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Abstract

We present a performance-based methodology for de-
signing a high-bandwidth radar application on commodity
platforms. Unlike many real-time systems, our approach
works for commodity processors running commodity oper-
ating systems. Our technique is innovative because it uses
stochastic models of the processing time at each step in
the process to allow for the variabilities of running on a
non-realtime operating system. We show how our system
synthesizes the runtime parameters for a synthetic aperture
radar application under a variety of loading conditions.

1 Introduction

Designing a contemporary high-resolution radar proces-
sor is a complex art. These applications are extremely
compute-intensive, due to their high pulse rates, the huge
amount of data sampled at each pulse, and the complexity
of the operations carried out on the data. Given these fac-
tors, high-end radars often demand CPU loads of 108 to 1013

FLOPS. This throughput can only be achieved by relying on
parallel processing. Fortunately, most radar processors do
contain a large amount of data parallelism. However, raw
computing power is only part of the problem. Radars gener-
ally must satisfy latency (or deadline) requirements. In fact,
meeting the end-to-end latency constraints is as important
as throughput, since overly-late images may be worthless
to the rest of the system. When meeting these latency re-
quirements, we must also account for cache and pipeline
effects, interrupts, queuing delays, context-switches, and
the resolution of the real-time clock.

In addition, there is the problem of fault-tolerance. Tra-
ditionally, hardware-level redundancy has been the rule. If
the primary system is not overly utilized, single-node fail-
ures could theoretically be repaired via repartitioning extra
computing power, and multi-threading some of the func-
tions from the failed node. In practice, this is not done due
to a lack of tools to allow developers to characterize the
interaction effects between the software, the hardware, and
the runtime environment. Without good tools, designing
a totally static software system is sufficiently difficult that

software fault tolerance is not even considered.
In this paper, we focus on solving the scheduling synthe-

sis problem which is an important subproblem of the overall
process of parallelization and task placement. The schedul-
ing synthesis problem is to find the proportion of load to
allocate each task, and to derive an optimal service interval
over which all load proportions should be guaranteed. To
solve this problem, our system requires the following in-
puts: (a) the system topology, including the thread-to-CPU
mapping; (b) the per-task load models; and (c) the required
input rate and latency constraints. Internally, the design
algorithms use analytic approximations to quickly estimate
output rates and propagation delays for candidate solutions.

When all parameters are synthesized, the estimated end-
to-end performance metrics are re-checked by simulation.
The per-component load reservations can then be increased
and the synthesis algorithms re-run to improve performance.

Our results rely on time-division multiplexing (TDM) to
ensure that a task is guaranteed a fixed number of “time-
slots” over pre-defined periodic intervals. This approach
allows running different tasks on a single node. Since
CPU workloads in real-time systems cannot simply be “re-
shaped,” and since end-to-end latency guarantees still must
be meet, we have found that TDM ensures a reasonable
level of fairness between different tasks on a resource. Also
TDM-based schedulers and drivers are fairly easy to imple-
ment.

A consequence of our multi-threading model is that it
can also be used for fault-tolerance, since unused processing
resources (slack) can be redistributed to off-load processes
from failed nodes. In this approach, backup configurations
are stored on every node. When a fault is detected, the
system switches its mode to one of these backups. While
this may seem like a fairly weak form of fault tolerance,
recall that in many radars, an entirely unloaded system,
worth perhaps millions of dollars, is used to handle the sort
of faults we describe here. Hence, we believe our solution is
quite a bit cheaper - though perhaps not achieving the same
level of redundancy.

Throughout this paper, we use the RASSP Synthetic
Aperture Radar benchmark as a running example for our



design scheme (from here on referred to as the SAR), and
we show how it operates on two different layouts of the radar
system. We also show how it reconfigures under single-node
failures, and compare the estimated performance to a simu-
lation model. The SAR was posed as a “challenge” signal-
processing problem for COTS-based development. In the
realm of advanced radars, this SAR’s throughput is quite
modest - 1.1 GFLOPS for processing three polarizations,
at the highest input pulse frequency. However, the point
of the SAR exercise was not to build the most advanced
radar. Rather, it was to find scalable, methods to perform
pulse-compression and range-compression on commodity
systems.

