
Automated Cluster-Based Web Service
Performance Tuning

I-Hsin Chung, and Jeffrey K. Hollingsworth
{ihchung, hollings}@cs.umd.edu

Department of Computer Science
University of Maryland

College Park, MD 20742

Abstract – Active Harmony provides a way to automate
performance tuning. In this paper, we apply the Active
Harmony system to improve the performance of a cluster-
based web service system. The performance improvement
cannot easily be achieved by tuning individual components
for such a system. The experimental results show that
there is no single configuration for the system that
performs well for all kinds of workloads. By tuning the
parameters, Active Harmony helps the system adapt to
different workloads and improve the performance up to
16%. For scalability, we demonstrate how to reduce the
time when tuning a large system with many tunable
parameters. Finally an algorithm is proposed to
automatically adjust the structure of cluster-based web
systems, and the system throughput is improved up to
70% using this technique.

I. INTRODUCTION

Online e-commerce sites are one of the main applications
on the Internet today. They are used as a standard mechanism
for online information distribution and exchange. In order to
provide such service, e-commerce sites require large online
web systems. The systems must be able to accommodate
widely varying service demands. They should also be
adaptive when the number or nature of requests changes.

Clusters of commodity workstations interconnected by a
high-speed network are frequently used to meet these
challenges. The infrastructure can tolerate partial failures and
allows scaling up by adding more components. They are also
representative of other types of coupled distributed systems.

When these systems are designed and built, the
developers tend to set the default configuration of the system
(e.g., number of processes forked, memory size allocated)
conservatively (i.e., appropriate values but not well tuned).
Therefore, the customer environment may not be fully utilized
and thus the performance for such a system may be improved
if its configuration is “tuned” appropriately.

While other clustered-based web service performance
tuning projects require experts to analyze the internals of the
components and improve the performance based on the
models built, the Active Harmony system is designed to
provide a general solution that can help systems become
adaptive to their execution environment as well as to changes
in workload. By improving the performance iteratively, the
Active Harmony system changes performance optimization

from post-mortem to real-time steering. And the most
important of all, it is not necessary for the Active Harmony
user to have detailed insight knowledge of the system to be
tuned.

This paper differs from our previous work [9, 11, 20] in
that we propose parameter replication and parameter
partitioning to speed up the tuning process. We also present
and evaluate a technique to allow Active Harmony to
reconfigure the roles of specific nodes during execution. We
then apply Active Harmony to a coupled application. An e-
commerce system contains multiple components (proxy
server, HTTP server, application server, and database). Such a
large-scale system cannot be tuned for each individual
component. In this paper we show that Active Harmony is not
only useful to improve the performance, but it is necessary to
have such a tuning mechanism since there is no single best
configuration for all kinds of workloads.

II. SYSTEM

A cluster-based web service system consists of a
collection of machines. The machines are separated into sets.
Each set (or tier) of machines is focused on serving different
parts of a request. The incoming requests are handled in a
pipeline fashion by different tiers.

In many web services today, there are (conceptually, at
least) three tiers: presentation, middleware, and database. The
presentation tier is the web server that provides the interface
to the client. The middleware tier is what sits between the web
server and the database. It receives requests for data from the
web server, manipulates the data and queries the database.
Then it generates results using existing data together with
answers from database. Those results are presented to the
client through the presentation tier. The third tier is the
database, which holds the information accessible via the Web.
It is the backend that provides reliable data storage and
transaction semantics.

In this project, we try to improve the overall system
performance by automatic tuning across all tiers using the
Active Harmony system. The performance metric we are
focusing on is the TPC-W benchmark. It is a transactional
web benchmark designed to emulate operations of an e-
commerce site.

 1

A. Active Harmony

To provide automatic performance tuning, we developed
the Active Harmony system [9, 11, 20]. Active Harmony is an
infrastructure that allows applications to become tunable by
applying very minimal changes to the application and library
source code. This adaptability provides applications with a
way to improve performance during a single execution based
on the observed performance. The types of things that can be
tuned at runtime range from parameters such as the size of a
read-ahead parameter to what algorithm is being used (e.g.,
heap sort vs. quick-sort).

Figure 1 shows the Active Harmony automated runtime
tuning system. The Library Specification Layer provides a
uniform API to library users by integrating different libraries
with the same or similar functionality.

The Adaptation Controller is the main part of the
Harmony server. The Adaptability component manages the
values of the different tunable parameters provided by the
applications and changes them for better performance.

