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Abstract— Active Harmony is an automated runtime
performance tuning system. In this paper we describe sev-
eral case studies of using Active Harmony to improve the
performance for scientific libraries and applications. We
improved the tuning mechanism so it can work iteratively
with benchmarking runs. By tuning the computation and
data distribution, Active Harmony helps applications that
utilize the PETSc library to achieve better load balance
and to reduce the execution time up to 18%. For the
climate simulation application POP using 480 processors,
the tuning results show that by changing the block size
and parameter values, the execution time is reduced up
to 16.7%. Active Harmony is able to improve GS2, a
plasma physics code, up to a factor of 5.1 times faster. The
experiment results show that the Active Harmony system
is a feasible and useful tool to automated performance
tuning for scientific libraries and applications.

I. INTRODUCTION

Scientific applications today use different plat-
forms from clusters, to SMP’s to vector machines.
In order to fully utilize these systems, performance
tuning is important.

Currently, performance tuning for scientific ap-
plications heavily relies on a small group of expe-
rienced people. A commonly used mechanism for
scientific program performance tuning is to work on
“representative short runs” or benchmarking runs.
In other words, the scientific program is run with
meaningful input/configuration for a short period
of time. Based on the performance observed, the
experienced people may make some changes and
then run the program again. This process repeats
until the performance is acceptable. After that, the
program is tuned and ready for production runs. The
“representative” or meaningful input/configuration
is usually decided by the scientists who developed

the scientific program or who have in-depth domain
knowledge. This tuning process is usually time
consuming and not cost-effective. In addition, due to
the fact that frequently these applications have large
computational demands and thus need to be run on
large-scale parallel computers, even a small percent-
age improvement in the execution time will reduce
the cost dramatically. Alternatively, with improved
execution time, the program can also achieve better
results such as higher resolution, better precision or
use a larger data set.

An important method that is commonly used in
performance tuning is to adjust the configurations
to achieve better performance. For example, a con-
figuration parameter can be data distribution. If the
data layout is properly aligned, the communication
cost can be minimized such that overall execution
time is reduced. Likewise, performance can also be
improved by better load balancing.

Active Harmony is designed for runtime perfor-
mance tuning in a dynamic environment. To do this,
domain knowledge may be needed in order to decide
what parameters can be tuned and their valid ranges.
Active Harmony allows general users to have the
benefits of performance tuning without in-depth do-
main knowledge. With Active Harmony, application
developers can include tuning into the design and
specify tunable parameters. Therefore the general
users can adapt the application easily for different
environments. In this paper, we apply the Active
Harmony system to some widely used scientific
libraries and applications. The search space for the
tuning is huge and thus cannot be done manually.
We show how Active Harmony helps to improve
performance for scientific applications. By changing



the configuration, we can reduce the execution time
of scientific libraries and applications significantly.

This paper differs from our previous work [11],
[13] in that we apply Active Harmony to large-scale
scientific applications running on high performance
computers. The tuning experiments are done with
computing/data distributions and parameter config-
urations. We extended the tuning mechanism from
runtime “on-line” to “off-line” using representative
short runs1. We show that general users may easily
apply Active Harmony to scientific applications
without in depth domain knowledge.

Active Harmony suggests to use on-line tuning
if the parameter can and needs be changed during
runtime. Off-line tuning applies to parameters that
are fixed and cannot be changed during runtime
(e.g., parameters that are read once when the pro-
gram starts). This also applies for parameters that
can be changed during runtime but are insensitive to
workload (e.g., some parameters need to be changed
once per machine as part of porting efforts).

The structure of this paper is organized as fol-
lows: Section II gives an brief overview of the Ac-
tive Harmony tuning system. Section III discusses
issues involved when applying the Active Harmony.
Section IV, V, and VI demonstrate how Active
Harmony is applied to three different scientific
library and applications (PETSc, POP, and GS2)
respectively to improve the performance. Section
VII discusses issues involved when applying the
Active Harmony. Related work is given in Section
VIII and Section IX concludes the paper.