2 Related Work
Hundreds of books have been written on radar systems;

however relatively little has been written about deploy-
ing high-performance radars on clusters of general-purpose
computers. Several papers document experiments with
radar processors in these sorts of systems, and many of these
are based on the SAR benchmark [14]. Researchers at the
Mitre Corporation, used an Intel Paragon to implement one
SAR channel entirely in software [1]. Their design phase
was guided by coarse, deterministic load models based on
simple Flop-counts. However, to our knowledge, no work
has been done on using stochastic performance models for
the purpose of system synthesis.

On the other hand, much has been published in the area of
real-time systems synthesis for other domains. In our previ-
ous work [4] we relaxed the “classic” real-time systems con-
straint that period and deadline parameters are known ahead
of time. Rather, we used the system’s end-to-end delay and
jitter requirements to automatically derive each task’s con-
straints and ensure that the end-to-end requirements will be
met. A similar approach was explored in [2], where im-
precise computations were used as a metric to gauge the
“goodness” of candidate solutions. These concepts were
applied to other applications including discrete and contin-
uous control problems [8, 11], scheduling real-time traffic
over fieldbus networks [3], etc. A modification of our the-
ory was even used to help solve some basic parameters of
the SAR problem [6] - however, load requirements were not
taken into account; rather the method was used to derive
per-component frequencies and deadlines. Hong et. al [10]
addressed distributed real-time synthesis in a determinis-
tic context by extending our work to statically partition the
end-to-end delays via heuristic metrics.

To accommodate bursty arrivals in network traffic, many
service disciplines re-distribute work over longer intervals
by occasionally postponing the projected completion times
of some tasks, e.g., as in [9]. These models have also
been used to derive statistical delay guarantees; e.g., [13].
Also, many of these disciplines have analogues in CPU
scheduling, e.g., [12].
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Figure 1. SAR Channel Flowgraph

3 The Synthetic Aperture Radar

Figure 1 shows the dataflow for one SAR channel,
with some sample computation requirements for each
component1. The key parameters that affect the resources
required for the SAR are:

Number of channels. The SAR is composed of three par-
allel channels whose outputs are composed to build the full
image. In this paper, we present our results for synthesizing
a single channel. Our algorithms easily synthesized the full
3-channel system; however, one channel illustrates our ap-
proach and makes the figures and graphs significantly more
readable.

Pulse rate. The SAR requirements stipulate a pulse rate
between 200Hz and 556Hz, with higher rates preferred be-
cause they lead to better temporal resolution. We chose
556Hz as our target input rate.

Ranges per pulse, and their precision. In the SAR, 2048
ranges are sampled per pulse, and each is represented as a
single-precision floating point number.

Number of pulses per image. A single channel’s image
is formed by concatenating two frames, each of which cor-
responds to 1/2 of the image’s temporal resolution. In the
SAR, one frame is formed out of 512 consecutive pulses;
hence 1024 pulses are required to produce a full image.
However, every frame is used in two images - first as the
“new temporal part,” and then shifted into the next image’s
“old part.” Hence, images are produced at the frame pro-
cessing rate, or 556=512 = 1:09 Hz.

Required latency. The end-to-end latency is bounded by
three seconds, where latency is measured from the arrival of
the last pulse in a frame, to the time the frame is produced.

Functional Units. Major phases of the SAR:
� IQ stage: A pulse’s samples are converted and filtered

from video format to in-phase and quadrature bands,
represented internally by complex numbers.

� Range Compression: Range compression consists of
three steps. First, an equalization filter (EQ) normalizes
the data for range processing. Then a discrete Fourier
transform (the RDFT phase) converts the data to the
frequency scale. The result is run through another
filter (the RCS phase), to compensate for cross-section
variations produced by the DFT.