Figure 1: Active Harmony automated tuning system

The kernel of the adaptation controller is a tuning

algorithm. The algorithm is based on the simplex method for
finding a function's minimum value [14]. In the Active
Harmony system, we treat each tunable parameter as a
variable in an independent dimension. The algorithm makes
use of a simplex, which is a geometrical figure defined by k+1
connected points in a k-dimensions space. In 2-dimensions,
the simplex is a triangle, and for 3-d space the simplex is a
non-degenerated tetrahedron.

The Nelder-Mead simplex method approximates the
extreme of a function by considering the worst point of the
simplex and forming its symmetrical image through the center
of the opposite (hyper) face. At each step a better point
replaces the worst points and thus moves the simplex towards
the extreme, in our case towards the minimum.

The algorithm described above assumes a well-defined
function and works in a continuous space. However, neither
of these assumptions holds in our situation. Thus we have
adapted the algorithm by simply using the resulting values

from the nearest integer point in the space to approximate the
performance at the selected point in the continuous space.

B. TPC-W Benchmark
The major workload we use when tuning the cluster-

based web service is the TPC-W benchmark. The TPC-W is a
transactional web benchmark designed to mimic operations of
an e-commerce site. The workload explores a breadth of
system components together with the execution environment.
Like all other TPC benchmarks, the TPC-W benchmark
specification is a written document which defines how to
setup, execute, and document a TPC-W benchmark run.

TABLE 1: TPC-W BENCHMARK WORKLOADS

Web Interaction Browsing
(WIPSb)

Shopping
(WIPS)

Ordering
(WIPSo)

Browse 95 % 80 % 50 %
 Home 29.00 % 16.00 % 9.12 %
 New Products 11.00 % 5.00 % 0.46 %
 Best Sellers 11.00 % 5.00 % 0.46 %
 Product Detail 21.00 % 17.00 % 12.35 %
 Search Request 12.00 % 20.00 % 14.53 %
 Search Results 11.00 % 17.00 % 13.08 %
Order 5 % 20 % 50 %
 Shopping Cart 2.00 % 11.60 % 13.53 %
 Customer Registration 0.82 % 3.00 % 12.86 %
 Buy Request 0.75 % 2.60 % 12.73 %
 Buy Confirm 0.69 % 1.20 % 10.18 %
 Order Inquiry 0.30 % 0.75 % 0.25 %
 Order Display 0.25 % 0.66 % 0.22 %
 Admin Request 0.10 % 0.10 % 0.12 %
 Admin Confirm 0.09 % 0.09 % 0.11 %

The two primary performance metrics of the TPC-W

benchmark are the number of Web Interaction Per Second
(WIPS), and a price performance metric defined as
Dollars/WIPS. However, some shopping applications attract
users primarily interested in browsing, while others attract
those planning to purchase. Two secondary metrics are
defined to provide insight as to how a particular system will
perform under these conditions. WIPSb is used to refer to the
average number of Web Interaction Per Second completed
during the Browsing Interval. WIPSo is used to refer to the
average number of Web Interaction Per Second completed
during the Ordering Interval.

The TPC-W workload is made up of a set of web
interactions. Different workloads assign different relative
weights to each of the web interactions based on the scenario.
In general, these web interactions can be classified as either
“Browse” or “Order” depending on whether they involve
browsing and searching on the site or whether they play an
explicit role in the ordering process. The details for each
workload breakdown are shown in the Table 1.

…

Library
Specification
Layer

Application Programming Interface

Monitoring
Component

Library 1 Library n

 Harmony Server

Application

System (Execution Environment)

Library 2

Adaptation
Controller

Parameter(s)

Parameter(s)

Parameter(s)

 2

C. Environment
The summary of the environment used for our experiment

is shown in Table 2. The 10 machines used include the ones
running emulated browsers and the servers for proxy, HTTP,
application and database services. Each machine is equipped
with dual processors, 1 Gbyte memory and runs Linux as the
operating system. For each tier, we select Squid as the proxy
server, Tomcat as the HTTP & application server and MySQL
as the database server. All computer software components are
open-source which allows us to look at source code to
understand system performance. The TPC-W benchmark
version we chose simulates a store that sells approximately
10,000 items.

