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Abstract – Active Harmony provides a way to automate 
performance tuning. In this paper, we apply the Active 
Harmony system to improve the performance of a cluster-
based web service system. The performance improvement 
cannot easily be achieved by tuning individual components 
for such a system. The experimental results show that 
there is no single configuration for the system that 
performs well for all kinds of workloads. By tuning the 
parameters, Active Harmony helps the system adapt to 
different workloads and improve the performance up to 
16%. For scalability, we demonstrate how to reduce the 
time when tuning a large system with many tunable 
parameters.  Finally an algorithm is proposed to 
automatically adjust the structure of cluster-based web 
systems, and the system throughput is improved up to 
70% using this technique.  

I. INTRODUCTION 

Online e-commerce sites are one of the main applications 
on the Internet today. They are used as a standard mechanism 
for online information distribution and exchange. In order to 
provide such service, e-commerce sites require large online 
web systems. The systems must be able to accommodate 
widely varying service demands. They should also be 
adaptive when the number or nature of requests changes.  

Clusters of commodity workstations interconnected by a 
high-speed network are frequently used to meet these 
challenges. The infrastructure can tolerate partial failures and 
allows scaling up by adding more components. They are also 
representative of other types of coupled distributed systems. 

When these systems are designed and built, the 
developers tend to set the default configuration of the system 
(e.g., number of processes forked, memory size allocated) 
conservatively (i.e., appropriate values but not well tuned). 
Therefore, the customer environment may not be fully utilized 
and thus the performance for such a system may be improved 
if its configuration is “tuned” appropriately. 

While other clustered-based web service performance 
tuning projects require experts to analyze the internals of the 
components and improve the performance based on the 
models built, the Active Harmony system is designed to 
provide a general solution that can help systems become 
adaptive to their execution environment as well as to changes 
in workload. By improving the performance iteratively, the 
Active Harmony system changes performance optimization 

from post-mortem to real-time steering. And the most 
important of all, it is not necessary for the Active Harmony 
user to have detailed insight knowledge of the system to be 
tuned. 

This paper differs from our previous work [9, 11, 20] in 
that we propose parameter replication and parameter 
partitioning to speed up the tuning process. We also present 
and evaluate a technique to allow Active Harmony to 
reconfigure the roles of specific nodes during execution. We 
then apply Active Harmony to a coupled application. An e-
commerce system contains multiple components (proxy 
server, HTTP server, application server, and database). Such a 
large-scale system cannot be tuned for each individual 
component. In this paper we show that Active Harmony is not 
only useful to improve the performance, but it is necessary to 
have such a tuning mechanism since there is no single best 
configuration for all kinds of workloads.   

II. SYSTEM 

A cluster-based web service system consists of a 
collection of machines. The machines are separated into sets. 
Each set (or tier) of machines is focused on serving different 
parts of a request. The incoming requests are handled in a 
pipeline fashion by different tiers.  

In many web services today, there are (conceptually, at 
least) three tiers: presentation, middleware, and database. The 
presentation tier is the web server that provides the interface 
to the client. The middleware tier is what sits between the web 
server and the database. It receives requests for data from the 
web server, manipulates the data and queries the database. 
Then it generates results using existing data together with 
answers from database. Those results are presented to the 
client through the presentation tier. The third tier is the 
database, which holds the information accessible via the Web. 
It is the backend that provides reliable data storage and 
transaction semantics. 

In this project, we try to improve the overall system 
performance by automatic tuning across all tiers using the 
Active Harmony system. The performance metric we are 
focusing on is the TPC-W benchmark. It is a transactional 
web benchmark designed to emulate operations of an e-
commerce site.  
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A. Active Harmony 

To provide automatic performance tuning, we developed 
the Active Harmony system [9, 11, 20]. Active Harmony is an 
infrastructure that allows applications to become tunable by 
applying very minimal changes to the application and library 
source code. This adaptability provides applications with a 
way to improve performance during a single execution based 
on the observed performance. The types of things that can be 
tuned at runtime range from parameters such as the size of a 
read-ahead parameter to what algorithm is being used (e.g., 
heap sort vs. quick-sort). 