1The FLOP counts were taken from a Mitre Corporation report [1].
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� Corner Turn (CT): The corner turn is an all-to-all com-
munication step, and thus a bottleneck in most adaptive
radars. The RCS phase produces 2048 range coeffi-
cients for each of the 512 pulses in a frame, but before
the pulse compression stage can start it requires all 512
readings for that range. Hence, the corner-turn’s job is
to accumulate the 512x2048 matrix, and then send the
columns to the pulse-compression stage.

� Pulse Compression: In this radar, two sequential
frames form a processing array of size 2048 � 1024,
where columns correspond to pulses, and rows corre-
spond to range gates. The actual pulse compression
phase consists of three steps: (1) a discrete Fourier
transform (denoted by ADFT); (2) a convolution (de-
noted by KM, for “Kernel Multiplication”); and an
inverse Fourier transform (denoted by AIDFT, for In-
verse Discrete Fourier Transform).

In the preceding section, we outlined some of the chal-
lenges involved in building this sort of a system. However,
perhaps the largest challenge lies in sorting out the incred-
ible number of design choices available. Complex radars
possess almost infinite degrees of freedom in decomposing
the problem along the spatial/temporal domains.

4 Model and Solution Overview

We model the system as a flowgraph, where tasks are
mapped to some CPU or network resource. Formally, a
system possesses the following structure and constraints:

Bounded-Capacity Resources: There is a set of resources
R1; R2; : : : ; Rm, where a given resource Ri corresponds to
one of the system’s CPUs or network links. Associated with
Ri is a maximum allowable capacity, or �Max

i , which is
the maximum load the resource can effectively handle. The
parameter �Max

i will typicallybe a functionof its scheduling
policy (for a workstation), or its switching and arbitration
policies (for a LAN). In the examples in this paper, we set
�Max
i for all resources to 0:95.

Acyclic Flow-graph. A system is represented as an
acyclic flow-graph, where vertices represent tasks (denoted
by the letter � ), and edges represent a producer/consumer
relationship between a pair of tasks. We assume unlimited
buffer space available between each such pair, before the
system is designed. As we will see, the dynamics of the ap-
plication do serve to put an upper bound on the queue-depth,
and thus in practise buffer space is finite.

Channels: When a flow-graph includes disjoint sub-
graphs, we say it has multiple channels. Since there are
no explicit data or control dependencies between channels,
we treat their latency analysis independently. They may be
indirectly dependent, via resource sharing, and input shar-
ing. For example, the three channels in the SAR may share
resources or process different parts of a single image.

Task Chains: A task chain is a feed-forward pipeline
of tasks, where each task has only one predecessor, and
one successor. We denote chains with the Greek letters
Γ1;Γ2; : : : ;Γn, where the jth task in a chain Γi is denoted
�i;j. Each computation on Γi carries out a transformation
from an input (or a split) to an output (or a join point).

Stochastic Processing Costs: A task’s cost is modeled via
a discrete probability distribution function, whose random
variable characterizes the time it needs for one execution
instance on its resource.

Latency Bound (MLl): The delay constraint, MLl, is an
upper bound on the average time it should take a computa-
tion to flow through a channel (l) measured from the arrival
time of the last pulse in a frame to when the entire frame is
produced.

4.1 Run-Time Model

Within the system model, all tasks are considered to be
scheduled in a quasi-cyclic fashion, using time-division mul-
tiplexing for resource sharing, over Il-sized intervals.

In particular, per-task load-shares are guaranteed for Il-
sized intervals on all constituent resources. Hence, the syn-
thesis algorithm’s job is to (1) assign each task �i;j a propor-
tion of its resource’s capacity (which we denote as ui;j) and
(2) assign anIl-sized interval on a per channel-basis. Given
this, �i;j’s runtime behavior can be described as follows:

(1) Within every Il-sized interval, �i;j can use up to ui;j
of its resource’s capacity. This is policed by assigning �i;j
an execution-time budget Ei;j = bui;j � Ilc; that is, Ei;j

is an upper bound on the amount of resource time provided
within each Il-sized interval, truncated to discrete units.
(We assume that the system cannot keep track of arbitrarily
fine granularities of time.) In other words, �i;j is actually
given as Ei;j/Il proportion of a resource, which we call
effective load of �i;j at the service interval Il.