TABLE 2: EXPERIMENT ENVIRONMENT

Hardware
Processor Dual AMD Athlon 1.67 GHz
Memory 1Gbyte
Network 100Mbps Ethernet
No. of machines 10

Software
Operating System Linux 2.4.18smp
TPC-W benchmark Modified from the PHARM [6]
Proxy Server Squid 2.5 [3]
HTTP & Application Server Tomcat 4.0.4 [1]
Database Server MySQL 3.23.51 [2]

III. TUNING

Our goal is to improve the overall system performance
using Active Harmony. We first show that there is no single
configuration suitable for all the workloads. Active Harmony
makes the system perform better by using different
configurations when facing different workloads. Then we
investigate Active Harmony’s scalability as the number of
machines grows. One way to solve this problem is to partition
the parameters into sets. We show how to use an independent
Active Harmony tuning server for each set to speed up the
tuning process. Another method is to tune a representative set
of parameters and use duplicated values on the rest of nodes.
In Section four, we also show how to adjust the number of
nodes in each tier dynamically to reduce hot spots.

A. Impact of Varying Workload
In this experiment we show that the Active Harmony

server can tune the system to adjust each tier’s server to
provide good performance. We use four machines in this
experiment: one machine for the emulated browsers, one for
the proxy server, one for the HTTP & application server, and
one for the database server.

In the experiment, we examine the tuning processes for
two different workloads: browsing and ordering. Both tuning
processes are started using the default configuration. We then
let the system warm up for 100 seconds and measure the
performance (WIPS) for 1000 seconds followed by 100
seconds for cooling down. We define such a cycle as one

“iteration” 1 . The Active Harmony server will adjust the
configuration (parameters values) between two iterations.

Figure 2 shows that for different workloads, the system
should apply different configurations. Each different bar
represents the best configurations we determined after 200
tuning iterations for each of the workloads. We then apply
those best configurations to the other two workloads for
comparison. The results show that when using a configuration
that is tuned for another workload, the system does not
perform as well as using a configuration that is tuned for the
current workload. The results show that there is no universal
configuration good for all kinds of workloads. The table in
Figure 2 shows the improvements for those best-tuned
configurations compared to the default configuration. The
improvements range from 5% to 16%.

0
10
20
30
40
50
60

Browsing Shopping Ordering

Workload Applied

P
er

fo
rm

an
ce

 (
W

IP
S

)

Best configuration for Browsing
Best configuration for Shopping
Best configuration for Ordering
Original configuration

Best configuration after 200 iterations
Browsing Shopping Ordering

Improvement
 compared to the

default configuration
15% 16% 5%

Figure 2: Applying best configuration after 200 iterations to different
workloads

Table 3 shows the details of all Harmony tunable

parameters before, and after tuning for each of the workloads.
The results show for the proxy server, it first increases the
main memory size for the cache to improve the performance.
For the shopping and ordering workloads, the proxy server
tries to cache larger objects in the memory compared to the
browsing workload. For the HTTP server (which is part of the
application server), the tuning results show that it spawns
more threads to handle the requests during the ordering
workload. We believe the main reason is that most of the
requests in the ordering workload require high latency
operations in the database server (i.e., performing update

1 The 1,200 second-iteration is TPC-W benchmark compliance (i.e., specified
in the TPC-W documentation). The iteration timescale can be as short as 30
seconds according to our experiment experience.

 3

transactions on the database). Thus the average response time
is longer compared to other workloads. As long as it is not
over the system capacity, the HTTP server should use more
threads (minProcessors/maxProcessors) and buffer space
(bufferSize) to handle the incoming requests. The waiting
queue capacity should also increase accordingly (acceptCount)
as the results show. The same situation happens in the worker
part (AJP connector) of the application server. For the
database server, the tuning results show it increases the cache
and buffer size when the utilization for the database is high
(i.e., shopping and ordering workloads). However, it shows
that reducing the join buffer size does not impact performance.

From the results we can see that some parameters
significantly affect the overall system performance such as the
number of threads or the buffer size. However, there are some
parameters that we thought to be performance related but they
turn out not to be important. For example, the thresholds
(cache_swap_low, cache_swap_high) which control whether
the proxy server should swap out objects do not impact the
overall system performance. Since it is automated, the Active
Harmony tuning process is also helpful for system
administrators and developers to identify those parameters that
actually affect system performance. We plan to further address
this issue by prioritizing the importance of parameters in our
future work.