II. ACTIVE HARMONY

To provide automatic performance tuning, we de-
veloped the Active Harmony system [11]–[13], [19],
[20]. Active Harmony is an infrastructure that allows
applications to become tunable by applying minimal
changes to the application and library source code.
This adaptability provides applications with a way
to improve performance during a single execution
based on the observed performance. The types of
things that can be tuned at runtime range from
parameters such as the size of a read-ahead buffer

1“On-line” tuning refers to program configuration changes during
runtime without stopping/restarting. “Off-line” with representative
short runs refers to the program running for a short period of time;
stopping; changing configuration and then restarting.
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Fig. 1. Active Harmony Automated Tuning System

to what algorithm is being used (e.g., heap sort vs.
quick sort).

Figure 1 shows the Active Harmony automated
runtime tuning system. The Library Specification
Layer provides a uniform API to library users
by integrating different libraries with the same or
similar functionality.

The Adaptation Controller is the main part of
the Harmony server. This component manages the
values of the different tunable parameters provided
by the applications and changes them for better
performance. The kernel of the adaptation controller
is a tuning algorithm. The algorithm is based on the
Nelder-Mead simplex method [23] for a finding a
function’s minimum value.

In the Active Harmony system, we treat each
tunable parameter as a variable in an independent
dimension2. Each configuration which is a set of
tunable parameters is represented as a point in the
search space. The objective function can be decided
by the user. The algorithm makes use of a simplex,
which is a geometrical figure defined by k + 1
connected points in a k-dimensional space. In 2-
D space, the simplex is a triangle, and for the 3-D
space the simplex is a non-degenerated tetrahedron.
The simplex method approximates the extreme of

2For dependent variables, we use techniques developed in [12] to
make proper parameter value selection for tuning.



a function by considering the worst point of the
simplex and forming its symmetrical image through
the center of the opposite (hyper) face. At each step
a better point replaces the worst points and thus
moves the simplex towards the extreme, in our case
towards the minimum.

The original simplex algorithm assumes a well-
defined function and works in a continuous space.
However, neither of these assumptions holds in our
situation. Thus we have adapted the algorithm by
simply using the resulting values from the nearest
integer point in the space to approximate the perfor-
mance at the selected point in the continuous space.

Due to the large search domain for possible con-
figurations, the major challenge when users apply
Active Harmony to a large-scale system is the time
it takes for tuning. A lengthy tuning process will
make the tuning results unusable since the system or
the environment may have changed by the time the
algorithm finishes. In this paper, we apply the Active
Harmony to scientific library and applications on
large-scale high performance computers. It helps the
application user to utilize the systems in a reason-
able amount of time. In addition, it encourages de-
velopers to make libraries and applications tunable
to adapt to different platforms and environments.

III. PERFORMANCE TUNING

One contribution of this paper is that we added
off-line tuning to Active Harmony so it can tune
scientific libraries and applications iteratively.

In particular, we added the ability to use multiple
representative short runs (e.g., benchmarking runs)
and make tuning modifications between runs. This
approach complements our existing technique of
adding calls to the Active Harmony API to the
application code to allow parameter changes during
execution. Using representative short runs requires
minimum or no modifications to the scientific li-
brary or the application. For some applications,
there are parameters that are only referenced once
after the program starts execution (e.g., parameters
read from the configuration script file). Rather than
make more extensive changes to the application,
the Active Harmony system uses one representative
short run as one tuning iteration.

Our experiments take all costs of parameter
changes (including applications needed to be re-run

and their warm up time) into consideration.
This “off-line” and “iterative” tuning mechanism

is also useful if the parameter is hard-coded in the
application. If the parameter is hard-coded into the
binary program and there is no access to applica-
tion source code, Active Harmony helps with per-
formance tuning by adjusting configurations (e.g.,
inputs and topologies).

Active Harmony also provides an API for de-
velopers to make libraries and applications tunable
(i.e., “on-line” and “iterative” tuning mechanism).
For long-running applications where representative
short runs are not available, the developers can
easily hook up the application with Active Harmony
tuning server. During the runtime, Active Harmony
tuning server adjusts the parameter values to achieve
better performance.