Figure 1 shows the Active Harmony automated runtime 
tuning system. The Library Specification Layer provides a 
uniform API to library users by integrating different libraries 
with the same or similar functionality.  

The Adaptation Controller is the main part of the 
Harmony server. The Adaptability component manages the 
values of the different tunable parameters provided by the 
applications and changes them for better performance. 

 

 
Figure 1: Active Harmony automated tuning system 

 
The kernel of the adaptation controller is a tuning 

algorithm. The algorithm is based on the simplex method for 
finding a function's minimum value [14]. In the Active 
Harmony system, we treat each tunable parameter as a 
variable in an independent dimension. The algorithm makes 
use of a simplex, which is a geometrical figure defined by k+1 
connected points in a k-dimensions space. In 2-dimensions, 
the simplex is a triangle, and for 3-d space the simplex is a 
non-degenerated tetrahedron.  

The Nelder-Mead simplex method approximates the 
extreme of a function by considering the worst point of the 
simplex and forming its symmetrical image through the center 
of the opposite (hyper) face. At each step a better point 
replaces the worst points and thus moves the simplex towards 
the extreme, in our case towards the minimum.  

The algorithm described above assumes a well-defined 
function and works in a continuous space.  However, neither 
of these assumptions holds in our situation. Thus we have 
adapted the algorithm by simply using the resulting values 

from the nearest integer point in the space to approximate the 
performance at the selected point in the continuous space. 

B. TPC-W Benchmark 
The major workload we use when tuning the cluster-

based web service is the TPC-W benchmark. The TPC-W is a 
transactional web benchmark designed to mimic operations of 
an e-commerce site. The workload explores a breadth of 
system components together with the execution environment. 
Like all other TPC benchmarks, the TPC-W benchmark 
specification is a written document which defines how to 
setup, execute, and document a TPC-W benchmark run.  

 
TABLE 1: TPC-W BENCHMARK WORKLOADS 

Web Interaction Browsing 
(WIPSb) 

Shopping 
(WIPS) 

Ordering 
(WIPSo) 

Browse 95 % 80 % 50 % 
 Home 29.00 % 16.00 % 9.12 % 
 New Products 11.00 % 5.00 % 0.46 % 
 Best Sellers 11.00 % 5.00 % 0.46 % 
 Product Detail 21.00 % 17.00 % 12.35 % 
 Search Request 12.00 % 20.00 % 14.53 % 
 Search Results 11.00 % 17.00 % 13.08 % 
Order 5 % 20 % 50 % 
 Shopping Cart 2.00 % 11.60 % 13.53 % 
 Customer Registration 0.82 % 3.00 % 12.86 % 
 Buy Request 0.75 % 2.60 % 12.73 % 
 Buy Confirm 0.69 % 1.20 % 10.18 % 
 Order Inquiry 0.30 % 0.75 % 0.25 % 
 Order Display 0.25 % 0.66 % 0.22 % 
 Admin Request 0.10 % 0.10 % 0.12 % 
 Admin Confirm 0.09 % 0.09 % 0.11 % 

 
The two primary performance metrics of the TPC-W 

benchmark are the number of Web Interaction Per Second 
(WIPS), and a price performance metric defined as 
Dollars/WIPS. However, some shopping applications attract 
users primarily interested in browsing, while others attract 
those planning to purchase. Two secondary metrics are 
defined to provide insight as to how a particular system will 
perform under these conditions. WIPSb is used to refer to the 
average number of Web Interaction Per Second completed 
during the Browsing Interval. WIPSo is used to refer to the 
average number of Web Interaction Per Second completed 
during the Ordering Interval. 