TABLE 3: TUNING RESULTS FOR DIFFERENT WORKLOADS

Best configuration after 200
iterations Tunable parameters Default

config. Browsing Shopping Ordering
Proxy Server

cache_mem 8 13 17 21
cache_swap_low 90 91 86 91
cache_swap_high 95 96 96 96
maximum_object_size 4,096 4,096 4,096 5,888
minimum_object_size 0 0 50 306
maximum_object
_size_in_memory 8 6 256 2,560

store_objects_per
_bucket 20 15 25 105

HTTP & App. Server
minProcessors 5 1 16 102
maxProcessors 20 11 16 131
acceptCount 10 6 21 136
bufferSize 2,048 2,049 3,585 6,657
AJPminProcessors 5 6 26 136
AJPmaxProcessors 20 86 296 161
AJPacceptCount 10 76 306 671

Database Server
binlog_cache_size 32,768 63,488 153,600 284,672
Delayed_insert_limit 100 200 400 700
max_connections 100 201 451 701
delayed_queue_size 1000 2,600 9,100 7,100
Join_buffer_size 8,388,600 407,552 407,552 407,552
Net_buffer_length 16,384 31,744 38,912 34,816
table_cache 64 873 905 761
thread_con 10 81 91 76
thread_stack 65,535 102,400 1,018,880 773,120

B. Cluster Tuning
When the number of servers increases, the number of

tunable parameters also increases. This makes the tuning

process lengthy and the tuning results may not be useful since
the environment could change during the tuning process.

In the original Active Harmony system, to tune n
parameters at once requires exploring n+1 configurations
before improvements to the system will take effect. If there
are numerous servers in the cluster and each server contains
tens of parameters, the tuning process will be fairly long. In
order to reduce the initial exploration period, we partition the
components inside the cluster into groups and use separate
Active Harmony tuning servers for each groups. There are
several ways to group servers.

When all the machines in the same tier are homogeneous,
we try to partition all the servers into tuning groups using two
methods. The first one is parameter duplication: we only tune
one server for each tier, and the values for those parameters
are duplicated to other servers in the same tier. This tuning
mechanism is based on the assumptions that (a) servers in the
same tier will have the same or similar behavior for the same
configuration; (b) the workload is evenly distributed among
all the servers in the same tier.

The second way to group nodes, parameter partitioning,
is based on a static work line. Each work line group consists
of at least one server from each tier. A request to the web
cluster system is only handled by exactly one work line group.
In other words, any server in work line group A will not
generate (serve) requests to (from) a server in work line group
B. We use a different Active Harmony tuning server to tune
the parameters for each work line. The assumption for this
tuning mechanism is that (a) all the work lines are running in
parallel; and (b) there is no interaction between any two of the
work lines.

Both of these approaches to grouping nodes require some
domain knowledge about the role of each node. However,
grouping of nodes could easily be exported to Active
Harmony as part of the tuning API.

To compare these two approaches, we tuned the system
using three different tuning methods: default, parameter
duplication and parameter partitioning.

TABLE 4: PERFORMANCE FOR DIFFERENT METHODS FOR CLUSTER TUNING

Tuning
method WIPS2 Average

(Std. Dev.)3
Performance
improvement Iterations

None
(No
Tuning)

110.4 110.4
(2.1) - -

Default
method 130.6 112.1

(30.0) 18.3% 159

Parameter
duplication 133.7 116.6

(29.5) 21.2% 33

Parameter
partitioning 131.3 121.8

(9.7) 19.0% 107

Table 4 shows the tuning results. The results for all three

methods are very close. The default method takes the longest
time since there are many parameters and only one

2 Performance for the best configuration after 200 iterations
3 For the second 100 iterations

 4

performance result per iteration. The parameter duplication
method provides both a larger performance improvement and
faster convergence to the tuned configuration. It speeds up the
tuning process since the tunable parameters are distributed to
multiple tuning servers and there are fewer parameters for
each tuning server to tune. The time (iterations) spent for the
grouping by parameter partitioning method is about 2/3 of the
default method.

Based on the time for the tuning process, parameter
duplication tuning seems to be the best. It takes a much
shorter time for tuning. However, if stable performance
during the tuning process is critical, parameter partitioning by
work lines is a reasonable choice.

In the future, we plan to investigate hybrid tuning using
the parameter duplication method first, and then using a
separate tuning server for each group for fine-granularity
tuning.

IV. AUTOMATIC CLUSTER RECONFIGURATION
One of the advantages for a cluster-based web service is

the ability to reconfigure hardware easily. By dynamically
changing the roles of servers for different workloads, it is
possible to make the best of available resources.

