
Special Issue Article

Towards fully automatic auto-tuning:
Leveraging language features of Chapel

Ray S Chen and Jeffrey K Hollingsworth

Abstract
Application auto-tuning has produced excellent results in a wide range of computing domains. Yet adapting an application
to use this technology remains a predominately manual and labor intensive process. This paper explores first steps
towards reducing adoption cost by focusing on two tasks: parameter identification and range selection. We show how
these traditionally manual tasks can be automated in the context of Chapel, a parallel programming language developed
by Cray Inc. Potential auto-tuning parameters may be inferred from existing Chapel applications by leveraging features
unique to this language. After verification, these parameters may then be passed to an auto-tuner for an automatic search
of the induced parameter space. To further automate adoption, we also present Tuna: an auto-tuning shell designed to
tune applications by manipulating their command-line arguments. Finally, we demonstrate the immediate utility of this
system by tuning two Chapel applications with little or no internal knowledge of the program source.

Keywords
auto-tuning, fully automatic, performance, Active Harmony, Tuna, Chapel

1. Introduction

Automatic performance tuning, or auto-tuning, has been

the focus of numerous research projects over the past

decade. Multiple auto-tuning systems (Ţăpuş et al., 2002;

Yi et al., 2007; Hartono et al., 2009) have been developed

to automatically search parameter spaces that are computa-

tionally intractable to explore exhaustively. Fundamen-

tally, all auto-tuning systems are based on a feedback

loop. The tuner generates a configuration that will be

directly tested by the target application. Performance val-

ues collected during the test are then reported back to the

tuner, allowing it to generate another configuration based

on this new information.

In all research to date, the term ‘‘automatic’’ refers only to

the methods that drive a configuration search. No consider-

ation is given towards automatically identifying possible

tunable parameters or incorporating the auto-tuner with the

target application. Both of these tasks require human gui-

dance from domain experts, auto-tuning specialists, or both.

We believe this represents a significant gap in the field,

and ultimately limits the use of auto-tuning technology.

In this paper, we explore first steps towards a fully

automatic auto-tuning system that eliminates the need for

manual intervention. By leveraging language features at the

source code level, one may infer information regarding

potential tunable parameters and greatly reduce the burden

of producing a tuning parameter space.

2. Related work

A wide breadth of computing fields have successfully

benefited from auto-tuning technology. In the realm of

e-commerce services, Chung and Hollingsworth (2004)

apply auto-tuning to the TPC-W benchmark to achieve

throughput improvements of up to 70%. In high-

performance computing, Shin et al. (2010) use auto-tuning

and specialization to improve run-time of a spectral-

element code by up to 38%. More recently, Rahman et al.

(2011) target power consumption as a performance metric

to optimize the efficiency of scientific codes.

The depth to which auto-tuning can be applied has also

been investigated. A first-order application of auto-tuning

involves modifying an application’s input parameters and

running the application to completion. Tiwari and Hol-

lingsworth (2011) provide a finer granularity by demon-

strating auto-tuning inside an application at the loop level

by effectively merging just-in-time compilation with the

traditional feedback-directed optimization loop. Using this

method, performance gains can be realized within a single

Department of Computer Science, University of Maryland, USA

Corresponding author:

Ray S Chen, Department of Computer Science, University of Maryland,

College Park, MD 20742, USA.

Email: rchen@cs.umd.edu

The International Journal of High
Performance Computing Applications
27(4) 394–402
ª The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342013493198
hpc.sagepub.com

http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com

execution of the target application, eliminating the need for

training runs.

As stated earlier, existing auto-tuning frameworks such

as Active Harmony (Ţăpuş et al., 2002), POET (Yi et al.,

2007), and Orio (Hartono et al., 2009) rely on the user to

define a parameter space for auto-tuning. Their contribution

involves automating the search for optimal configurations,

not automating the use of the frameworks themselves.

Bui et al. (2009) developed a component-based environ-

ment for automated performance experiments which comes

the closest to achieving our vision. They broaden the defi-

nition of ‘‘automatic’’ to refer to the connections between

the phases of a given experiment, such as initialization,

data collection, and performance analysis. While greatly

simplified, the configuration of their environment is still

a manual process, as it was not their intention to produce

an end-to-end solution.

3. Approach

There are two conceptual tasks common to the adoption

phase of every auto-tuning project. The first involves

identifying tunable parameters and bounding their possible

values. The second involves locating sections of the target

application that are affected by the chosen parameters.

