
LBF: A Performance Metric for Program Reorganization✵

Hyeonsang Eom Jeffrey K. Hollingsworth
Computer Science Department

University of Maryland
College Park, MD 20742 USA

{hseom,hollings}@cs.umd.edu

✵ This work was supported in part by NSF award ASC-9703212, DOE
Grant DE-FG02-93ER25176, and NIST CRA award 70-NANB-5H0055.

Abstract
We introduce a new performance metric, called Load

Balancing Factor (LBF), to assist programmers with
evaluating different tuning alternatives. The LBF metric
differs from traditional performance metrics since it is
intended to measure the performance implications of a
specific tuning alternative rather than quantifying where
time is spent in the current version of the program. A sec-
ond unique aspect of the metric is that it provides guid-
ance about moving work within a distributed or parallel
program rather than reducing it. A variation of the LBF
metric can also be used to predict the performance impact
of changing the underlying network. The LBF metric can
be computed incrementally and online during the execu-
tion of the program to be tuned. We also present a case
study that shows that our metric can predict the actual
performance gains accurately for a test suite of six pro-
grams.

1. Introduction

To successfully tune a distributed or parallel program,
the cause of a performance bottleneck must be identified,
a solution proposed and implemented. Finally, the tuned
program must be re-measured to verify the problem was
corrected. Each step in the process is a difficult and time
consuming task. Performance debugging tools exist to
help the programmer with these tasks. However, the ma-
jority of the work on performance tools has concentrated
on bottleneck identification. While this is an important
problem, it is just the first step. In this paper, we concen-
trate on providing guidance with the next step: choosing
between alternative tuning strategies.

Once the source of a problem has been located, a
proposed change must be identified. Frequently, there are
several different strategies to try such as changing data
decomposition, changing the assignment of processes to

processors, or even changing the computation or commu-
nication resources. However, each of these options might
require significant effort to change the program, debug it,
and then re-execute it. Performance tools need to help the
programmer to evaluate the potential impact of different
tuning options before changing a single line of code.

There are several ways for a tool to provide informa-
tion about the potential benefit of tuning options. First, the
tool could use a static prediction of the performance of the
changed program based on analysis of the source code.
However, such an approach suffers from the problem that
the prediction ignores dynamic (execution) data that can
provide important information about a program’s actual
behavior. A second approach is to instrument a program
to measure its dynamic behavior, and then use this data to
make off-line predictions about tuning alternatives. This
approach could require a significant amount of data to be
collected. Instead, we use a third approach that combines
the execution of the current version of the program, online
measurements of its execution, and algorithms to predict
the impact of different tuning options. The idea is to com-
bine the execution of the original program with a simula-
tion of the proposed changes to the program. This tech-
nique has been successfully used to simulate changes in
computer architectures[20]. Combining direct execution
of the majority of the system with a simulation of the
changed parts, permits faster execution than simulating the
entire program’s execution.

There is a tradeoff between efficiency and accuracy
when predicting the change in execution time due to tun-
ing. Consider, for example, trying to assess the impact of
tuning a single procedure’s performance. At one extreme,
we could generate very accurate results by performing a
detailed execution-driven simulation of the proposed
modifications to the original program. Each instruction
could be simulated and an appropriate time for that in-
struction recorded. To simulate the impact of tuning,

Copyright 1998 IEEE. Published in the Proceedings of ICDCS’98,May 1998 Amsterdam, The Netherlands. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

whenever the tuned procedure is executed, simulation
time would advance only by the “tuned” time of the pro-
cedure. This would produce a very accurate prediction of
the improvement possible by tuning the target procedure.
However, the speed of this simulation would likely be too
slow to provide timely feedback to the programmer. At
the other extreme, we could simply profile the target pro-
cedure and predict that any time removed from that pro-
cedure would directly reduce the execution time of the
program. This produces a simple value to compute, but
the accuracy suffers due to the fact that the improvement
in execution time of a program does not necessarily result
in a corresponding improvement in the program’s execu-
tion time due to communication and work done on other
processors. Our goal is to combine reasonable perform-
ance and accuracy to provide useful feedback to pro-
grammers.