The parameter tuning part of the Active Harmony system
helps to tune the cluster-based web service at a fine time
granularity. However, when the load is not balanced among
tiers in the web service system, changing the parameters for
all the servers will not provide much help to solve the
problem. Instead, it is necessary to adjust the infrastructure by
changing the number of servers in each tier dynamically to
reduce the load imbalance.

TABLE 5: VARIABLE DESCRIPTION

Variable Description
Rij Utilization of resource j on node i
LTij Low threshold for resource j on node i
HTij High threshold for resource j on node i
Mpq Cost to move a job for node p to node q
Ai Average process time on node i
F Configuration cost in terms of time
L List of nodes
Ni Number of jobs on node i
Head(L) First node in the List L
Tier(i) The tier that node i belongs to
M(t) Number of nodes in tier t

1. For all node i, resource j do

If Rij > HTij then add i to the list L1
//find out what nodes are highly or over loaded

2. For all node i do
If Rij < LTij for all j then add i to the list L2
//find out what nodes are lightly loaded

3. Sort L1 based on the “degree of urgency4”

4 The degree of urgency for each node depends on the characteristics of the
application. It may vary from case to case. For example, over loading the
CPU may cause bigger problem than utilizing all the network bandwidth for

 //decide the priority for the nodes to be relieved
4. Let i = Head(L1), find the node k in L2 such that satisfies
(a)(b)(c)

//find out the appropriate node to be reconfigured
(a) Tier(i) ≠ Tier(k)
(b) M(Tier(k)) > 1
(c) F + Nk × Mkm – Nk × Ak is minimal, where k≠ m
and Tier(k) = Tier(m)

5. Reconfigure k such that Tier(i) = Tier(k)

Figure 3: Reconfiguration algorithm for external tuning

The Active Harmony system applies a simple mechanism
to achieve load balance among tiers. While the tuning is in
progress, the Active Harmony system monitors the resource
utilization for all nodes of all tiers. The resources that are
monitored include CPU load, memory usage, network
bandwidth used and disk I/O activity (Currently the system
information is obtained using Linux SAR utility tool).
Periodically, Active Harmony detects whether (1) there is a
resource on node A that is over utilized5, (2) all the resources
on node B are under utilized and node B is suitable
reconfiguration. If both situation (1) and (2) exist, Active
Harmony tries to reconfigure node B to run the same server
process as node A.

Unlike parameter tuning, which is done for each iteration,
the reconfiguration algorithm is run at a lower frequency (e.g.,
every 50 iterations) since it is designed to react to longer term
trends, and incurs a greater overhead to make changes. Table
5 shows the definition for variables in the algorithm and
Figure 3 shows the concept of the reconfiguration algorithm.

Step 1 finds out what nodes are over loaded. It checks the
resource utilization against the predefined high threshold.
Step 2 tries to find nodes that are lightly loaded. If all the
resources on the node are idling most of the time (i.e.,
utilization is smaller than the lower threshold), the node is
considered under utilized. Step 3 finds out what is the most
“urgent” node that should be relieved first. Step 4 checks in
order to ensure correct operation, that there is at least one
node left in each tier, and decides if the reconfiguration
should be done immediately (by moving existing requests to
the neighbor nodes in the same tier) or if it should wait until
all existing requests finish. Finally Step 5 does the
reconfiguration.

F + Nk × Mkm – Nk × Ak (1)

When the result of equation (1) for the selected node k in

Step 4(c) is non-negative, the Active Harmony system will
not reconfigure node k until all the jobs on it are finished. This
is because it will be more cost-effective to wait than to
reconfigure node k immediately. On the other hand, when the
result of the equation is negative, the Active Harmony system

some applications. Therefore, nodes with over-loaded CPU will have higher
priority than nodes whose network bandwidth is highly utilized.
5 Static thresholds (e.g., CPU idle time is less or equal than 5%) are used in
the current implementation.

 5

will reconfigure node k immediately. This is because the cost
for immediate reconfiguration will be less than waiting for the
system to be idle to reconfigure.

Active Harmony can automatically perform node
reconfiguration without taking the system down. While one
node is being reconfigured from one tier to another, all the
remaining nodes in the system are still serving requests
normally.