(2) A particular execution instance of �i;j may require
multiple intervals to complete, with Ei;j of its running time
expended in each interval.

(3) A new instance of �i;jwill be started within an interval
if no previous instance of �i;j is still running, and there is a
fresh input.

Examples. Figures 2 & 3 show two layouts for a po-
larization of the SAR. Rectangles denote CPUs and arrows
denote network connections. CPU names start with “r” and
network link names start with “n”. Each task represents a
processing unit, and is connected to a channel.

The layouts also convey the degrees of parallelism used.
For example, in Figure 3 IQ1 has two copies - IQ1(1) and
IQ1(2). In the flowgraph, resource-sharing is denoted by
units mapped to the same resource names. For example,
resource “r2” in Figure 3 has 4 tasks on it - EQ1(1), EQ1(2),
KM1(1), KM1(2). Additionally, we note that the RDFT and
RCS phases have been coalesced into single units, simply
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Figure 2. SAR channel Design I (a), and reconfiguration for “r4” failure (b).
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Figure 3. SAR channel Design II (a), and reconfiguration for “r3” failure (b).

denoted “RDFT.” The two layouts in Figures 2 & 3 differ in
the degree of parallelism and the placement of tasks.

Data synchronization occurs at the input and output of
pulse compression, which is shown pictorially as a stack in
Figures 2 & 3. Note that in Figures 2 & 3 two chains join
before passing data to pulse compression.

In any system, a task’s load demand varies stochastically,
due to second-order effects like cache memory behavior,
DMA interference, pipeline stalls, bus arbitration delays,
transient head-of-line blocking, etc. By using one random
variable to model a task’s load, we collapse all these resid-
ual effects into a single Probability Distribution Function
(PDF). To obtain a load model, one could profile each task
in isolation, and then post-process the resulting histogram
into a service-time distribution. (We have experienced good
results via this method in our work on digital video playout
systems [5]). Another technique can be used at a more pre-
liminary stage: the designer can coarsely estimate a task’s
average load, and use it to create a synthetic distribution
(e.g., normal). We take the latter approach in our running
example: we discretize two different continuous distribu-
tions: normal and exponential for the SAR tasks.

We assumed CPUs capable of handling 70 MFLOPS on
average, and network links of 120 MBytes/sec on average.

We then synthesized execution times by using operation
counts from the Mitre study as the mean of the PDFs. The
stochastic variation in the PDFs accounts for response-times
that deviate from the average. We believe this treatment of
stochastic effects is a crucial element that previous efforts
have overlooked.

Fault Tolerance. As described above, we use multi-
threading to permit on-the-fly reconfiguration. Here we
present a static reconfiguration plan, with backup configu-
rations pre-loaded. Our design method predicts the perfor-
mance of the alternative reconfigurations to help determine
which would be best in different scenarios. As we show
later, a reconfigured system may or may not satisfy the end-
to-end constraints, due to the lack of available resources
at the original input frequency. If not, our design method
estimates the input frequency range where the latency con-
straints can be satisfied.

Figure 2 shows a backup configuration of Design I, for
the case where resource “r4” fails. Two corner turn tasks,
CT1(1), and CT1(2) are moved to processor “r2,” which
is shared with “RDFT1(1)”. Likewise, Figure 3 shows a
backup configuration of Design II, for failures of “r3.” The
task “RDFT1(1)” is migrated to processor “r4,” and it is then

4



multi-threaded with RDFT1(2).
Solution Overview. A schematic of the design process is
illustrated in Figure 4, where the algorithms carry out the
following functions:

Load Share Estimation. The local schedulers are cali-
brated to satisfy the end-to-end constraints, via (1) parti-
tioning the CPU and network capacity between the tasks;
(2) selecting the service intervals to minimize latency; and
(3) validating the solution via simulation, to verify the in-
tegrity of the approximations used, and to ensure that each
channel’s profile is sufficiently smooth (i.e., not bursty).