The TPC-W workload is made up of a set of web 
interactions. Different workloads assign different relative 
weights to each of the web interactions based on the scenario. 
In general, these web interactions can be classified as either 
“Browse” or “Order” depending on whether they involve 
browsing and searching on the site or whether they play an 
explicit role in the ordering process. The details for each 
workload breakdown are shown in the Table 1. 

… 
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C. Environment 
The summary of the environment used for our experiment 

is shown in Table 2.  The 10 machines used include the ones 
running emulated browsers and the servers for proxy, HTTP, 
application and database services. Each machine is equipped 
with dual processors, 1 Gbyte memory and runs Linux as the 
operating system. For each tier, we select Squid as the proxy 
server, Tomcat as the HTTP & application server and MySQL 
as the database server. All computer software components are 
open-source which allows us to look at source code to 
understand system performance. The TPC-W benchmark 
version we chose simulates a store that sells approximately 
10,000 items. 

 
TABLE 2: EXPERIMENT ENVIRONMENT 

Hardware 
Processor Dual AMD Athlon 1.67 GHz 
Memory 1Gbyte 
Network 100Mbps Ethernet 
No. of machines 10 

Software 
Operating System Linux 2.4.18smp 
TPC-W benchmark Modified from the PHARM [6]
Proxy Server Squid 2.5 [3] 
HTTP & Application Server Tomcat 4.0.4 [1] 
Database Server MySQL 3.23.51 [2] 

III. TUNING 

Our goal is to improve the overall system performance 
using Active Harmony.  We first show that there is no single 
configuration suitable for all the workloads. Active Harmony 
makes the system perform better by using different 
configurations when facing different workloads. Then we 
investigate Active Harmony’s scalability as the number of 
machines grows. One way to solve this problem is to partition 
the parameters into sets. We show how to use an independent 
Active Harmony tuning server for each set to speed up the 
tuning process. Another method is to tune a representative set 
of parameters and use duplicated values on the rest of nodes. 
In Section four, we also show how to adjust the number of 
nodes in each tier dynamically to reduce hot spots. 

A. Impact of Varying Workload 
In this experiment we show that the Active Harmony 

server can tune the system to adjust each tier’s server to 
provide good performance. We use four machines in this 
experiment: one machine for the emulated browsers, one for 
the proxy server, one for the HTTP & application server, and 
one for the database server. 

In the experiment, we examine the tuning processes for 
two different workloads: browsing and ordering. Both tuning 
processes are started using the default configuration. We then 
let the system warm up for 100 seconds and measure the 
performance (WIPS) for 1000 seconds followed by 100 
seconds for cooling down. We define such a cycle as one 

“iteration” 1 . The Active Harmony server will adjust the 
configuration (parameters values) between two iterations.  

Figure 2 shows that for different workloads, the system 
should apply different configurations. Each different bar 
represents the best configurations we determined after 200 
tuning iterations for each of the workloads. We then apply 
those best configurations to the other two workloads for 
comparison. The results show that when using a configuration 
that is tuned for another workload, the system does not 
perform as well as using a configuration that is tuned for the 
current workload. The results show that there is no universal 
configuration good for all kinds of workloads. The table in 
Figure 2 shows the improvements for those best-tuned 
configurations compared to the default configuration. The 
improvements range from 5% to 16%. 
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Figure 2: Applying best configuration after 200 iterations to different 
workloads 

 
Table 3 shows the details of all Harmony tunable 

parameters before, and after tuning for each of the workloads. 
The results show for the proxy server, it first increases the 
main memory size for the cache to improve the performance. 
For the shopping and ordering workloads, the proxy server 
tries to cache larger objects in the memory compared to the 
browsing workload. For the HTTP server (which is part of the 
application server), the tuning results show that it spawns 
more threads to handle the requests during the ordering 
workload. We believe the main reason is that most of the 
requests in the ordering workload require high latency 
operations in the database server (i.e., performing update 

                                                 
1 The 1,200 second-iteration is TPC-W benchmark compliance (i.e., specified 
in the TPC-W documentation). The iteration timescale can be as short as 30 
seconds according to our experiment experience. 
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transactions on the database). Thus the average response time 
is longer compared to other workloads. As long as it is not 
over the system capacity, the HTTP server should use more 
threads (minProcessors/maxProcessors) and buffer space 
(bufferSize) to handle the incoming requests. The waiting 
queue capacity should also increase accordingly (acceptCount) 
as the results show. The same situation happens in the worker 
part (AJP connector) of the application server. For the 
database server, the tuning results show it increases the cache 
and buffer size when the utilization for the database is high 
(i.e., shopping and ordering workloads). However, it shows 
that reducing the join buffer size does not impact performance. 