0

50

100

150

200

0 50 100 150 200

Iterations

Pe
rf

or
m

an
ce

 (W
IP

S)

Without reconfiguration
With reconfiguration

(a) One node moved from the proxy server tier to the
application server tier

(Workload changes from browsing to ordering)

0
20
40
60
80

100
120
140

0 50 100 150 200
Iterations

Pe
rf

or
m

an
ce

 (W
IP

S)

Without reconfiguration
With reconfiguration

(b) One node moved from the application server tier to

the proxy server tier
(Browsing workload)

Figure 4: Reconfiguration experiment results

Figure 4 shows the experimental results when applying
the reconfiguration algorithm. The initial configuration for
Figure 4(a) has four nodes serving the proxy tier and another
two nodes for the application tier; all six nodes are
homogeneous. The experiment starts with a browsing
workload and changes to an ordering workload after the 90th
iteration (The performance gains between 90th and 100th
iterations are due to different workloads). We forced the
Active Harmony system do the dynamic adjustment checking
exactly once right after the 100th iteration of the tuning
process. Figure 4(a) shows the performance improvement

when Active Harmony decides to move a node from the proxy
server tier to the application server tier based on the algorithm.
This is expected since when the system has a workload
dominated by ordering, it requires more application servers to
handle the dynamic data from the database. On the other hand,
most browsing workloads require static data that can be
served from the proxy servers. Before the adjustment, the
application servers are highly loaded (CPU utilization is
always close to 100%) and some proxy servers are idling most
of the time (CPU utilization is close to 0% and there are very
few network or disk I/O requests). After the adjustment, the
average utilization of the application servers is lowered while
the average loading for the proxy servers increases a little.
The bottleneck of the whole system is relieved and the system
performance is improved about 62%.

Figure 4(b) shows the performance improvement when
given a different configuration at the beginning. There are six
nodes, two of them serving as the proxy servers and four
serving as application nodes. However, the proxy servers are
highly utilized under the browsing workload. After the
dynamic adjustment checking after the 100th iteration, it
moved a node from the application server tier to the proxy
server tier for the adjustment automatically. The CPU and
disk I/O are highly loaded on the proxy servers before the
adjustment and some application servers are idling most of the
time. After the adjustment, the average load on all proxy
servers is lowered, the average utilization on the remaining
application servers is increased and the system performance is
improved for about 70%.

V. DISCUSSION
To tune existing software such as the Squid proxy server,

we needed to make some minimal modifications to add calls
to the Active Harmony API. However, some variables are
only referenced once after the program starts execution (i.e.,
those variables read from the configuration script file). Rather
than make more extensive changes to the program, the Active
Harmony system restarts the server for each of the tuning
iterations automatically. Our experiments take all costs of
parameter changes (including servers need to be restarted and
their warm up time) into consideration.

Another issue is the hard coded (compile time) limits in
the applications. In order to make the system tunable, some
limits had to be increased. Again, a more significant coding
effort could have been used to convert these hard-coded limits
into ones that could be changed at runtime. For example, to
increase the number of files opened simultaneously, the value
in the /proc/sys/fs/file-max on Linux needed to be increased.
Otherwise the number of files opened simultaneously would
be limited. In this case, recompilation of the linux kernel
would be necessary. Besides the kernel, the linux operating
system also imposes similar constraints in the
/etc/security/limits.conf and /etc/sysctl.conf .

Active Harmony helps the cluster-based web service
adapt itself when facing different workloads. It shows the
ability to tune a large-scale system automatically. The tuning
includes the parameter adjustment inside each machine and

 6

explicit configuration changes for load balancing. This
performance improvement is difficult to achieve by tuning
each single machine independently since it is extremely
difficult to decide the contribution of each individual machine
to the performance of the whole system. Another advantage is
that the user does not need to have detailed insight knowledge
about each component. He or she can simple apply the Active
Harmony system to all the parameters that may be
performance related.

VI. RELATED WORK
There are several projects that are trying to develop

techniques to allow applications to be responsive to their
available resources or that allow them to be tuned at runtime.
The Falcon project [8] focuses on computational steering. It
provides a way for users to alter the behavior of an application
under execution. The execution results are also changed based
on the steering mechanism. The Active Harmony project also
allows user to alter the configuration during execution but it is
focusing on performance tuning rather than the experiment
result.

The Autopilot project [16, 17] allows applications to be
adapted in an automated way. It uses sensors to extract
quantitative and qualitative performance data from executing
applications, and provides the requisite data for decision-
making. The kernel of the decision process for Autopilot is
fuzzy logic. Their actuators execute the decision by changing
parameter values of applications or resource management
policies of the underlying system. The Active Harmony
project differs from the Autopilot project in that it tries to
coordinate the use of resources by multiple libraries and
applications rather than focusing on a single application.