IV. PETSc LIBRARY

PETSc [4]–[6] (Portable, Extensible Toolkit for
Scientific Computation) is a suite of data structures
and routines for the scalable (parallel) solution of
scientific application modeled by partial differential
equations. PETSc is intended for use in large-scale
application projects. Software packages that use or
interface to PETSc include TAO [7], SCIRun [28],
Magpar [27], libMesh [1], and Snark [2], [3]. It is
widely used in optimization, biology, computational
fluid dynamics, and wave propagation.

PETSc uses MPI for message communication. It
integrates architecture dependent optimized libraries
such as BLAS and LAPACK. It includes parallel
linear and nonlinear equation solvers that can be
easily integrated into C, C++, and Fortran pro-
grams. PETSc also provides interfaces to Matlab and
Mathematica. From a performance point of view,
it allows users to have detailed control over the
solution process. For example, the user may specify
the details of matrix decomposition for data storage
or array distribution for computation. This makes
performance tuning for this library interesting and
challenging since those details are environment and
problem dependent.

We applied the Active Harmony to two PETSc
examples to show its tuning ability. For each ex-
ample, it requires about 10 lines of modifications
in the program to make it tunable via our tuning
server. The first example solves a linear system in
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parallel with SLES (linear equation solver). The key
point we are interested in is the matrix decompo-
sition. Since decomposition affects data locality, it
changes the amount of communication throughout
the computation and thus has a dramatic impact on
the performance. The concept is shown in Figure
2(a), the black blocks represent non-zero elements
of the matrix. Data locality is improved if the matrix
decomposition boundary uses the line A rather than
using line B (i.e., dense sub-matrices are not spread
across multiple nodes).

We made slight modifications to the source code
(so the boundary is read from a configuration file
instead of hard-coded) to allow Active Harmony
to change the boundary for matrix decomposition.
The total number of partitions is pre-defined (4
in this example). Each partition has at least one
row and the number of rows for a single partition
can be as small as one. Figure 2(b) shows the
results for a small sample program running on four
processing nodes. The default configuration (solid
lines) decomposes the matrix into four even size par-
titions. After tuning, the result (dashed lines) shows
that by changing the decomposition boundaries, the
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Fig. 3. Computation distribution

performance is improved. We also ran with a matrix
size of 21, 025×21, 025 using 32 processing nodes.
This results in an 18% improvement in execution
time after tuning.

We also applied the Active Harmony to a prob-
lem with larger size. We use a matrix of size
90, 601×90, 601 (also with 32 processing nodes)
as the input to the program. The full search space
has O(10100) points. With techniques we developed
in our previous work [12], Active Harmony takes
120 iterations (tuning steps) to achieve a similar
improvement (in the execution time) as the smaller
matrix size problem (i.e., 15 – 20%).

The second PETSc example is a nonlinear driven
cavity with multiple grids in two dimensions. The 2-
D driven cavity problem is solved using a velocity-
vorticity formulation. It uses the SNES (non-linear
equation solver) object in the PETSc library. The
Harmony tuning involves computation distribution.
The problem consists of numerous grid points.
The tunable parameter is how the grid points are
distributed among processing nodes. The default
configuration divides the grid points into distributed
arrays with equal size. This works well in general
when the processing nodes are homogeneous (i.e.,
all the processing nodes have the same processor
type and speed). When using heterogeneous pro-
cessing nodes (where there are nodes with different
characteristics), the performance will be influenced
dramatically by the layout of the computing grid
points.

Figure 3 shows the configurations for a small
example problem before and after tuning when
using homogeneous and heterogeneous processing



nodes3. This problem consists of 2,500 grid points
with 4 processing nodes. The solid lines are the
default configurations and the dashed lines are the
results after tuning. The distribution is different for
homogeneous and heterogeneous nodes. By compar-
ing Figure 3(a) and 3(b), it can be seen that when
the processing nodes are homogeneous, the grid
points should be divided into distributed arrays with
equal size and in the heterogeneous environment,
the system should try to utilize the processing nodes
that have more computational powerful (the bottom
two nodes).