Slack Distribution. Slack is used to either enhance output
quality, or to produce alternative layouts for fault-tolerance.
It includes (1) calibrating loads for migrated tasks, and ad-
justing the load of the other tasks; and (2) estimating the
performance of the reconfiguration.

Slack Allocation to
the relocated tasks
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Desired Input Frequency Range
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Iteratively
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Figure 4. Design Overview

The main partitioning algorithm processes each chan-
nel, and finds a candidate load-assignment vector for it.
Given a load assignment for each channel, the synthesis
algorithm attempts to find a service interval at which the
channel achieves its nominal latency constraint. This com-
putation is done approximately. For a given service inter-
val, a latency distribution of the channel is derived. If the
end-to-end latency exceeds the requirement, then the load
assignment vector is increased. Finally, if sufficient load
is found for all the system tasks, the candidate system is

simulated to ensure that the approximations were sound –
after which excess capacity can be allocated for the sake of
fault-tolerance.

4.2 Latency Estimation

We now briefly describe how the system’s latency is
approximated, given candidate load and service-interval pa-
rameters. A detailed description of our latency estimation
methodology is given in [7]. We go about constructing a
model in a compositional (albeit approximate) manner, us-
ing the following techniques.
Decomposition into Chains: We decompose a channel into
its constituent chains, by traversing the flow-graph between
all fork/join points. In analyzing each chain, we abstract it
as being independent of all others2. For instance, the graph
in Figure 3 can be decomposed into 4 chains.
Per-Chain Analysis: For each chain Γi, we generate an
approximate latency distribution in a compositional manner,
by processing each task locally, and using the results for its
successors. If multiple subframes in a frame go through a
chain, the chain’s latency is considered to be that of the last
subframe exiting.
Synchronization: At a synchronization point, a frame is
composed from the subframes of joining chains. The latency
of a whole frame is estimated from those of joining chains
while setting the per-frame latency distributionto reflect that
of the largest chain feeding into the synchronization point.

5 System Design

We now revisit the “high-level” problem of determining
the system’s parameters, with the objective of satisfying
each chain’s performance requirements. (The pseudo-code
for this synthesis process is given in [7].) As stated in the
introduction, the design problem may be viewed as inter-
related sub-problems:
Input Frequency Setting. If the system fails to find a feasi-
ble solutionat the lowest input frequency (LFl), the design is
infeasible. When a feasible load allocation is found, the fre-
quency is increased. At the new input frequency, the same
load assignment procedure is repeated. This procedure ends
either when a feasible load allocation is found at the highest
input frequency (UFl) or when no more improvement in the
load allocation can be done. As for SAR, LFl = 200Hz,
and UFl = 556Hz. The largest input frequency with a feasi-
ble load allocation is returned, which is the best achievable
performance that our approach can find.
Load Assignment. Load-assignment works by iteratively
refining the load vectors (theui’s), until a feasible solution is
found. The entire algorithm terminates when the latency for
all channels meet their performance requirements or when

2Although this may not be true for the real system, our use of the
TDM abstraction and stochastic models of the task duration make this
approximation acceptable.
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no solution is possible. We do not employ backtracking, and
a task’s load is never reduced. This means that the full so-
lution space is not searched and in some tightly constrained
systems, potential feasible solutions may not be found.
Interval Assignment. A feasible service interval is derived
(if one exists), while ensuring the following requirements:
(1) the true, usable load for a task �i;j in Γi in Cl is given
by bui;j � Ilc=Il, due to the fact that the system cannot
multiplex load at arbitrarily fine granularities of time; (2)
tasks only finish at the end of the service interval; (3) the
utilization factor of task �i;j may vary with the service in-
terval.
Slack Distribution. Slack can be used either for fault-
tolerance, or for increasing performance. If the latter is
desired, one need only re-run the “Constraint Satisfaction”
algorithm, with a higher target performance. Here we focus
on slack distribution for fault-tolerance. Given a remapping
of the tasks, our system uses the algorithm in Figure 5 to
allocate slack.