The AppLes project [5] and the Odyssey project [15]
focus on resource awareness at the application level. In those
systems, applications are informed of resource changes and
provided with a list of available resource sets. Then, each
application allocates the resources based upon a customized
scheduling to maximize its own performance. Active
Harmony encourages programmers to expose their needs in
terms of options and their characteristics rather than as
selecting from specific resources alternatives described by the
system.

The ATLAS [21] project has developed automatically
tuned linear algebra libraries. They develop a methodology
for the automatic generation of highly efficient basic linear
algebra routines for a given microprocessor. By using a code
generator that probes and searches the system for an optimal
set of parameters, it can produce highly optimized matrix
multiply for a wide range of architectures. The difference
between our work and ATLAS is that our work focuses on
general applications that use program libraries rather than that
of a specific library.

The Nimrod/O project [4] tries to reduce the search space
for engineering design. It applies multiple tuning algorithms
including Simplex, P-BFGS, Divide and Conquer, and
Simulated Annealing. The design for the aerofoil may need to
search for the global optima instead the local optima. The

Active Harmony project focuses on the performance issue.
Therefore, operating points on local optima are still
acceptable in most of the cases since they are also good
enough from the performance point of view.

Another TPC-W benchmark implementation available
from an academic institute is from the DynaServer project
[19]. The project studies the design of scalable, high-
performance and highly available e-business servers.

Others have discussed cluster-based web services with
different performance metrics. Joel L. Wolf’s work [22]
proposed a scheme, which attempts to optimally balance the
load on the servers of a clustered Web farm. They try to solve
the performance problem by achieving minimal average
response time for customer requests, and thus ultimately
achieve maximal customer throughput.

ADAPTLOAD [18] developed by Riska, A., et al. models
clustered web server as a front-end dispatcher and back-end
nodes. They use an online algorithm to decide the share of the
total workload for each node to achieve load balance. They
treat back-end nodes as static while Active Harmony tries to
configure the clustered system properly to achieve better
performance.

Chen, et al. [7] use a reconfiguration mechanism to
improve the throughput of a clustered system. Their focus is
to avoid letting a small number of running jobs with
unexpectedly large memory allocation block the execution of
the majority jobs in the cluster. Active Harmony focuses on a
general mechanism to improve overall system performance by
several means.

 Kalogeraki, et al. [10] migrate objects or jobs from
hotspots in the cluster to improve the performance. Their goal
is to achieve load balance while Active Harmony focuses on
performance improvement.

Gage [13] focuses on load distribution to provide the
performance guarantee for cluster-based Internet services.
This involves support from network level while the Active
Harmony only tries to tune the system to achieve better
performance.

Levy, et al. [12] use a queuing model to analyze a cluster-
based web service system. Based on the model built, they
implement a prototype for a performance management system
that is transparent to the system to be tuned.

The major difference between Active Harmony and these
works above is that Active Harmony provides a general
solution that does not require the user to have domain specific
knowledge. The user does not need to analyze the details of
the system components or build models.

VII. CONCLUSION
The main contribution for this paper is that we apply

Active Harmony to a coupled system of independent
applications. We applied Active Harmony to a real-world
large-scale system and evaluated the result using a practical
benchmark. The tuning includes the parameters adjustment
inside each machine and the explicit configuration change for
load balancing. All this is done without the user needing to
have domain specific information.

 7

The performance improvement is difficult to achieve
when tuning individual components of the system separately.
Since no single universal configuration is good for all kinds of
workloads, the cluster based web service system needs a
tuning mechanism like the Active Harmony. Active Harmony
adjusts the tunable parameters based on the observed
performance results to improve the overall system
performance. The experiment results show that the Active
Harmony system improves the system performance from 5%
to 16% depending on the workload.

Scalability becomes a critical issue when tuning large-
scale systems with numerous parameters. We investigated two
approaches for tuning – parameter replication and parameter
partitioning. This is helpful to speed up the tuning process so
the tuning results will not be out of date. Parameter
duplication helps to speedup the tuning process while
parameter partitioning makes the tuning process smoother
with stable performance.