We applied Active Harmony to the computation
distribution example with 40,000 grid points using
32 processors (where the search space has O(1036)
points). As a result of tuning, up to an 11.5%
improvement in the execution time (compared to
default partitioning without tuning) was observed.

V. PARALLEL OCEAN PROGRAM (POP)

The Parallel Ocean Program (POP) [16], [17],
[29] was developed at Los Alamos National Lab-
oratory, and is a descendant of the Bryan-Cox-
Semtner class of ocean models first developed at
the NOAA (National Oceanic and Atmospheric
Administration) Geophysical Fluid Dynamics Lab-
oratory in Princeton, NJ in the late 1960s [10].
POP is currently used by the Community Climate
System Model (CCSM) as the ocean component.
POP solves three-dimensional primitive equations
for fluid motions on a sphere using hydrostatic
and Boussinesq approximations. Spatial derivatives
are computed using finite-difference discretizations
which are formulated to handle any generalized
orthogonal grid on a sphere, including dipole and
tripole grids.

We improved the performance (execution time)
by enabling Active Harmony to adjust the block
(a group of grid points) size and parameter val-
ues. The problem size is 3, 600×2, 400 grid points.
The program divides the problem into 480 blocks
(processors) and runs on a large SP-3 at NERSC
(National Energy Research Scientific Computing
Center). The nodes of the NERSC system consist

3In Figure 3(a), four nodes are identical Intel R©PentiumTM4
processors where in Figure 3(b), bottom two nodes are identi-
cal Intel R©PentiumTM4 processors and top two nodes are identical
Intel R©PentiumTMII processors.
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Fig. 4. Block size tuning of POP running on 480 processors using
different number of CPUs per node.

of 16-way SMP’s. One of the tuning criteria is how
many processors per node to use. The Processors per
node topology will affect the data locality and com-
munication overhead. With better block size, data
locality is improved and communication overhead
is reduced. Therefore the overall performance (exe-
cution time) is improved. The default configuration
came with 180×100 as the size for each block.

Figure 4 shows the tuning result. There are two
set of labels in the x-axis. The first set of labels
represents the topology for processing nodes and
the second set of labels in the parenthesis represents
the best block size found. The two different bars
represent the performance for layouts before and
after tuning. The first bar is the performance for
the layout found (block size within the parenthesis
on the x-axis) after tuning. The second bar is the
performance using the default layout (180×100).
Consider the second set of bars here. In this ap-
plication, 48×10 indicates that the topology used
in the experiment is 48 nodes with 10 processors
on each node and the best block size found by
tuning is 150×120. The figure shows that there
is no single block size good for all topologies
and the block size should be adjusted accordingly
(block size 120×150 is best for topologies 30×16,
60×8; block size 150×120 is best for topologies
48×10, 120×4, and 240×2; block size 45×400 is



TABLE I

PARAMETER CHANGES THROUGH ITERATIONS4

Iteration Parameter Change from To
0 (use default configuration)
1 num iotasks 1 32
2 hmix momentum choice anis del2
3 hmix tracer choice gent del2
4 kappa choice constant variable
5 slope control choice notanh clip
6 hmix alignment choice east grid
7 state choice jmcd linear
8 state range opt ignore enforce
9 ws interp type nearest 4point
10 shf interp type nearest 4point
11 sfwf interp type nearest 4point
12 ap interp type nearest 4point

TABLE II

PARAMETER TUNING

Parameter Default After tuning
num iotasks 1 4
hmix momentum choice anis del2
hmix tracer choice gent del2
kappa choice constant variable
slope control choice notanh clip
hmix alignment choice east grid
state choice jmcd linear
state range opt ignore enforce
ws interp type nearest 4point
shf interp type nearest 4point
sfwf interp type nearest 4point
ap interp type nearest 4point

best for topology 80×6). With tuning only for the
block size, the execution time can be reduced up
to 15%. This shows that as the processors topology
changes, the layout needs to be changed for better
performance. Similarly, the same scientific program
often runs on different platforms with a different
number of processors per node, the results in this
experiment show that the program should be tuned
based on the machine configuration to achieve better
performance.