Slack Distribution():
(1) must reduce frequency = false
(2) foreach resource Ri with remapped tasks from failed node
(3) So = set of original tasks on Ri in the affected channel(s)
(4) Sr = set of tasks remapped onto Ri due to failure
(5) LSj = load share of task j

(6) if slack Ri �
X

j2Sr

LSj

(7) Allocate slack to remapped tasks.
(8) else
(9) AvailableLS =

X

j2So

LSj+ slack Ri

(10) TotalLS =
X

j2fSo[Srg

LSj

(11) LS0j = AvailableLS �
LSj

TotalLS
, 8j 2 fSo [ Srg

(12) must reduce frequency = true
(13) if must reduce frequency
(14) Re-run “Constraints Satisfaction” with

initial interval size = prior to failure interval size
and initial load assignment

of each task j 2 fSo [ Srg, on affected Ri, = LS0j
and of each task k, on unaffected Ri, = LSk

Figure 5. Slack Distribution Algorithm.

Figure 6 shows the load allocations for tasks in Design II
that were produced by the synthesis algorithm. We now
consider how the reconfiguration technique would work for
each example design.

A. Synthesized Load-shares for CPU Tasks.

Task IQ EQ RDFT CT ADFT KM AIDFT
Load-share 0:372 0:159 0:591 0:163 0:924 0:201 0:924

B. CPU Utilization.

CPU r1 r2 r3 r4 r5 r6 r7 r8 r9
Utilization 0:743 0:720 0:591 0:591 0:326 0:924 0:924 0:924 0:924

Figure 6. Solution of Design II.

Design I: Resource r2 could accommodate the load shares
of the relocated tasks CT1(1), and CT1(2). Slack of resource
r2 is allocated to the relocated tasks as shown on lines (6)-(7)
in Figure 5.

Design II: Resource “r4” does not have sufficient slack
(0.359) to accommodate the load share (0.591) of the re-
located task RDFT1(1). Using the algorithm in Figure 5,
So = f�RDFT1(1)g andSr = f�RDFT1(2)g. We first “steal”
load shares of tasks in So , as is shown on line (9) in Fig-
ure 5, and make the available load share (AvailableLS) of
“r4” 0.95 - the peak allowed capacity. Now each task on
“r4” is given a load share proportional to its original load
share prior to failure - half of the available load share, as
is shown on lines (10)-(11). However, no service inter-
val can be found that satisfies latency constraints at 556
Hz input frequency. Now we iteratively reduce the input
frequency until the reconfigured system satisfies design re-
quirements by re-running “Constraints Satisfaction” as is
shown on lines (13)-(14). The result is a sampling fre-
quency of 506 Hz - not the peak frequency, but still falling
within the SAR guidelines. When the reconfigured system
cannot satisfy design requirements at even the lowest input
frequency, “Constraints Satisfaction” increases the loads of
other tasks of the affected channel(s) to help compensate for
delays at the bottleneck.

6 Simulation

Since the latency analysis uses some key simplifying
approximations, we validate the resulting solution via sim-
ulation. The main sources of approximations are: (1) we
assume periodic arrivals of inputs to all tasks; (2) we use
an approximate joint probability calculation to determine
latency at synchronization points; (3) statistical modeling of
periodic input arrivals is highly inaccurate, due to quantiza-
tion by the service interval; (4) our analysis assumes that a
task’s state-changes always occur at its interval boundaries;
hence, even intermediate output times are assumed to take
place at the interval’s end. However, the simulation model
discards these approximations by keeping track of all sub-
frames and frames throughout the channel, as well as the
“true” states they induce in their participating tasks. Also,
the clock progresses along the real-time domain; hence, if a
task ends in the middle of an interval, it gets placed in the
successor’s input buffer at that time.