To simplify our system, we eliminate the second task

by focusing on tuning applications as a whole. Different

command-line parameters are tested, and performance

values are measured from a complete execution of the

target application.

With this simplification, our problem is reduced to find-

ing tunable parameters. Effectively, we wish to automati-

cally determine which internal program variables affect

performance without affecting correctness. However, this

determination is difficult for third parties after the program

has been written. The key observation is that the original

developers had the knowledge we seek. Presumably, they

were familiar enough with the problem domain to make this

determination. Our task would be greatly simplified had

they been philanthropic enough to annotate the source with

such information.

Since it is unreasonable to expect all applications to be

developed with auto-tuning in mind, this information must

be gathered through alternate means. Fortunately, we need

not abandon the original author as a resource. If the appli-

cation was written in a modern programming language

such as Chapel (Callahan et al., 2004), we can view certain

keywords as a natural way to annotate the intended use of

internal program variables.

4. Chapel

Chapel is a parallel programming language from Cray, Inc.,

developed as part of the High Productivity Computing

System program. The goal of Chapel is to improve the pro-

ductivity of high-performance computing by improving the

programmability of multi-core systems and large-scale

parallel computers. High-level abstractions for data and

task parallelism free users from tedious low-level parallel

programming languages while providing additional cor-

rectness and portability benefits. Performance is also a

fundamental goal; Chapel seeks to meet or exceed the per-

formance of programming models such as MPI.

We focus our overview of Chapel to the two features we

leverage: its constructs for parallelism and its notion of

configuration variables.

4.1. Task abstraction

Chapel uses the task abstraction to represent units of paral-

lel work. Threads are considered a system-level concept by

which Chapel executes its tasks. The distinction of tasks

from threads is necessary since the management of

(POSIX) threads require interaction with the system kernel,

and hence incur higher overhead than that Chapel intends

for its parallelism. Once paired, a task must run to comple-

tion before its thread will be released back to the pool of

available threads. This tasking implementation was chosen

for portability and allows Chapel to execute correctly on

virtually any platform that supports threads.

To fully utilize the task abstraction, Chapel should be

paired with a user-level threading library such as Qthreads

(Wheeler et al., 2008) from Sandia National Laboratories.

This allows task generation to be guided by parallelism

intrinsic to the problem domain (Wheeler et al., 2011),

whereas thread generation can be guided by hardware

resources such as physical cores or logical processor threads.

An open question posed by this distinction is the optimal

thread/task ratio. The problem is likely system dependent,

and we explore answers to this question in Section 6.3.

4.2. Configuration variables

Chapel also provides the notion of configuration variables.

Semantically, these are identical to normal variables,

except that additional code is generated to override their

values at load time via the command line. This seemingly

simple feature has deep implications for auto-tuning. Con-

figuration variables are designed to handle being changed

from one execution to the next, which increases the suit-

ability of these variables as auto-tuning parameters. For

instance, scientific applications may find it beneficial to

specify the amount of floating-point precision as a config-

uration variable (Buttari et al., 2008). Unfortunately, these

variables may also alter the program’s correctness. These

constitute false positives and prevent us from using this

class of variable carte blanche, and thus still require human

verification. However, they certainly represent a reason-

able place to begin the search for candidate parameters.

Additional possibilities for bypassing manual verification

are discussed in Section 8.

More importantly, configuration variables provide in-

centives for application developers to delay coding deci-

sions that would otherwise require undue effort to resolve

Chen and Hollingsworth 395

optimally. This is especially true of performance related

coding decisions. Consider TCP socket buffer sizes as an

example. The determination of an optimal value is based

on several factors that are not available at development

time, such as interface bandwidth, free system memory,

and current network conditions (Semke et al., 1998). With

Chapel, the programmer is free to add the ‘‘config’’ key-

word, choose a reasonable value, and move on.

Configuration variables open a path for developers to

implicitly express that better values may exist. It is our

belief that this knowledge can be leveraged by auto-

tuning technology as a first step towards fully automatic

auto-tuning.

5. Active Harmony

The Active Harmony framework (Ţăpuş et al., 2002) has

been used to auto-tune a wide range of applications at vary-

ing levels of granularity. At the heart of this framework are

gradient-free simplex search methods such as Parallel Rank

Ordering (Tiwari et al., 2009) and Nelder–Mead (Nelder

and Mead, 1965).

Several additions and modifications were required to

adapt Active Harmony for use with Chapel’s configuration

variables. The most prominent of which was the develop-

ment of Tuna.