Besides changing the block size, we further apply
the Active Harmony system to adjust the param-
eter values using 32 processors (8 nodes, 4 pro-
cessors/node) on Hockney at NERSC. The POP
program has numerous parameters and there are
about 20 parameters that are performance related.
There are 2 to 4 possible values for each of the
parameters. This makes the search space fairly large.
However, the tuning results show that the Active

Harmony system can achieve a 12.1% improvement
in execution time after trying just 12 configurations.
In addition, the best improvement is 16.7% improve-
ment in execution time after 27 iterations. Table I
shows how the parameter values have changed for
each of the initial 12 iterations (only parameters
whose value change are listed for each iteration).
Table II shows the values for parameters that are
changed before and after tuning (before and after 27
iterations). In this application a harmony iteration is
one simulation run. Some of these parameters may
affect scientific results. Ultimately tuning scientific
programs requires assistance from experts with do-
main knowledge to make the tuning results useful
and practical. We include these parameters in this
experiment since our primary goal was to study
the scalability of the harmony system, and not the
output of the program being tuned.

VI. GS2

GS2 [15], [21] is a physics application, developed
to study low-frequency turbulence in magnetized
plasma. It is typically used to assess the microsta-
bility of plasmas produced in the laboratory and
to calculate key properties of the turbulence which
results from instabilities. It is also used to simulate
turbulence in plasmas which occur in nature, such
as in astrophysical and magnetospheric systems.
Each of these modes uses the same simulation
code on radically different time and space scales.
The simulation involves billions of mesh points.
We tuned the program with two different collision
modes controlled by the collision model variable
(that controls which collision operator is used).

Our primary tuning parameter was “data layout”.
The program already had the ability to make a
runtime selection of how to layout the data. The
primary developer of the code had done some
experiments to select a reasonable default layout.
However, without an automated tool like Active
Harmony, he was unable to fully tune the layout.

The initial analysis was done using 128 pro-
cessors on NERSC Seaborg (8 nodes, 16 proces-
sors/node) system. In order to reduce the execu-
tion time, we applied Active Harmony to tune the

4Each row shows only the parameter that changes; all the rest of
parameters remain the same compared to the previous iteration.
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Fig. 5. GS2 layout tuning with different environment5

program. By changing the data layout, the program
execution time was reduced from 55.06s to 16.25s
(3.4× faster) without collision mode and from
71.08s to 31.55s (2.3× faster) with collision mode.
This is for a typical benchmarking run of 10 time
steps. Production runs tend to have 1,000 or more
time steps, and would see a similar improvement.
Based on our results, the GS2 team has changed
their default data layout to the ones recommended
by Active Harmony.

In Figure 5, we compare the tuning results
with different topologies on Seaborg and a re-
sult from a Linux cluster. The Linux cluster
has 64 nodes; each node is equipped with dual
Intel R©XeonTM2.66GHz processors (with Hyper
Threading enabled), 2GBytes main memory and a
Myrinet network. In this experiment we consider
different data layouts. The data layout is specified
with five variables x,y,l,e, and s. The variables x
and y are the spatial coordinates; l and e are velocity
coordinates and s is the particle specie. The notation
indicates the order of the dimensions of the primary
5-dimensional array in the simulation. The default
data layout used by GS2 is lxyes. In the figure, it
shows that when the data can be aligned properly
with the topology (Linux 64×2, Seaborg 16×8,
Seaborg 8×16), using the right data layout (yxles,
yxels) will improve the performance significantly.

We then proceeded to further improve the perfor-
mance (execution time ) on the Linux cluster. Based
on the layout tuning result, we used Active Harmony

5The label A×B follows the machine name represents A nodes
and B processors per node.