Unlike sequential programs, in a distributed or paral-
lel program, it is possible to tune where a computation is
performed, in addition to how it is performed. For exam-
ple, a process in a producer/consumer pipeline may ex-
hibit data affinity. A consumer process has data affinity if
it consumes a large amount of data and its performance is
improved by co-location with its data source. Data can be
either static (a disk file), or dynamic (a producer process).
Due to either load balancing or data affinity, it might be
more productive to move part of the computation from
one processor to another rather than reducing its execution
time. In this paper, we concentrate on providing answers
to “what-if” questions involving changing where compu-
tation is performed rather than changing how the result is
computed. We present a new metric called Load Balanc-
ing Factor, LBF, that provides programmers with feed-
back about the performance implications of moving com-
putation between processors. In addition, we present a
variant of LBF called Networking Factor (NF) that pre-
dicts the performance gains due to changing the underly-
ing communication network.

In this paper, we introduce the LBF and NF metrics
and evaluate them for several parallel programs. Section 2
introduces the LBF metric, describes an implementation
of the metric, and quantifies its accuracy at predicting
changes. Section 3 describes using NF, a network variant
of LBF to predict the change in application execution time
due to changing the performance of the networking infra-
structure. Section 4 describes related work. Finally, Sec-
tion 5 summaries our work and outlines future directions
for this research.

2. Load Balancing Factor (LBF)

Load Balancing Factor (LBF) addresses the problem
of assessing the impact of process migration by predicting
the impact of changing the assignment of processes to

processors in a distributed or parallel execution environ-
ment. Our goal is to compute the potential improvement in
execution time if we change the placement. Our technique
can also be used to predict the performance of a distrib-
uted or parallel program when it is executed on a larger
number of nodes.

To assess the potential improvement, we predict the
execution time of a program with a virtual placement,
during an execution on a current one. Our approach is to
instrument application processes to forward data about
each message passing event to a central monitoring station
that simulates the execution of these events under the tar-
get configuration.

Since there could be multiple processes contending
for a CPU on a node in a target placement, we must select
a realistic policy to schedule processes for an accurate
prediction. We assume a fair round-robin scheduling pol-
icy, where the OS schedules each non-waiting process
onto a processor for a fixed quantum of time, and then
switches to the next non-waiting process. To speed the
computation of the LBF metric, we do not simulate indi-
vidual quanta. For each interval of time, every non-
blocked process gets an equal share of the processor ef-
fectively making the quantum infinitely small.

Before describing our prediction algorithm, we define
a few terms used to describe LBF:

Event: an observable operation performed by a process. A proc-
ess communicates with other processes via messages. Mes-
sage passing results in send, startRecv, and endRecv events
being generated. Message events can be “matched” between
processes. For example, a send event in one process matches
exactly one endRecv event in another process.1

Process Time: a per-process clock that runs when the process is
executing on a processor and is not waiting for a message.

Program Activity Graph (PAG): a graph of the events in a
single program execution. Nodes in the graph represent
events in the program’s execution. Arcs represent the order-
ing of events within a process or the communication depend-
encies between processes. Each arc is labeled with the
amount of process time between events or communication
time for inter-process arcs. The left half of Figure 1 shows a
simple PAG for a parallel program with three processes.

Happen-Before: the transitive partial ordering of events implied
by communication operations and the sequence of local
events in a process. For local events, one event happened
before another event if it occurred earlier in the program trace
for that process. For remote events, a send event happens
before the corresponding endRecv event. Formally, happen-
before is the set of precedence relationships between events
implied by Lamport's happened before relationship[12].

Critical Path (CP): the longest process time weighted path
through a PAG. For an entire program’s execution, the CP

1 This definition could easily be extended to include other synchroniza-
tion or communication events such as locks and barriers.

represents the execution time of the program as if there were
one process per processor.

Process Group: a set of processes that run on a single processor
in a predicted (target) configuration.

Group Time: a per-group clock that runs when any process of
the group is executing on a processor.

Group Activity Graph (GAG): a graph of the events in a single
program execution. Nodes in the graph represent events in
the program’s execution. Arcs represent the ordering of
events within a group or the communication dependencies
between groups. Local arcs are labeled with the amount of
group time between events. The right side of Figure 1 shows
a simple GAG for a parallel program with three processes and
two target groups. A GAG is effectively a PAG with all
events from a group collected into a single “virtual” process.