From the results we can see that some parameters 
significantly affect the overall system performance such as the 
number of threads or the buffer size. However, there are some 
parameters that we thought to be performance related but they 
turn out not to be important. For example, the thresholds 
(cache_swap_low, cache_swap_high) which control whether 
the proxy server should swap out objects do not impact the 
overall system performance. Since it is automated, the Active 
Harmony tuning process is also helpful for system 
administrators and developers to identify those parameters that 
actually affect system performance. We plan to further address 
this issue by prioritizing the importance of parameters in our 
future work. 

 
TABLE 3: TUNING RESULTS FOR DIFFERENT WORKLOADS 

Best configuration after 200 
iterations Tunable parameters Default 

config. Browsing Shopping Ordering 
Proxy Server   

cache_mem 8 13 17 21
cache_swap_low 90 91 86 91
cache_swap_high 95 96 96 96
maximum_object_size 4,096 4,096 4,096 5,888
minimum_object_size 0 0 50 306
maximum_object 
_size_in_memory 8 6 256 2,560

store_objects_per 
_bucket 20 15 25 105

HTTP & App. Server   
minProcessors 5 1 16 102
maxProcessors 20 11 16 131
acceptCount 10 6 21 136
bufferSize 2,048 2,049 3,585 6,657
AJPminProcessors 5 6 26 136
AJPmaxProcessors 20 86 296 161
AJPacceptCount 10 76 306 671

Database Server   
binlog_cache_size 32,768 63,488 153,600 284,672
Delayed_insert_limit 100 200 400 700
max_connections 100 201 451 701
delayed_queue_size 1000 2,600 9,100 7,100
Join_buffer_size 8,388,600 407,552 407,552 407,552
Net_buffer_length 16,384 31,744 38,912 34,816
table_cache 64 873 905 761
thread_con 10 81 91 76
thread_stack 65,535 102,400 1,018,880 773,120

B. Cluster Tuning 
When the number of servers increases, the number of 

tunable parameters also increases. This makes the tuning 

process lengthy and the tuning results may not be useful since 
the environment could change during the tuning process.  

In the original Active Harmony system, to tune n 
parameters at once requires exploring n+1 configurations 
before improvements to the system will take effect. If there 
are numerous servers in the cluster and each server contains 
tens of parameters, the tuning process will be fairly long. In 
order to reduce the initial exploration period, we partition the 
components inside the cluster into groups and use separate 
Active Harmony tuning servers for each groups. There are 
several ways to group servers. 

When all the machines in the same tier are homogeneous, 
we try to partition all the servers into tuning groups using two 
methods. The first one is parameter duplication: we only tune 
one server for each tier, and the values for those parameters 
are duplicated to other servers in the same tier. This tuning 
mechanism is based on the assumptions that (a) servers in the 
same tier will have the same or similar behavior for the same 
configuration; (b) the workload is evenly distributed among 
all the servers in the same tier.  

The second way to group nodes, parameter partitioning, 
is based on a static work line. Each work line group consists 
of at least one server from each tier. A request to the web 
cluster system is only handled by exactly one work line group. 
In other words, any server in work line group A will not 
generate (serve) requests to (from) a server in work line group 
B. We use a different Active Harmony tuning server to tune 
the parameters for each work line. The assumption for this 
tuning mechanism is that (a) all the work lines are running in 
parallel; and (b) there is no interaction between any two of the 
work lines.  