TABLE III

GS2 TUNING RESULT FOR BENCHMARKING RUN

Benchmarking run with “lxyes” layout
Tuning method Tuning time Tuning result - seconds

(negrid,ntheta,nodes) (iterations) (improvement %)
Default - no tuning

(16,26,32) – 43.7

Tuned version
(8,22,8) 8 18.4 (57.9%)

Benchmarking run with “yxles” layout
Tuning method Tuning time Tuning result - seconds

(negrid,ntheta,nodes) (iterations) (improvement %)
Default - no tuning

(16,26,32) – 16.4

Tuned version
(8,22,8) 9 14.8 (9.8%)

TABLE IV

GS2 TUNING RESULT FOR PRODUCTION RUN

Production run with “lxyes” layout
Tuning method Tuning time Tuning result - seconds

(negrid,ntheta,nodes) (iterations) (improvement %)
Default - no tuning

(16,26,32) – 1480.3

Tuned version
(10,20,28) 9 244.2 (83.5%)

Production run with “yxles” layout
Tuning method Tuning time Tuning result - seconds

(negrid,ntheta,nodes) (iterations) (improvement %)
Default - no tuning

(16,26,32) – 384.9

Tuned version
(10,16,18) 11 240.8 (37.4%)

to tune the program first using benchmarking runs
(10 time steps) and then with input for production
runs (1,000 time steps). There are three tunable
parameters: ntheta (number of grid points per 2π
segment of field line), negrid (energy grid), and
the nodes (number of nodes). These parameters
were identified by the application developer who
is the expert with domain knowledge. The tuning
result for the benchmarking runs is summarized
in Table III and for production runs in Table IV.
In the experiments, we compare the tuning time
(iterations) and results with and without tuning. The
three values in the first column are the parameter
values after tuning. There is larger improvement
when the data layout is lxyes compared to a better
layout yxles (that we find in the first part of the
experiment). However, starting with the better data
layout, Active Harmony achieves a better overall
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performance result.
The experimental results also suggest that proper

data alignment with the number of processors is the
major factor deciding the performance. The order
of the dimensions should be adjusted so the data
can be aligned with the number of nodes and thus
reduce the communication overhead. Therefore even
with poor data layout such as lxyes, by adjusting
the resolution and number or processors, it can still
achieve comparable performance results.

While changing negrid and ntheta may affect
the simulation resolution, the dramatic performance
gains possible warrant considering using such pa-
rameters. As directed by the program developer,
all the parameter value ranges used for tuning in
this experiment will generate acceptable simulation
resolutions. Practical scientific program tuning ul-
timately involves experts with domain knowledge
who can make informed choices about these trade-
offs. If these tradeoffs can be quantified, other
metrics such as fidelity and scheduling policy can
also be specified and integrated into the objective
function so the system can automate this tradeoff.

In order to compare the tuning result with the
search space (O(105) possible configurations) and
to understand how well Active Harmony does the
tuning, we also explore the whole search space
using systematic sampling (i.e., using configurations
that are evenly distributed in the whole search
space) for the production runs. We explore (O(104)
configurations and the performance distribution is
shown in Figure 6.

The best configuration found in this systematic
sampling is (negrid, ntheta, nodes) = (8, 16, 32)
and its performance is 125.8s. However, these are
rare points and there are only few configurations
(less than 2%) in the whole search space with an
execution time less than 200 seconds.

Compared to the performance gathered from sys-
tematic sampling, the configuration found by Active
Harmony is within the top 5% of the configurations.
Tuning using Active Harmony helps the GS2 run
3.4× faster. A lesson learned is that there are still
a few configurations with better performance. In
the future, we hope to develop techniques to find
these configurations with less exhaustive techniques.
Finding those configurations can be time-consuming
and thus not cost-effective. By investing a small
amount of effort, Active Harmony helps to tune
the GS2 program to produce significantly better
performance.

In conclusion we applied two different techniques
to tuning GS2: data distribution and parameters
manipulation. Taken together these two techniques
reduced the runtime of GS2 by a factor of 5.1.