Earliest Possible Time (EPT): the earliest time, measured in
group time, an event can occur within a target group. EPT is
equivalent to process time when there is only one process in a
group.

To compute the execution time of a target configura-
tion, we can construct a Group Activity Graph (GAG) and
then compute the length of its longest path. For clarity of
presentation, we first introduce the process of converting a
PAG to a GAG in a postmortem fashion. We then de-
scribe the details of our algorithm that builds the GAG
online during application execution.

Given a target process grouping for the execution of a
program, the GAG is constructed from the corresponding

PAG by combining the PAG components for the proc-
esses in a group, into a single “process” in the GAG. Each
event from the PAG is placed into the GAG in the group
time order. The arc between two adjacent events in the
same group is labeled with the elapsed group time be-
tween them.

Figure 1 illustrates a PAG and the corresponding
GAG. The weights of arcs in the GAG include the effect
of the target grouping. The Earliest Process Time (EPT)
of the startRecv in Group 1 is 2 because Processes 1 and 2
share a processor up to the startRecv. The EPT of the en-
dRecv in Group 1 is 8 because Process 2 must run on the
group processor so that the send event precedes the
matching endRecv. The EPTs of the startRecv and the
endRecv in Group 2 are all 1’s, because there is only one
process in the group. The endRecvs in the GAG show the
two extreme cases of EPT calculation: the EPT of the
endRecv in Group 1 is the same as that of the corre-
sponding send event. The EPT of the endRecv in Group 2
is the same as that of the startRecv. The predicted execu-
tion time at each message receive is the maximum of the
EPT of the endRecv event and the EPT of the send event
plus the message time of flight. LBF is only an approxi-
mation of the execution time after migration since we ig-
nore memory contention among processes in a target
group. A complete description of the algorithm is pre-
sented in Section 2.1.

Call(a)

send

endRecv

send

Call(b) Call(c)

Start

startRecv startRecv

End

endRecv

0 0 0

1

0

4

3

0

1

0

0

0

1

1

P1

p2

p1

p2

Call(a)

send

endRecv

send

p3Call(c)

Start

p3

p3

p1startRecv

startRecv

End

0 0

1

2

1

0

0

0

4
1

0

Group Activity GraphProgram Activity Graph

P2Call(b)

1

endRecv

1

P1 P2 P3
G1 G2

Figure 1: Transforming a PAG into a GAG.

An off-line algorithm to calculate LBF, would build a
PAG, convert it to the corresponding GAG, and then
compute CP along the longest EPT plus communication
time path through the GAG. Since the number of nodes in
the PAG is equal to the number of events during the pro-
gram’s execution, explicit graph construction, conversion,
and computation would cause intolerable overhead for
long-running programs. Instead, we have developed an
online algorithm to compute LBF, building a PAG and
converting the GAG incrementally. Our algorithm permits
us to maintain only the part of the GAG that is currently
being processed. To incrementally maintain the GAG, we
adapt the on-the-fly topological sort algorithm developed
by Kimelman and Zernak[11]. Our algorithm simulates
the real execution on a target grouping of processes. To
compute the predicted execution time of the target con-
figuration during program execution, we use a variation of
our online critical path algorithm[9].

Given a target grouping, we must determine the order
of events in the grouping to build the GAG incrementally.
Like a topological sort, we must choose the next event to
process by selecting events such that all events are proc-
essed in the order dictated by the happen-before relation-
ship. Events not ordered by the happen-before relationship
are ordered based on round-robin scheduling of a group’s
processes onto a processor.

In addition to selecting the next event to add to the
GAG, we must also assign the correct weights to its arcs.
For inter-group arcs, the communication time supplied in
the PAG is used. Computing the weight of the arc between
local events is more complicated; the weight is equal to
the total amount of processing done by each non-blocked
application process between the last event added to the
GAG for the group, and the current event being processed.

2.1 Algorithm

We now present the details of our algorithm. We de-
scribe how to transform a stream of program events ar-
riving from application processes (i.e., a PAG) into a
GAG. By calculating the length of the longest path
through the resulting GAG, we compute the execution
time under the proposed grouping. Events arrive for proc-
essing from the application processes, and are maintained
until they are inserted into the GAG. When events are no
longer needed, they are deleted. While an event is being
processed, it is in one of four states:

Queued: an event is queued if it has arrived at the monitoring
station, but the event immediately before it in the same proc-
ess has not yet been reported.