5.1. Tuna: The command-line tuner

Active Harmony provides a client API to flexibly support

the incorporation of auto-tuning within a target application

at different granularities. However, such flexibility requires

modifications to a target’s source code, ultimately increas-

ing the burden of adoption. Tuna was written to alleviate

this burden.

Tuna is a general tool to facilitate command-line para-

meter tuning. After a user specifies a parameter space and

a target application, Tuna has everything it needs to estab-

lish an auto-tuning loop. Successive loop iterations use

Active Harmony’s client API to retrieve testing values,

execute the target application using these values as argu-

ments, and report a performance value back to the frame-

work after each execution. Note that Tuna users require

no prior knowledge of the client API; those details are man-

aged internally.

Tuna provides three built-in methods for measuring the

performance of a target application. These include wall-

time, user-time, and system-time used by the target applica-

tion. To support a wider range of possible performance

metrics, a fourth method monitors output from the target

application and parses a floating-point value from its final

line as the performance value. This allows virtually any

measure of performance, so long as it can be collected by

an external wrapper program and printed.

The usage example in Figure 1 defines a parameter

space with two integer variables via the -i flag. The first

variable, named ‘‘tile,’’ is permitted to be between 1 and

10, inclusive. The second variable, named ‘‘unroll,’’ is per-

mitted to be even numbers between 2 and 12, inclusive. The

tuning loop is limited to at most 25 iterations due to the

optional -n flag. The remaining parameters specify that

the target application (matrix_mult) should be launched

with Harmony-chosen values for ‘‘tile’’ and ‘‘unroll’’ as the

second and fourth arguments, respectively. Wall-time of

each execution will be measured and reported, as it is the

default performance metric.

Tuna is used extensively for the performance tests

reported in this paper. However, the utility of Tuna extends

beyond the realm of Chapel and configuration variables.

Any application that provides command-line parameters

related to performance is immediately available for tuning.

As an example, the GCC compiler suite provides hundreds

of command-line arguments to control various details of its

compilation process (Free Software Foundation, 2013).

Finding optimal values for these arguments is a natural task

for Tuna. A user need only specify which arguments are

relevant for their optimization task and a method to mea-

sure the resulting performance.

6. Tuning Chapel applications

Chapel applications are at a particular advantage with

regard to configuration variable auto-tuning. As alluded

to in Section 4.1, Chapel makes a distinction between appli-

cation tasks and system threads. However, the method for

determining an optimal thread/task ratio is unclear, even

from a theoretical standpoint. Perhaps anticipating this

dilemma, the Chapel developers provide three built-in con-

figuration variables to control the number of tasks and

threads that a Chapel application will implicitly initiate.

This automatically makes every Chapel application an

excellent candidate for auto-tuning, even if the application

developer never declares a single additional configuration

variable.

It seems reasonable to believe that the optimal ratio is

dependent on application factors such as the amount of syn-

chronous code, as well as system factors such as thread

scheduling. To test our hypothesis, we use Tuna to perform

the same tuning tasks on four different machines. As

detailed in Table 1, each machine represents a different

CPU type, core count, or operating system.

6.1. Quicksort

We begin our tuning experiments with a quicksort example

provided in the source distribution of Chapel. As shown

in Figure 2, the configuration variables accepted by this

Figure 1. Tuna usage example.

396 The International Journal of High Performance Computing Applications 27(4)

application can be retrieved via the ‘‘–help’’ switch. This

help routine is automatically added by the Chapel compiler.

Since the ‘‘thresh’’ configuration variable’s use is not

immediately clear, we begin a focused investigation of the

source code that quickly reveals its purpose. This particular

implementation of quicksort uses the ‘‘thresh’’ configura-

tion variable to control the maximum recursive depth

before a serial bubble sort is used as the base case.

Note that a full investigation of this application’s source

code was not necessary. We were able to greatly limit such

manual analysis by simply viewing the configuration vari-

ables of the program.

Our test involves sorting a 64-megabyte array of double-

precision floating-point random values. We use Tuna to

create a search space based on three variables: the number

of threads to spawn (between 1 and 16, inclusive), the num-

ber of tasks to automatically initiate (between 1 and 256,

inclusive), and the application-specific threshold depth

(between 1 and 16, inclusive). Ten runs of quicksort using

default values are used as a control, and their results are dis-

played along with the tuning data. Graphs of the resulting

tuning sessions are shown in Figure 3. Minimum and max-

imum performance values for the default configuration are

represented by dashed lines, and the average is represented

by the dotted line between them.