On the other hand, the simulator does inherit some other
simplifications used in our analysis model. For example,
inputs are assumed to be read at the start of an interval. As
in the analysis, context switch overheads are not considered;
rather, they are implicitly modeled through PDFs of tasks
service time.

Lastly, the analysis assumes infinite buffer space. Our
simulator records the maximum buffer space occupancy for
a candidate system to verify reasonable buffer space require-

6



10 20 30 40 50 60 70 80 90 100 110
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
A

ve
ra

ge
 L

at
en

cy
 o

f a
 F

ra
m

e 
(s

ec
.)

Interval Size

Frame Latency in Design I (8 subframes/frame)

Analysis  
Simulation

0 20 40 60 80 100 120
2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 L
at

en
cy

 o
f a

 F
ra

m
e 

(s
ec

.)

Interval Size

Frame Latency in Design II (8 subframes/frame)

Analysis  
Simulation

10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
ta

nd
ar

d 
D

ev
ia

tio
n

Interval Size

Standard Deviation of Frame Latency

Simulation

0 20 40 60 80 100 120
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

S
ta

nd
ar

d 
D

ev
ia

tio
n

Interval Size

Standard Deviation of Frame Latency

Simulation

Figure 7. Latency for Designs I & II at different service interval sizes and input frequency of 556 Hz.

ments of a design. Given a typical 3 second end-to-end
delay, there is little chance that the resulting design would
have large buffer space requirements - and indeed, it did not
in the simulations.

Each simulation trial runs for 20,000 frame inputs, which
corresponds to approximately 20,000 seconds of radar pro-
cessing. The obtained confidence intervals for these simu-
lation are 99% � 1%.

Figure 7 shows the latencies of Designs I & II estimated
by analysis, and computed by simulation at different service
interval sizes. Figure 8 shows the latencies of Design II at
different input frequencies before and after reconfiguration
at a fault. Design II is feasible at the highest input frequency,
556Hz, before a fault occurs. After the reconfiguration, it is
feasible at 506Hz.

From Figure 7, we note that analysis crosses between
conservative and optimistic estimation. We conjecture that
the conservatism is largely due to the high resource utiliza-
tion. Consider Design I and RDFT1(1). At service intervals
of 12ms and 84ms, the utilizations of RDFT1(1) are 0:9026
and 0:9946, respectively. At such high utilizations, the
system comes closer to its instability region, and the ap-

proximations for inter-output times start deviating from the
true times. We conjecture that this is why service-interval
graphs possess some spikes. In our experiments, however,
more than 85% of the analytical estimations were within
10% of the simulated results.

7 Conclusion
We presented a semi-automated design synthesis tech-

nique for calibrating resources in a signal processing ap-
plication. We also showed how stochastic models can be
harnessed to produce more efficient, flexible, and scalable
systems than are currently deployed via deterministic mod-
els. We showed how a large SAR could exploit a simple
software fault-tolerance scheme - while still giving design-
ers a priori confidence in the performance and the quality
of their system. Our synthesis approach uses a variety of
simple analytic techniques to estimate latency, in tandem
with heuristic search algorithms to find a feasible load par-
titioning.

Though approximations are used, the results are promis-
ing. Our two example layouts (and two fail-over configura-
tions) consist of more than 25 tasks, and 15 shared resources.
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Figure 8. (a) Design II Latency vs. Input Frequency, original & reconfigured systems. (b) Design II,
Standard Deviation of Latency vs. Input Frequency, reconfigured system. In all cases I2 = 25ms.

Nonetheless, our methods found results which achieved the
SAR requirements, and which also could be validated via
an independent simulation model.

However, simulation is not the end of the story. We
are currently implementing a full-scale version of the SAR
benchmark on a network of workstations; specifically we
are using off-the-shelf PentiumII processors, connected via
a gigabit-ethernet, and the Linux Operating System. In
designing a signal processing application on this sort of
a system, with all the stochastic effects they contain, we
believe that a statistical technique like ours is not just one
option - it could be the only option.
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