Current: a current event is a candidate for processing. There
can be at most one current event per process.

Pending: a pending event is an endRecv that is waiting for the
corresponding send event to be processed.

Reported: an event is reported when the processing of the event
has been completed and is inserted into the Group Activity
Graph (GAG). The DAG data structure for a reported event is
freed once both its local and remote successors are reported.

Each event arrives from its application process and is
processed by the function EventArrival (lines 19-44
of Figure 2). The EventArrival procedure inserts the
new event into the PAG, the initial state of the event is
determined based on the states of its predecessor events.
The state of an event is updated in two places: when it
arrives and when a predecessor event is reported. An
event becomes current when all its predecessors are re-
ported. Since only endRecv events have two predecessors,
and events from individual processes arrive in FIFO order,
only endRecv events can be marked as pending (waiting
for non-local predecessors to be processed).

The event selected for processing is the earliest cur-
rent event. To select among multiple current events, we
use the function EarliesEventTime (lines 14-18 of
Figure 2). The Earliest Event Time for an event is the time
of an event if it were to be selected as the current event. If
the event selected is a non-blocking event, its procTime is
updated to simulate the amount of time it would have exe-
cuted in the target configuration between the current and
previously reported events in the group. For a blocked
process, its waitTime is reduced by the total process time
used by the runnable events in the group. Next, the wait-
Time and procTime of the other current and pending
events in the group are updated, and the groupTime of the
event's group is increased by the total process time con-
sumed. The waitTime field represents the process time
consumed by the group since its last event was added into
the GAG.

For accurate prediction, it is necessary to integrate
communication cost into the computation of the predicted
time. Communication cost is due to protocol processing
time at the end-points, and the time of flight of the mes-
sage. Since protocol processing is local to a single proc-
ess, it is easy to measure directly. However, due to prob-
lems with clock synchronization, it is generally impossible
to accurately measure the time of flight of a message. As a
result of this difficulty, we use a lookup table based on the
number of message bytes transferred and whether the
message is local (same processor) or remote. The values
for this table are determined off-line (prior to application
execution) by measuring one half of the round trip times
for messages of varying lengths.

1. UpdateState(Event):
2. IF Event’s type is endRecv AND its send event has not been reported
3. Event.state <- pending
4. ELSE Event.state <- current
5. IF Event’s type is endRecv AND its send event has been reported AND
6. Event.remotePred.Cs > Event.localPred.Cr
7. Event.waitTime += (Event.remotePred.Cs - Event.localPred.Cr)

8. Report(Event):
9. add Event into GAG
10. Event.state <- reported
11. IF (Event.remoteSuc && Event.remoteSuc.state == pending)
12. UpdateState(Event.remoteSuc)
13. IF (Event.localSuc) UpdateState(Event.localSuc)

14. EarliestEventTime(Event):
15. IF Event’s type is endRecv
16. return Event.waitTime + group(Event).time
17. ELSE
18. return Event.procTime * |CNER 2 events| + group(Event).time

19. EventArrival(Event):
20. insert Event into PAG
21. IF (there is no unreported event for Event's Process) UpdateState(Event)
22. ELSE Event.state <- queued
23. WHILE (Each Process has a current or pending Event)
24. neEvent <- CNER Event with the smallest EarliestEventTime(Event)
25. eEvent <- current endRecv Event with smallest EarliestEventTime(Event)
26. IF (neEvent AND
27. (no eEvent OR EarliestEventTime(neEvent) < EarliestEventTime(eEvent)))
28. FOR EACH (current or pending Event in neEvent's Group)
29. IF (Event.state == pending)
30. Event.waitTime -= |CNER Events in Event's Group| * neEvent.procTime
31. ELSE Event.procTime -= neEvent.procTime
32. group(neEvent).time += |CNER Events in neEvent's Group| * neEvent.procTime
33. IF (neEvent is a send event)
34. neEvent.Cs <- group(neEvent).time
35. ELSE IF (neEvent is a startRecv event)
36. neEvent.Cr <- group(neEvent).time
37. Report(neEvent)
38. ELSE
39. FOR EACH (current or pending Event in eEvent's Group)
40. IF (Event.state == pending)
41. Event.waitTime -= eEvent.waitTime
42. ELSE Event.procTime -= eEvent.waitTime/ |CNER Events in eEvent's group|
43. group(eEvent).time += eEvent.waitTime
44. Report(eEvent)

2 CNER (Current Non-End-Receive) events are all current events except
endRecv.

Figure 2: Pseudo Code for LBF.