Both of these approaches to grouping nodes require some 
domain knowledge about the role of each node. However, 
grouping of nodes could easily be exported to Active 
Harmony as part of the tuning API. 

To compare these two approaches, we tuned the system 
using three different tuning methods: default, parameter 
duplication and parameter partitioning.  

 
TABLE 4: PERFORMANCE FOR DIFFERENT METHODS FOR CLUSTER TUNING 

Tuning 
method WIPS2 Average 

(Std. Dev.)3
Performance 
improvement Iterations

None  
(No 
Tuning) 

110.4 110.4 
(2.1) - - 

Default 
method 130.6 112.1 

(30.0) 18.3% 159 

Parameter 
duplication 133.7 116.6 

(29.5) 21.2% 33 

Parameter 
partitioning 131.3 121.8 

(9.7) 19.0% 107 

 
Table 4 shows the tuning results. The results for all three 

methods are very close. The default method takes the longest 
time since there are many parameters and only one 
                                                 
2 Performance for the best configuration after 200 iterations 
3 For the second 100 iterations 
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performance result per iteration. The parameter duplication 
method provides both a larger performance improvement and 
faster convergence to the tuned configuration. It speeds up the 
tuning process since the tunable parameters are distributed to 
multiple tuning servers and there are fewer parameters for 
each tuning server to tune. The time (iterations) spent for the 
grouping by parameter partitioning method is about 2/3 of the 
default method. 

Based on the time for the tuning process, parameter 
duplication tuning seems to be the best. It takes a much 
shorter time for tuning. However, if stable performance 
during the tuning process is critical, parameter partitioning by 
work lines is a reasonable choice.  

In the future, we plan to investigate hybrid tuning using 
the parameter duplication method first, and then using a 
separate tuning server for each group for fine-granularity 
tuning. 

IV. AUTOMATIC CLUSTER RECONFIGURATION 
One of the advantages for a cluster-based web service is 

the ability to reconfigure hardware easily. By dynamically 
changing the roles of servers for different workloads, it is 
possible to make the best of available resources. 

The parameter tuning part of the Active Harmony system 
helps to tune the cluster-based web service at a fine time 
granularity. However, when the load is not balanced among 
tiers in the web service system, changing the parameters for 
all the servers will not provide much help to solve the 
problem. Instead, it is necessary to adjust the infrastructure by 
changing the number of servers in each tier dynamically to 
reduce the load imbalance.  

 
TABLE 5: VARIABLE DESCRIPTION 

Variable Description 
Rij Utilization of resource j on node i 
LTij Low threshold for resource j on node i 
HTij High threshold for resource j on node i 
Mpq Cost to move a job for node p to node q 
Ai Average process time on node i 
F Configuration cost in terms of time 
L List of nodes 
Ni Number of jobs on node i 
Head(L) First node in the List L 
Tier(i) The tier that node i belongs to 
M(t) Number of nodes in tier t 

 
1. For all node i, resource j do  

If Rij > HTij then add i to the list L1  
//find out what nodes are highly or over loaded 

2. For all node i do 
If Rij < LTij  for all j then add i to the list L2  
//find out what nodes are lightly loaded 

3. Sort L1 based on the “degree of urgency4”  

                                                 
4 The degree of urgency for each node depends on the characteristics of the 
application. It may vary from case to case. For example, over loading the 
CPU may cause bigger problem than utilizing all the network bandwidth for 

 //decide the priority for the nodes to be relieved  
4. Let i = Head(L1), find the node k in L2 such that satisfies 
(a)(b)(c)     

//find out the appropriate node to be reconfigured 
(a) Tier(i) ≠  Tier(k) 
(b) M(Tier(k))  > 1 
(c) F +  Nk ×  Mkm – Nk ×  Ak is minimal, where k≠ m 
and Tier(k) = Tier(m) 