Active Harmony was able to find configurations that

improve the performance of quicksort by more than

400% over the best performing control test on the Xeon

machine. This is not a miracle of auto-tuning; the original

application only generates one level of parallelism by

default. On the one hand, it should be no surprise that an

algorithm conducive to parallelism performs better in the

presence of more parallelism. On the other hand, a better

default threshold value may not exist. Chapel certainly

provides a mechanism for retrieving the number of local

system cores, and the example implementation could easily

be rewritten to take advantage of this information. How-

ever, this may not be a desirable default value if the system

is heavily burdened with other processes.

The Power architecture result also deserves investiga-

tion. As the only machine with a single core, it should be

heavily affected by the spawning of additional threads.

Instead, its execution times are completely unwavering.

We have verified that the number of spawned threads is

indeed correlated to the number of threads requested, so the

operating system must be responsible for the invariable

performance behavior.

Overall, Active Harmony is able to find acceptable con-

figurations on each of our test systems within four search

steps. The search could be further improved had the search

space been tailored to each target architecture. For instance,

the search space we defined for this experiment includes

the nonparallel case where ‘‘thread’’ is set to one. As a

methodology, we wished to keep the search as wide as

possible to capture the generality of Active Harmony’s

simplex-based search method.

This is an excellent result for Chapel and automated

auto-tuning. With little more than a glance at the source

code, this example proved itself to be tunable with positive

results. This is comes very close to our goal of treating tar-

get applications as black boxes. Details of the best config-

urations discovered are provided in Table 2.

6.2. HPC Challenge: STREAM

Moving beyond toy programs, the source distribution of

Chapel version 1.6 also includes implementations of

selected real world parallel benchmarks written in Chapel.

Since these programs represent highly tuned benchmarks,

they offer no configuration variables that affect perfor-

mance without affecting program correctness. Neverthe-

less, Chapel’s built-in configuration variables provide

enough leverage for tuning. We use an implementation of

the STREAM benchmark from HPC Challenge, which is

a simple synthetic benchmark that measures sustainable

memory bandwidth and the corresponding computation

rate for a simple vector kernel.

Again, Tuna was used to create a search space based on

three variables: the number of threads to spawn (between 1

and 16, inclusive), the number of tasks to automatically

initiate (between 1 and 256, inclusive), and the minimum

task granularity (between 256 and 32768, by increments

of 256). The last variable describes how tasks should be ini-

tiated for data parallel loops, meaning each task will be

responsible for at least this number of loop iterations. The

granularity may ultimately be interesting for cache studies,

which we investigate in Section 6.3. We compare our tun-

ing run against 10 runs of STREAM using its default values

and plot their minimum, maximum, and average values on

the graph using dotted and dashed lines. Graphs of the

resulting tuning sessions are shown in Figure 4.

Figure 2. Listing of quicksort’s config variables.

Table 1. Test platform architecture specifications.

CPU type
Xeon
E5649 POWER4

Itanium
2

Opteron
242

Core speed 2.53 GHz 1.1 GHz 900 MHz 1.6 GHz
Cores/threads 6/12 1/1 2/2 2/2
L1 Data cache 32 KB 32 KB 16 KB 64 KB
L2 Cache 0.25 MB 5.60 MB 0.25 MB 1.00 MB
L3 Cache 12 MB 128 MB 24 MB N/A
System RAM 24 GB 6 GB 512 MB 4 GB
OS Linux Linux Linux Linux
Word size 64-bit 32-bit 64-bit 32-bit

Chen and Hollingsworth 397

Active Harmony had greater difficulty finding con-

figurations that improve upon the performance of this

benchmark. This is unsurprising since STREAM is

designed to test performance and care was presumably

taken to achieve maximal performance using default para-

meter values. Details of the search results are provided in

Table 3. Considering that benchmark codes are effectively

a worse-case scenario, Active Harmony still performs

exceedingly well as optimal values are always found within

10 search steps. Note that, while poor configurations may

be tested after optimal values are found, knowledge of the

best configuration is retained. This is certainly the case for

our tests on the Opteron architecture.

6.3. Towards performance unit tests

To shed some light on the question of optimal thread/task

ratio detailed in Section 4.1, we developed a simple paral-

lel cache memory stress test in Chapel designed to be sen-

sitive to cache size and access patterns. The test allocates

an array of word-size integers and instructs multiple tasks

to process the array by reading the value at i� 1, and writ-

ing an incremented version of that value into position i.

Internal Chapel logic will determine array stride and

chunk size as a function of task count and loop granular-

ity, respectively. Like the HPC Challenge benchmark,

Tuna was used to create a search space based on threads,

tasks, and task granularity.