To report an event, we need to know that no other
event that casually preceded it remains unreported. If a
process is not generating events (i.e., it does not commu-
nicate with other processes) for a long period of time, we
can’t process any current events in other processes. To
prevent this, we use periodic alarms in each application
process to create additional keep-alive events. Keep-alive
events are treated like normal events and advance the

group time of their target group; the difference is that they
are discarded rather than being added to the GAG.

2.2 Experimental Validation of LBF Metric

We implemented LBF as an extension to the Paradyn
Parallel Performance Measurement Tools[16]. Using
Paradyn provided an easy way to implement the algorithm
since it already included support for instrumentation of a

running program and periodic sampling callbacks. We
tested LBF by running a collection of application pro-
grams. The programs consisted of a Synthetic Parallel
Application (SPA), a program to solve the Traveling-
Salesman Problem (TSP), and a selection of the NAS
benchmark programs. The NAS applications are an em-
barrassingly parallel program (EP), a parallel FFT com-
putation (FT), an integer sort program (IS), and a multi-
grid solver (MG). The data size used for the NAS appli-
cations was “class A” which is intended for execution on a
network of workstations. All programs were run on an
IBM SP-2 and used PVM[4] for communication. We
measured the execution times of the programs and com-
pared them with the predicted times of LBF. We also re-
port the overhead of computing LBF.

All measurements were conducted on dedicated SP-2
nodes, and so there was no interference with other appli-
cations. The metric computation is not influenced by the
overhead of other applications running on the same proc-
essors as the target application because the prediction is
based only on the process times of the processes in the
application and table driven communication time. How-
ever, the load on the system influences the timing of the
actual configurations.

The summary of the measured and predicted execu-
tion times is shown in Figure 3. We use N/M to describe a
target or actual configuration where N is the number of
processes and M is the number of nodes. For each target
configuration, we ran the program in two actual configu-
rations: one identical to the target configuration and the
other with no more than half of the nodes of the target
configuration. By predicting the performance of a target
configuration that was identical to the running configura-
tion, we were able to evaluate how well our communica-
tion prediction information worked. The results show that
in all cases, the predicted values are within 6% of the ac-
tual execution times.

We also measured the overhead of computing the
LBF metric. To do this, we ran the same six applications
with and without computing LBF. The resulting overhead,
shown in Figure 4, represents the extra time required to
run the application when computing the LBF metric. For
most applications and configurations, the overhead to
compute the LBF metric is under 5%. However, for the IS
application, the overhead is 7.4%. We investigated the
source of this relatively high overhead, and determined
that it was caused mainly by the overhead of running the
application program with the Paradyn performance tool3.

3 We suspect this is due to an interaction between Paradyn and the
ptrace facility in programs that make many blocking system calls, but
are still investigating this point.

Application
 Target

Meas.
Time

Pred. Error Pred. Error

SPA 4/4 4/1
 4/4 158.7 159.0 -0.3 (-0.2%) 158.5 0.2 (0.1%)
 4/1 240.2 235.5 4.7 (2.0%) 236.2 4.0 (1.7%)
TSP 4/4 4/1
 4/4 85.6 85.5 0.1 (0.1%) 85.9 -0.3 (-0.4%)
 4/1 199.2 197.1 2.1 (1.1%) 198.9 0.3 (0.2%)
EP (class A) 16/16 16/8
 16/16 258.2 255.6 2.6 (1.0%) 260.7 -2.5 (-1.0%)
FT (class A) 16/16 16/8
 16/16 140.9 139.2 1.7 (1.2%) 140.0 0.9 (0.6%)
IS (class A) 16/16 16/8
 16/16 271.2 253.3 17.9 (6.6%) 254.7 16.5 (6.0%)
MG (class A)4 16/16 16/8
 16/16 172.8 166.0 6.8 (4.0%) 168.5 4.3 (2.5%)

Figure 3: Measured and Predicted Time for LBF.