5. Reconfigure k such that Tier(i) = Tier(k) 
 

Figure 3: Reconfiguration algorithm for external tuning 
 

The Active Harmony system applies a simple mechanism 
to achieve load balance among tiers. While the tuning is in 
progress, the Active Harmony system monitors the resource 
utilization for all nodes of all tiers. The resources that are 
monitored include CPU load, memory usage, network 
bandwidth used and disk I/O activity (Currently the system 
information is obtained using Linux SAR utility tool). 
Periodically, Active Harmony detects whether (1) there is a 
resource on node A that is over utilized5, (2) all the resources 
on node B are under utilized and node B is suitable 
reconfiguration. If both situation (1) and (2) exist, Active 
Harmony tries to reconfigure node B to run the same server 
process as node A. 

Unlike parameter tuning, which is done for each iteration, 
the reconfiguration algorithm is run at a lower frequency (e.g., 
every 50 iterations) since it is designed to react to longer term 
trends, and incurs a greater overhead to make changes. Table 
5 shows the definition for variables in the algorithm and 
Figure 3 shows the concept of the reconfiguration algorithm. 

Step 1 finds out what nodes are over loaded. It checks the 
resource utilization against the predefined high threshold. 
Step 2 tries to find nodes that are lightly loaded. If all the 
resources on the node are idling most of the time (i.e., 
utilization is smaller than the lower threshold), the node is 
considered under utilized. Step 3 finds out what is the most 
“urgent” node that should be relieved first. Step 4 checks in 
order to ensure correct operation, that there is at least one 
node left in each tier, and decides if the reconfiguration 
should be done immediately (by moving existing requests to 
the neighbor nodes in the same tier) or if it should wait until 
all existing requests finish. Finally Step 5 does the 
reconfiguration.  

 
F +  Nk ×  Mkm – Nk ×  Ak                        (1) 

 
When the result of equation (1) for the selected node k in 

Step 4(c) is non-negative, the Active Harmony system will 
not reconfigure node k until all the jobs on it are finished. This 
is because it will be more cost-effective to wait than to 
reconfigure node k immediately. On the other hand, when the 
result of the equation is negative, the Active Harmony system 

                                                                                     
some applications. Therefore, nodes with over-loaded CPU will have higher 
priority than nodes whose network bandwidth is highly utilized. 
5 Static thresholds (e.g., CPU idle time is less or equal than 5%) are used in 
the current implementation. 

 5



will reconfigure node k immediately. This is because the cost 
for immediate reconfiguration will be less than waiting for the 
system to be idle to reconfigure. 

Active Harmony can automatically perform node 
reconfiguration without taking the system down. While one 
node is being reconfigured from one tier to another, all the 
remaining nodes in the system are still serving requests 
normally. 
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(b) One node moved from the application server tier to 

the proxy server tier  
(Browsing workload) 

Figure 4: Reconfiguration experiment results 
 

Figure 4 shows the experimental results when applying 
the reconfiguration algorithm. The initial configuration for 
Figure 4(a) has four nodes serving the proxy tier and another 
two nodes for the application tier; all six nodes are 
homogeneous. The experiment starts with a browsing 
workload and changes to an ordering workload after the 90th 
iteration (The performance gains between 90th and 100th 
iterations are due to different workloads). We forced the 
Active Harmony system do the dynamic adjustment checking 
exactly once right after the 100th iteration of the tuning 
process. Figure 4(a) shows the performance improvement 

when Active Harmony decides to move a node from the proxy 
server tier to the application server tier based on the algorithm. 
This is expected since when the system has a workload 
dominated by ordering, it requires more application servers to 
handle the dynamic data from the database. On the other hand, 
most browsing workloads require static data that can be 
served from the proxy servers. Before the adjustment, the 
application servers are highly loaded (CPU utilization is 
always close to 100%) and some proxy servers are idling most 
of the time (CPU utilization is close to 0% and there are very 
few network or disk I/O requests). After the adjustment, the 
average utilization of the application servers is lowered while 
the average loading for the proxy servers increases a little. 
The bottleneck of the whole system is relieved and the system 
performance is improved about 62%. 