VII. DISCUSSION

Active Harmony helps scientific libraries and
applications adapt on different platforms and/or with
different workloads. It shows the potential of tun-
ing a large-scale system automatically. The tuning
includes parameter adjustment inside the programs
and explicit configuration changes to improve per-
formance (e.g., better load balancing, less commu-
nication). As shown in the experimental results,
the performance improvement is significant. This
performance improvement is difficult to achieve by
tuning each single component independently since
it is extremely difficult to decide the contribution
of each individual component to the performance
of the whole application. Another advantage is that
the user does not need to have detailed insight
knowledge about each component when adapting
the application to a new runtime environment. The
user can simple apply the Active Harmony system to
all the parameters that may be performance related.

Tuning for scientific programs is a challenging
task due to numerous parameters with many pos-
sible values. Since the search space is too large,
the optimal configuration may not be available in a



reasonable tuning time period. Even using sampling
to understand the whole search space the experiment
described in Section VI can take months of CPU
time exploration for real scientific applications. Ac-
tive Harmony searches for a good configuration
intelligently to reduce the tuning time.

The selection between on-line and off-line tuning
depends on the characteristics of the parameters.
If a parameter can be changed during the runtime
and is sensitive to the workload, on-line tuning
is proposed. On the other hand, if a parameter
cannot be changed during runtime (e.g., size of
static memory allocation) or is insensitive to the
workload, it might be fine to tune it once per run or
once per machine (i.e., as part of the tuning effort).

The tradeoff between accuracy and performance
improvement is an important issue in performance
tuning. For scientific applications, there are some
configurations that help to improve the performance
but the output generated can be less accurate. This
tradeoff ultimately involves experts with domain
knowledge who can make informed choices. If these
tradeoffs can be quantified, other metrics such as
fidelity and scheduling policy can also be specified
and integrated into the objective function so the
system can automate this tradeoff.

VIII. RELATED WORK

Autopilot [25], [26] allows applications to be
adapted in an automated way. Autopilot (developed
at the University of Illinois, Urbana-Champaign) in-
tegrates dynamic performance instrumentation and
on-the-fly performance data reduction with config-
urable, malleable resource management algorithms.
It has a real-time adaptive control mechanism that
automatically chooses and configures resource man-
agement algorithms based on application request
patterns and observed system performance. The
goal of the Autopilot project is the creation of
an infrastructure for building resilient, distributed,
and parallel applications. It uses sensors to ex-
tract quantitative and qualitative performance data
from executing applications, and provides requisite
data for decision-making. Artificial Neural Network
(ANN) and Hidden Markov Model (HMM) are used
for classification. Autopilot uses fuzzy logic to au-
tomate the decision making process. The actuators
execute the decision by changing parameter values

of applications or resource management policies
of the underlying system. Active Harmony differs
from Autopilot in that it tries to coordinate the use
of resources by multiple libraries and applications.
Besides, both the instrumentation using sensors and
rule-based decision making require more domain
knowledge for the program being tuned. Active
Harmony tries to provide a tuning mechanism where
little or no domain knowledge is required for tuning.

Another approach is application level scheduling.
AppLeS [9] allows applications to be informed
of the variations in resources and presented with
candidate lists of resources to use. In this system,
applications are informed of resource changes and
provided with a list of available resource sets.
Then, each application allocates the resources based
upon a customized scheduling to maximize its own
performance. The Network Weather Service [34]
is used to forecast the network performance and
available CPU percentage to AppLeS agents. Active
Harmony differs from AppLeS in that we try to
optimize resource allocation between multiple li-
braries and applications, whereas AppLeS lets each
application or library adapt itself independently. In
addition, by providing a structured interface for
applications to disclose their specific preferences,
Active Harmony will encourage programmers to
think about their needs in terms of options and their
characteristics rather than as selecting from specific
resource alternatives described by the system.

The GrADS [8] further improves the efforts from
Autopilot and AppLeS projects. It tries to simplify
distributed heterogeneous computing environment
so it is easier for ordinary scientific users to develop,
execute, and tune applications on the Grid. Active
Harmony can serve as a part of the dynamic opti-
mizer to tailor the reconfigurable applications and
systems for good performance with the available
resources.