For each application, we show one or two target configu-
rations and the second column shows the measured time
running on this target configuration. The rest of the table
shows the execution times predicted by LBF when run
under two different actual configuration.

Application Msgs Msg Time Overhead
 Config. Bytes W/o Inst With Inst Sec. %
SPA
 4/4 56 248 158.7 164.2 5.5 3.5%
 4/1 56 248 240.2 247.0 6.8 2.8%
TSP
 4/4 6 2.3K 85.6 88.6 3.0 3.5%
 4/1 6 2.3K 199.2 203.6 4.4 2.2%
EP (class A)
 16/16 45 1.8K 258.2 268.8 10.6 4.1%
FT (class A)
 16/16 3,480 1.8G 140.9 146.7 5.8 4.1%
IS (class A)
 16/16 7,725 670.5M 271.2 291.2 20.0 7.4%
MG (class A)
 16/16 3,396 400.2M 172.8 178.7 5.9 3.4%

Figure 4: Overhead of Computing LBF.

3. Networking Factor (NF)

Networking Factor addresses the problem of assess-
ing the impact of a network upgrade by predicting the
effect of changing a communication network in a distrib-
uted or parallel execution environment. Our goal is to
compute the potential improvement in execution time if
we change the network. The algorithm can also be used to
simulate the performance characteristics of long haul net-
works when the application is run on a local network.
Similarly to LBF, we predict the execution time of a pro-
gram with a virtual network to assess the potential im-
provement of using the network rather than the currently
available network. To validate the NF metric, we com-

4 The PVM option direct route was used for this application.

pared the execution times of the programs with the pre-
dicted times of NF.

To compute NF, we use the same algorithm used for
LBF, substituting the communication cost lookup table of
a target (predicted) network for the one of the current
network. Since we had access to both networks used in
our study, we constructed the table by measuring each
network. However, if we wished to evaluate a proposed
network, we could simply create an appropriate table
based on its expected performance. The overhead of com-
puting NF is identical to that of computing LBF.

We implemented NF as a variation of LBF by using
the communication cost lookup table for the target net-
work rather than the one for the current network. We
tested NF by running the same subset of the NAS bench-
marks used to evaluate LBF. We again compared the exe-
cution times of the programs running on the real network
with the predicted times when running on a different net-
work. The summary of the measured and predicted execu-
tion times is shown in Figure 5. For each application, the
measured performance is shown for two networks: High
Performance Switch (HPS), and a traditional Ethernet.
The high performance switch is a 320Mbps switched net-
work, and the Ethernet is a bus based 10Mbps network.
We also implemented and tested a combination of LBF
and NF by using the target configuration and network
communication cost lookup table at the same time. The
validation is performed in the same manner as that of NF,
and its summary is shown in Figure 6.

The results of running four of the NAS applications
with the NF metric are shown in Figure 5. For each appli-
cation, the second column shows the measured running
time of the applications using the HPS, the third column
the measured running time using Ethernet, and the fourth
column the predicted running time using the HPS when
we were running on Ethernet. The last two columns show
the error in the prediction relative to the measured HPS
execution time. For the MG application, we were able to
predict the execution time on the HPS to within 1% even
though the measured running time on Ethernet was over
twice as long. Likewise, for IS we were able to predict
the running time to within 8% when our target and actual
configurations had running times that differed by almost a
factor of 10. Finally, for FT our prediction was within 4%
and the running time was 30 times slower than the target
configuration.

Application HPS Ethernet
Meas. Meas. Pred. Error

EP (class A) 258.2 257.4 262.3 -4.1 -1.6%
FT (class A) 140.9 4134.1 135.3 5.6 4.0%
IS (class A) 271.2 2686.7 251.1 20.1 7.4%
MG (class A) 172.8 495.0 174.0 -1.2 -0.7%

Figure 5: Measured and Predicted Time for NF.