Figure 4(b) shows the performance improvement when 
given a different configuration at the beginning. There are six 
nodes, two of them serving as the proxy servers and four 
serving as application nodes. However, the proxy servers are 
highly utilized under the browsing workload. After the 
dynamic adjustment checking after the 100th iteration, it 
moved a node from the application server tier to the proxy 
server tier for the adjustment automatically. The CPU and 
disk I/O are highly loaded on the proxy servers before the 
adjustment and some application servers are idling most of the 
time. After the adjustment, the average load on all proxy 
servers is lowered, the average utilization on the remaining 
application servers is increased and the system performance is 
improved for about 70%. 

V. DISCUSSION 
To tune existing software such as the Squid proxy server, 

we needed to make some minimal modifications to add calls 
to the Active Harmony API. However, some variables are 
only referenced once after the program starts execution (i.e., 
those variables read from the configuration script file). Rather 
than make more extensive changes to the program, the Active 
Harmony system restarts the server for each of the tuning 
iterations automatically. Our experiments take all costs of 
parameter changes (including servers need to be restarted and 
their warm up time) into consideration. 

Another issue is the hard coded (compile time) limits in 
the applications. In order to make the system tunable, some 
limits had to be increased. Again, a more significant coding 
effort could have been used to convert these hard-coded limits 
into ones that could be changed at runtime. For example, to 
increase the number of files opened simultaneously, the value 
in the /proc/sys/fs/file-max on Linux needed to be increased. 
Otherwise the number of files opened simultaneously would 
be limited. In this case, recompilation of the linux kernel 
would be necessary. Besides the kernel, the linux operating 
system also imposes similar constraints in the 
/etc/security/limits.conf and /etc/sysctl.conf .  

Active Harmony helps the cluster-based web service 
adapt itself when facing different workloads. It shows the 
ability to tune a large-scale system automatically. The tuning 
includes the parameter adjustment inside each machine and 
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explicit configuration changes for load balancing. This 
performance improvement is difficult to achieve by tuning 
each single machine independently since it is extremely 
difficult to decide the contribution of each individual machine 
to the performance of the whole system. Another advantage is 
that the user does not need to have detailed insight knowledge 
about each component. He or she can simple apply the Active 
Harmony system to all the parameters that may be 
performance related. 

VI. RELATED WORK 
There are several projects that are trying to develop 

techniques to allow applications to be responsive to their 
available resources or that allow them to be tuned at runtime. 
The Falcon project [8] focuses on computational steering. It 
provides a way for users to alter the behavior of an application 
under execution. The execution results are also changed based 
on the steering mechanism. The Active Harmony project also 
allows user to alter the configuration during execution but it is 
focusing on performance tuning rather than the experiment 
result. 

The Autopilot project [16, 17] allows applications to be 
adapted in an automated way. It uses sensors to extract 
quantitative and qualitative performance data from executing 
applications, and provides the requisite data for decision-
making. The kernel of the decision process for Autopilot is 
fuzzy logic. Their actuators execute the decision by changing 
parameter values of applications or resource management 
policies of the underlying system. The Active Harmony 
project differs from the Autopilot project in that it tries to 
coordinate the use of resources by multiple libraries and 
applications rather than focusing on a single application. 

The AppLes project [5] and the Odyssey project [15] 
focus on resource awareness at the application level.  In those 
systems, applications are informed of resource changes and 
provided with a list of available resource sets. Then, each 
application allocates the resources based upon a customized 
scheduling to maximize its own performance. Active 
Harmony encourages programmers to expose their needs in 
terms of options and their characteristics rather than as 
selecting from specific resources alternatives described by the 
system. 

The ATLAS [21] project has developed automatically 
tuned linear algebra libraries. They develop a methodology 
for the automatic generation of highly efficient basic linear 
algebra routines for a given microprocessor. By using a code 
generator that probes and searches the system for an optimal 
set of parameters, it can produce highly optimized matrix 
multiply for a wide range of architectures. The difference 
between our work and ATLAS is that our work focuses on 
general applications that use program libraries rather than that 
of a specific library. 