For comparison, we hand calculate a theoretically opti-

mal configuration based on CPU L1 cache sizes and system

core count. Since the optimal task count is unclear, that

value is left at Chapel’s default. Graphs of the resulting

tuning sessions are shown in Figure 5. As with the previous

figures, these hand calculated optimal values are repre-

sented via dashed lines, with the average as the dotted line

between them.

Table 4 shows that we were able to match hand-

calculated optimal results within search steps on all tested

platforms. Of particular interest is the Power architecture,

where we achieve a performance improvement. In all prior

experiments on this platform, performance results have

remained steady and unaffected by configuration variable

modification. Deeper analysis will be required to fully

understand the how parallelism effects the cache efficiency

of Chapel applications. However, that study is beyond the

scope of this paper.

W
al

l-t
im

e
Pe

r R
un

 (s
)

Total Tuning Time (h:mm:ss)

0

5

10

15

20

0:00:00 0:00:35 0:01:09

Xeon E5649

0
5

10
15
20
25
30
35
40

0:00:00 0:05:46 0:11:31

POWER4

0

100

200

300

400

500

600

0:00:00 0:07:12 0:14:24 0:21:36 0:28:48

Itanium 2

0

50

100

150

200

250

300

0:00:00 0:08:38 0:17:17

Opteron 242

Figure 3. Tuning quicksort across multiple platforms. Solid blue line represents performance results discovered over time. Dashed and
dotted lines represent the min, max, and average of 10 control runs.

Table 2. Comparison of best quicksort configurations.

Platform Xeon E5649 POWER4 Itanium 2 Opteron 242

Best default Time: 9.1s Time: 30.2s Time: 42.3s Time: 23.3s
Best Active Harmony Thread: 16 Thread: 1 Thread: 3 Thread: 2

Task: 241 Task: 1 Task: 67 Task: 93
Thresh: 16 Thresh: 1 Thresh: 12 Thresh: 10
Time: 1.8s Time: 30.1s Time: 39.4s Time: 23.2s

398 The International Journal of High Performance Computing Applications 27(4)

7. Augmenting Chapel

Configuration variables have proven useful in our tuning

experiments, but more information is required for the system

to become fully automatic. Namely, bounding ranges for each

configuration variable were manually selected before being

sent to Tuna. Again, the original developer is a likely resource

for this information but, in this case, they have no means to

express it. The Chapel language currently does not allow for

ranges to be associated with configuration variables.

We modified the Chapel language grammar as a proof of

concept to enable the association of value ranges with con-

figuration variables. No new keywords or data types were

required; we used the existing ‘‘in’’ keyword and Range

variable type. The range may be specified directly after the

variable name, as shown in Table 5. In our implementation,

these ranges are correctly parsed and stored by the Chapel

compiler.

Additional code is automatically generated and run at

program launch time to verify each configuration variable.

For instance, num4 and num7 in Table 5 provide invalid

default values. This is because ranges begin their stride

with the first number in the definition unless explicitly

aligned via the ‘‘align’’ keyword. These lines will compile

successfully, but fault at run-time if not overridden by the

user to a valid value (such as 1, 6, or 11).

We believe the addition of a bounding range to config-

uration variables would be useful outside the realm of

auto-tuning because it allows for additional correctness

guarantees on user input. The association of a value range

is considered optional in the grammar, so existing code

maintains its correctness. Additionally, applications will

incur minimal run-time overhead, as these checks are

defined to occur once at launch time only.

As mentioned in Section 4.2, false positives must be

dealt with in a meaningful way. A simple solution would

be to add a new keyword such as ‘‘tunable’’ that is function-

ally equivalent to configuration variables, but syntactically

imply that these variables may be modified without effect-

ing correctness.

We intend to submit our changes to the developers of

Chapel for consideration, along with our rationale. The

inclusion of our patch would greatly facilitate the automa-

tion of auto-tuning on Chapel applications.

W
al

l-t
im

e
Pe

r R
un

 (s
)

Total Tuning Time (h:mm:ss)

0

50

100

150

200

0:00:00 0:05:46 0:11:31

Xeon E5649

0
20
40
60
80

100
120
140
160

0:00:00 0:21:36 0:43:12

POWER4

0

50

100

150

200

250

0:00:00 0:08:38 0:17:17

Itanium 2

0

100

200

300

400

500

0:00:00 0:07:12 0:14:24 0:21:36 0:28:48

Opteron 242

Figure 4. Tuning STREAM across multiple platforms. Solid blue line represents performance results discovered over time. Dashed and
dotted lines represent the min, max, and average of 10 control runs.