Dynamically adjusting the components of the cluster, the
performance is improved by better load balancing. In our
experiments, the system throughput is improved up to 70%.
All the results demonstrate that Active Harmony can bring
significant performance improvement to the cluster-based
web service system and permit new ways to adapt
applications to dynamic environments.

ACKNOWLEDGEMENT

This work was supported in part by NSF award EIA-
0080206 and DOE Grant DE-FG02-01ER25510.

REFERENCES

1. The Apache Jakarta Project http://jakarta.apache.org/.
2. MySQL Database Server, MySQL AB

http://www.mysql.com.
3. Squid Web Proxy Cache http://www.squid-cache.org/.
4. Abramson, D., et al. An Automatic Design Optimization

Tool and its Application to Computational Fluid
Dynamics. in SC. 2001. Denver.

5. Berman, F. and R. Wolski. Scheduling from the
perspective of the application. in Proceedings of 5th
IEEE International Symposium on High Performance
Distributed Computing. 1996. Syracuse, NY, USA 6-9
Aug. 1996.

6. Bezenek, T., et al., Java TPC-W Implementation
Distribution http://www.ece.wisc.edu/~pharm/tpcw.shtml.

7. Chen, S., L. Xiao, and X. Zhang. Adaptive and Virtual
Reconfigurations for Effective Dynamic Job Scheduling
in Cluster Systems. in 22 nd International Conference on
Distributed Computing Systems (ICDCS'02). 2002.
Vienna, Austria.

8. Gu, W., et al. Falcon: On-line Monitoring and Steering
of Large-Scale Parallel Programs. in Frontiers '95. 1995.
McLean, VA: IEEE Press.

9. Hollingsworth, J.K. and P.J. Keleher. Prediction and
Adaptation in Active Harmony. in The 7th International
Symposium on High Performance Distributed Computing.
1998. Chicago.

10. Kalogeraki, V., P.M. Melliar-Smith, and L.E. Moser.
Dynamic Migration Algorithms for Distributed Object
Systems. in The 21st International Conference on
Distributed Computing Systems. 2001. Mesa, AZ.

11. Keleher, P.J., J.K. Hollingsworth, and D. Perkovic.
Exposing Application Alternatives. in ICDCS. 1999.
Austin, TX.

12. Levy, R., et al. Performance Management for Cluster
Based Web Services. in The 8th IFIP/IEEE International
Symposium on Integrated Network Management
(IM2003). 2003. Colorado Springs, Colorado, USA.

13. Li, C., et al. Performance Guarantee for Cluster-Based
Internet Services. in The 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS
2003). 2003. Providence, Rhode Island.

14. Nelder, J.A. and R. Mead, A Simplex Methd for Function
Minimization. Comput. J., 1965. 7(4): p. 308--313.

15. Noble, B.D., et al. Agile Application-Aware Adaptation
for Mobility. in 16th ACM Symposium on Operating
Systems Principals. 1997.

16. Ribler, R.L., H. Simitci, and D.A. Reed, The Autopilot
Performance-Directed Adaptive Control System. Future
Generation Computer Systems, special issue
(Performance Data Mining), 2001. 18(1): p. 175-187.

17. Ribler, R.L., et al. Autopilot: Adaptive Control of
Distributed Applications. in High Performance
Distributed Computing. 1998. Chicago, IL.

18. Riska, A., et al. ADAPTLOAD: Effective Balancing in
Custered Web Servers Under Transient Load Conditions.
in 22 nd International Conference on Distributed
Computing Systems (ICDCS'02). 2002.

19. Snavely, A., et al. A Framework for Application
Performance Modeling and Prediction. in
Supercomputing 2002. 2002. Baltimore, MD.

20. Tapus, C., I.-H. Chung, and J.K. Hollingsworth. Active
Harmony: Towards Automated Performance Tuning. in
SC'02. 2002. Baltimore, Maryland.

21. Whaley, R.C. and J.J. Dongarra. Automatically tuned
linear algebra software (ATLAS). in Supercomputing.
1998. Orlando, FL.

22. Wolf, J. and P.S. Yu, On Balancing the Load in a
Clustered Web Farm. ACM Transactions on Internet
Technology, 2001. 1(2): p. 231-261.

 8

	INTRODUCTION
	SYSTEM
	Active Harmony
	TPC-W Benchmark

	Environment

	TUNING
	Impact of Varying Workload
	Cluster Tuning

	AUTOMATIC CLUSTER RECONFIGURATION
	DISCUSSION
	RELATED WORK
	CONCLUSION