The Odyssey project [24] developed at the Uni-
versity of California at Berkeley focuses on re-
source awareness at the application level. In this
system, each application allocates the resources
based upon a customized scheduling to maximize
its own performance. Odyssey uses Fidelity as a
metric; Fidelity refers to changes in quality of
the produced output. The metric is data dependent.
For examples, with video, Fidelity might measure



image clarity or compression rate. At all levels of
service, Fidelity must be pre-computed and stored
at the server. Odyssey only deals with half of the
problem. It only handles read operations; it does
not concern itself with issues like reintegration, and
collaboration with other systems.

The ATLAS (Automatically Tuned Linear Alge-
bra Software) [32], [33] project provides automat-
ically tuned software specialized in linear algebra
libraries. They have developed a methodology for
the automatic generation of highly efficient basic
linear algebra routines for each microprocessor. By
using a code generator that probes and searches the
system for an optimal set of parameters, it can pro-
duce highly optimized matrix multiply routines for
a wide range of architectures. The OSKI (Optimized
Sparse Kernel Interface) [31] library and the FFTW
[18] library also share the spirit of the ATLAS.
OSKI is a collection of low-level C primitives that
provide automatically tuned computational kernels
on sparse matrices, for use in solver libraries and
applications. FFTW is a C subroutine library for
computing the discrete Fourier transform (DFT) in
one or more dimensions, of arbitrary input size,
and of both real and complex data. The difference
between those special-purpose libraries and Active
Harmony is that our work focuses on general appli-
cations that use program libraries rather than that of
a specific library. For performance tuning that the
problem and the performance model is well-defined,
the users should utilize those libraries optimized
for the specific functionality. For general purpose
performance tuning, Active Harmony should be a
good choice.

Prophesy [30] is an infrastructure for analyz-
ing and modeling the performance of parallel and
distributed applications. Their work [22] proposed
dynamic load balancing for distributed systems like
the Grid environment. Instead of the heterogeneity
of processors, their framework focuses on the het-
erogeneity and dynamic load of the network. In our
work, Active Harmony improves the performance
for scientific programs by tuning the computation
and data distributions. In addition, Active Harmony
can also tune other parameters such as buffer sizes
and number of threads to further improve the per-
formance.

Another project involving load balancing on par-

allel computers is Zoltan software [14]. Its load-
balancing suite provides three classes of parallel
partitioning algorithms: geometric bisection, space-
filing curve partitioning, and graph partitioning.
Zoltan allows an application to switch between
partitioning algorithms via a function call. Thus
the user may compare different algorithms within
a single application easily. This enables users to
try several algorithms and find the best ones for
their applications. Instead of specific algorithms
designed for load-balancing, Active Harmony treats
the parameters that affect load-balancing same as
other parameters and tune them together to improve
the overall performance.

IX. CONCLUSION

In this paper, we showed that automated perfor-
mance tuning is useful for scientific libraries and
applications to achieve better performance. When
tuned, programs can run faster, or achieve higher
resolution and use larger data sets in the same
amount of time. Another important reason we need
automated performance tuning is adaptation. The
execution environment may change rapidly and
there is no single configuration good for all kinds
of environments. Manually tuning may not be a
feasible solution since it can be extremely time
consuming and the system may have changed again
before the manual tuning is completed. Therefore,
we need systems such as Active Harmony.

From our experiments, we demonstrated that Ac-
tive Harmony helps PETSc based applications to
achieve better load balance and reduce the execution
time up to 18%. For POP, the tuning results show
that there is no single block size good for all topolo-
gies. By changing the block size, Active Harmony
helps to reduce the execution time up to 15% and by
changing the parameter values, the execution time
is reduced 16.7% with only 27 iterations. For the
GS2, we were able to run up to 5.1× faster and
thus the developer changed the default data layout
configuration.

For the future work, we plan to further analyze
the code’s behavior for GS2 to better understand
the tuning results. To further compare the on-line
tuning and off-line tuning, we plan to apply Active
Harmony to scientific programs with parameters that
can be changed during runtime. The experiment will



compare the results when tuning the parameters on-
line and off-line separately.
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