Application
 Conf., Network

Measured
Time Pred. Error

EP (class A) 16/8, Ethernet
 16/16, HPS 258.2 259.9 -1.7 -0.7%
FT (class A) 16/8, Ethernet
 16/16, HPS 140.9 136.5 4.4 3.1%
IS (class A) 16/8, Ethernet
 16/16, HPS 271.2 254.4 16.8 6.2%
MG (class A) 16/8, Ethernet
 16/16, HPS 172.8 174.1 -1.3 -0.7%

Figure 6: Comparison of Measured and Predicted
Time for a Combination of LBF and NF.

The results of running four of the NAS applications
with a combination of the LBF and NF metrics are shown
in Figure 6. It shows that in all cases, the predicted values
are within 7% of the actual execution times.

4. Related Work

There are two areas that are closely related to our on-
line “what-if” computation: performance measurement
tools and performance prediction tools. Performance
measurement tools quantify the behavior of an actual pro-
gram execution and allocate time to specific operations or
program components. Performance prediction uses a
model or simulation to predict the execution time of an
algorithm or program.

There are three major types of performance meas-
urement tools: profilers, visualizations, and search tools.
Profile metrics[1, 6, 15, 22] associate a value with each
component of a distributed or parallel application (fre-
quently procedures), and are presented as sorted tables.
Visualizations[8, 13, 14, 18, 23] explain application per-
formance using pictures. Search tools[10, 17, 21] help
users to manage performance data information overload
by treating the problem of finding a performance bottle-
neck as a search problem. However, all of these tools fo-
cus on the measurement and analysis of a specific pro-
gram for a single execution. One type of tool that permits
programmers to evaluate alternatives is application steer-
ing[7, 19]. Application steering permits programmers to
change selected aspects of their program while it is in
execution. This technique can be very effective in tuning
program parameters, but is by necessity limited in the type
of data decomposition and algorithmic changes that can be
accommodated within the currently running executable
image. Complex algorithmic changes require re-writing
part of the program.

Performance predictions can be based either on ex-
trapolations of executions of the program in a controlled
environment, or on stochastic models derived from static
program analysis. Lost Cycles Analysis[3] predicts per-
formance at different operating points by running a con-
trolled set of experiments that vary an orthogonal set of
parameters and record the resulting execution time. How-

ever, this technique requires implementations of the dif-
ferent tuning options to be available for execution. Static
prediction[2, 5] uses modeling languages or source code
analysis to predict the execution time of a program. By
necessity, this technique ignores many details about the
interactions between the application, system software, and
hardware.

5. Conclusions and Future Directions

We have presented a new performance metric that
provides insights into how proposed tuning strategies will
improve an application’s execution time. We have shown
for a collection of six programs that our metric is able to
accurately predict the execution time of a modified con-
figuration.

Although LBF is useful for programmers in its cur-
rent form, there are many directions to expand this re-
search. First, LBF doesn’t provide any guidance about
what tuning options of a program to evaluate. In most
cases, there are multiple tuning alternatives to consider. A
future direction is to investigate automatic selection of
candidate tuning alternatives. Second, automated selection
of candidate configurations combined with LBF provides
a basis for dynamic program adaptation where we auto-
matically change programs during execution based on
observed behavior to enhance their performance. Third, to
permit automatic adaptation, we will need to consider
dynamic migration and incorporate migration cost into our
metric. In addition, we have developed a finer-grained,
function-shipping version of LBF, but haven’t presented it
in this paper because of space limitations.

References

1. T. E. Anderson and E. D. Lazowska, "Quartz: A Tool for Tuning
Parallel Program Performance," 1990 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems. May 1990,
Boston, pp. 115-125.

2. V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer, "A Static
Performance Estimator to Guide Data Partitioning Decisions," 1991
ACM SIGPLAN Symposium on Principals and Practice of Parallel
Programming. April 21-24 1991, Williamsburg, VA, pp. 213-223.

3. M. E. Crovella and T. J. LeBlanc, "Parallel Performance Prediction
Using Lost Cycles," Proceedings of Supercomputing ’94. Nov. 14-
18, 1994, Washington, DC, pp. 600-609.

4. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
Sunderam, PVM: Parallel Virtual Machine. 1994, Cambridge,
Mass: The MIT Press.

5. A. J. C. v. Gemund, "Performance Prediction of Parallel Processing
Systems: The PAMELA Methodology," International Conference
on Supercomputing (ICS). July 1993, Tokyo, Japan, pp. 318-327.