The Nimrod/O project [4] tries to reduce the search space 
for engineering design. It applies multiple tuning algorithms 
including Simplex, P-BFGS, Divide and Conquer, and 
Simulated Annealing. The design for the aerofoil may need to 
search for the global optima instead the local optima. The 

Active Harmony project focuses on the performance issue. 
Therefore, operating points on local optima are still 
acceptable in most of the cases since they are also good 
enough from the performance point of view. 

Another TPC-W benchmark implementation available 
from an academic institute is from the DynaServer project 
[19]. The project studies the design of scalable, high-
performance and highly available e-business servers.  

Others have discussed cluster-based web services with 
different performance metrics. Joel L. Wolf’s work [22] 
proposed a scheme, which attempts to optimally balance the 
load on the servers of a clustered Web farm. They try to solve 
the performance problem by achieving minimal average 
response time for customer requests, and thus ultimately 
achieve maximal customer throughput.  

ADAPTLOAD [18] developed by Riska, A., et al. models 
clustered web server as a front-end dispatcher and back-end 
nodes. They use an online algorithm to decide the share of the 
total workload for each node to achieve load balance. They 
treat back-end nodes as static while Active Harmony tries to 
configure the clustered system properly to achieve better 
performance. 

Chen, et al. [7] use a reconfiguration mechanism to 
improve the throughput of a clustered system. Their focus is 
to avoid letting a small number of running jobs with 
unexpectedly large memory allocation block the execution of 
the majority jobs in the cluster. Active Harmony focuses on a 
general mechanism to improve overall system performance by 
several means. 

 Kalogeraki, et al. [10] migrate objects or jobs from 
hotspots in the cluster to improve the performance. Their goal 
is to achieve load balance while Active Harmony focuses on 
performance improvement. 

Gage [13] focuses on load distribution to provide the 
performance guarantee for cluster-based Internet services. 
This involves support from network level while the Active 
Harmony only tries to tune the system to achieve better 
performance. 

Levy, et al. [12] use a queuing model to analyze a cluster-
based web service system. Based on the model built, they 
implement a prototype for a performance management system 
that is transparent to the system to be tuned. 

The major difference between Active Harmony and these 
works above is that Active Harmony provides a general 
solution that does not require the user to have domain specific 
knowledge. The user does not need to analyze the details of 
the system components or build models. 

VII. CONCLUSION 
The main contribution for this paper is that we apply 

Active Harmony to a coupled system of independent 
applications. We applied Active Harmony to a real-world 
large-scale system and evaluated the result using a practical 
benchmark. The tuning includes the parameters adjustment 
inside each machine and the explicit configuration change for 
load balancing. All this is done without the user needing to 
have domain specific information. 
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The performance improvement is difficult to achieve 
when tuning individual components of the system separately. 
Since no single universal configuration is good for all kinds of 
workloads, the cluster based web service system needs a 
tuning mechanism like the Active Harmony. Active Harmony 
adjusts the tunable parameters based on the observed 
performance results to improve the overall system 
performance. The experiment results show that the Active 
Harmony system improves the system performance from 5% 
to 16% depending on the workload.  

Scalability becomes a critical issue when tuning large-
scale systems with numerous parameters. We investigated two 
approaches for tuning – parameter replication and parameter 
partitioning. This is helpful to speed up the tuning process so 
the tuning results will not be out of date. Parameter 
duplication helps to speedup the tuning process while 
parameter partitioning makes the tuning process smoother 
with stable performance.  

Dynamically adjusting the components of the cluster, the 
performance is improved by better load balancing. In our 
experiments, the system throughput is improved up to 70%. 
All the results demonstrate that Active Harmony can bring 
significant performance improvement to the cluster-based 
web service system and permit new ways to adapt 
applications to dynamic environments. 
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