is an associate researcher in the 
ComputerSciences Departmentat the University of Wiscon- 
sin, Madison. He received BS and MS degrees in computer 
sciencefrom the University of Wisconsin, Madison, and the 
University of Southwestern Louisiana, respectively. 

JeffreyK Hollingsworth is an assistantprofessor in the 
Computer Science Department at the University of Mary- 
land, College Park. He received a BSEEfrom the University 
of California, Berkeley, and MS and PhD degrees in computer 
sciencefiom the University of Wisconsin. 

R. Bruce Irvin is a member of the technical staff at 
Informix. He received a BS degree in computer sciencefrom 
Carnegie Mellon University and MS and PhD degreesfrom 
the University of Wisconsin. 

Karen L. Karavanic is a doctoral student at the Univer- 
sity of Wisconsin, Madison. She received BA and MS degrees 
in computer sciencefrom New York University and the Uni- 
versity of Wisconsin, respectively. She is a member ofACM. 

Krishna Kunchithapadam is working toward a doc- 
toral degree at the University of Wisconsin, Madison. He 
received a bachelor of technology in computer sciencefrom 
the Indian Institute of Technology, Madras, and an MS in 
computer sciencefrom the University of Wisconsin, Madison. 

Tia Newhall is working toward a doctoral degree at the 
University of Wisconsin, Madison, where she received a BS 
in mathematics and an MS in computer science. 

The authors can be contacted at the Computer Sciences Dept., 
University of Wisconsin, Madison, 1210 W. Dayton Street, 
Madison, WI 53706; e-mail {hart, markc, jon, karavan, 
krishna, newhall}@cs.wisc.edu, holl ings@cs.umd.edu, and 
rbi@informix.com. 

Computer 