6. A. J. Goldberg and J. L. Hennessy, "Performance Debugging
Shared Memory Multiprocessor Programs with MTOOL,"
Supercomputing’91. Nov. 18-22, 1991, Albuquerque, NM, pp. 481-
490.

7. W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, J. Vetter,
and N. Mallavurupu, "Falcon: On-line Monitoring and Steering of

Large-Scale Parallel Programs," Frontiers ’95. Feb 6-9, 1995,
McLean, VA, pp. 422-429.

8. M. T. Heath and J. A. Etheridge, "Visualizing Performance of Par-
allel Programs," IEEE Software, 8(5), 1991, pp. 28-39.

9. J. K. Hollingsworth, "An Online Computation of Critical Path Pro-
filing," SPDT’96: SIGMETRICS Symposium on Parallel and Dis-
tributed Tools. May 22-23, 1996, Philadelphia, PA, pp. 11-20.

10. J. K. Hollingsworth and B. P. Miller, "Dynamic Control of Per-
formance Monitoring on Large Scale Parallel Systems," 7th ACM
International Conf. on Supercomputing. July 1993, Tokyo, pp. 185-
194.

11. D. Kimelman and D. Zernik, "On-the-Fly Topological Sort - A
Basis for Interactive Debugging and Live Visualization of Parallel
Programs," ACM/ONR Workshop on Parallel and Distributed De-
bugging. May 17-18, 1993, San Diego, CA, pp. 12-20.

12. L. Lamport, "Time, Clocks, and the Ordering of Events in a Dis-
tributed System," CACM, 21(7), 1978, pp. 558-564.

13. F. Lange, R. Kroger, and M. Gergeleit, "JEWEL: Design and Im-
plementation of a Distributed Measurement System," IEEE Trans-
actions on Parallel and Distributed Systems, 3(6), 1992, pp. 657-
671.

14. T. Lehr, Z. Segall, D. F. Vrsalovic, E. Caplan, A. L. Chung, and C.
E. Fineman, "Visualizing Performance Debugging," IEEE Com-
puter, 21(10), 1989, pp. 38-51.

15. M. Martonosi, A. Gupta, and T. Anderson, "MemSpy: Analyzing
Memory System Bottlenecks in Programs," 1992 SIGMETRICS.
June 1-5, 1992, Newport, Rhode Island, pp. 1-12.

16. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall,
"The Paradyn Parallel Performance Measurement Tools," IEEE
Computer, 28(11), 1995, pp. 37-46.

17. S. E. Perl and W. E. Weihl, "Performance Assertion Checking,"
14th SOSP. December 5-8, 1993, pp. 134-145.

18. D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W.
Schwartz, and L. F. Tavera, Scalable Performance Analysis: The
Pablo Performance Analysis Environment, in Scalable Parallel Li-
braries Conference, A. Skjellum, Editor. 1993, IEEE Computer So-
ciety. p. 104-113.

19. D. A. Reed, K. A. Shields, W. H. Scullin, L. F. Tavera, and C. L.
Ellford, "Virtual Reality and Parallel Systems Performance Analy-
sis," IEEE Computer, 28(11), 1995, pp. 57-68.

20. S. K. Reinhart, J. R. Larus, and D. A. Wood, "The Wisconsin Wind
Tunnel: Virtual Prototyping of Parallel Computers," SIGMETIRCS.
May 1993, pp. 46-60.

21. W. Williams, T. Hoel, and D. Pase, The MPP Apprentice Perform-
ance Tool: Delivering the Performance of the Cray T3D, in Pro-
gramming Environments for Massively Parallel Distributed Sys-
tems. 1994, North-Holland.

22. C.-Q. Yang and B. P. Miller, "Critical Path Analysis for the Execu-
tion of Parallel and Distributed Programs," 8th Int’l Conf. on Dis-
tributed Computing Systems. June 1988, San Jose, Calif., pp. 366-
375.

23. D. Zernik and L. Rudolph, "Animating Work and Time for Debug-
ging Parallel Programs Foundation and Experience," 1991
ACM/ONR Workshop on Parallel and Distributed Debugging. May
20-21, 1991, Santa Cruz, CA, pp. 46-56.