Table 3. Comparison of best STREAM configurations.

Platform Xeon E5649 POWER4 Itanium 2 Opteron 242

Best default Time: 24.4s Time: 123.3s Time: 9.5s Time: 29.4s
Best Active Harmony Thread: 12 Thread: 16 Thread: 1 Thread: 2

Task: 256 Task: 167 Task: 2 Task: 125
Gran: 30.75k Gran: 27.75k Gran: 0.25k Gran: 14.5k
Time: 24.0s Time: 122.9s Time: 12.5s Time: 29.7s

Chen and Hollingsworth 399

With these proposed language changes in place, the man-

ual process of parameter verification can finally be elimi-

nated. Tuna can be extended to extract range information

exclusively from ‘‘tunable’’ variables and perform a tuning

experiment without any manual guidance.

8. Future directions

Within Chapel, we can widen the scope of this work by

lifting our simplifying assumption from Section3 and

increasing the granularity beyond entire programs. Specif-

ically, the ‘‘forall’’ keyword is another implicit annotation

by the original author to mark loops as parallelizable. This

parallelism can be used to quickly search for optimal

loop transformations similar to work done by Tiwari and

Hollingsworth (2011). This sort of tuning could also be

applied automatically after a simple static analysis of the

source code reveals the location of these loops.

Outside of Chapel, adapting similar techniques to exist-

ing languages such as C or Fortran will be difficult, since

W
al

l-t
im

e
Pe

r R
un

 (s
)

Total Tuning Time (h:mm:ss)

0

100

200

300

400

500

0:00:00 0:10:05 0:20:10

Xeon E5649

0

10

20

30

40

50

0:00:00 0:07:55 0:15:50

POWER4

0

100

200

300

400

500

600

0:00:00 0:07:12 0:14:24 0:21:36 0:28:48

Itanium 2

0

150

300

450

600

750

0:00:00 0:15:50 0:31:41

Opteron 242

Figure 5. Optimal parameter search across multiple platforms. Solid blue line represents performance results discovered over time.
Dashed and dotted lines represent the min, max, and average of 10 control runs.

Table 4. Comparison of best cache configurations.

Platform Xeon E5649 POWER4 Itanium 2 Opteron 242

Best manual Thread: 12 Thread: 1 Thread: 2 Thread: 2
Gran: 4k Gran: 8k Gran: 2k Gran: 16k
Time: 30.2s Time: 41.3s Time: 32.0s Time: 39.6s

Best Active Harmony Thread: 16 Thread: 16 Thread: 3 Thread: 2
Task: 256 Task: 256 Task: 32 Task: 256
Gran: 27k Gran: 25k Gran: 0.25k Gran: 16k
Time: 31.2s Time: 38.4s Time: 33.1s Time: 40.1s

Table 5. Examples of proposed Chapel syntax for range association.

400 The International Journal of High Performance Computing Applications 27(4)

they do not implement configuration variables. Determin-

ing which variables may be arbitrarily modified is an open

problem, and it is unclear how far static analysis can be uti-

lized towards this end. As an alternative, the configuration

of shared libraries can also increase the utility of fully auto-

matic auto-tuning users. For example, the MPI 3.0 standard

makes provisions for control variables MPI Forum (2012),

which are conceptually equivalent to Chapel’s configura-

tion variables.

9. Conclusion and summary

This work represents first steps towards a fully automatic

auto-tuning system. The Chapel programming language

provides an excellent base for these first steps due to its

notion of configuration variables. Encoded in the definition

of such variables is the implication of mutability, specifi-

cally at program launch time. We tested this implication

on two different Chapel applications, and were successfully

able to tune these programs without modification, and with

little or no familiarity with their source code.

The Active Harmony framework was used and extended

to support this work, introducing Tuna as a general tool for

command-line auto-tuning.

Funding

Partial support for this work was provided through Scien-

tific Discovery through Advanced Computing (SciDAC)

program funded by U.S. Department of Energy, Office of

Science, Advanced Scientific Computing Research under

award numbers ER25763 and ER26054. Support was

also provided by the UMD Partnership with the Labora-

tory of Telecommunications Sciences, Contract Number

H9823013D00560002.

References

Bui V, Norris B and McInnes LC (2009) An automated component-

based performance experiment environment. In: Proceedings of

the 2009 workshop on component-based high performance

computing (CBHPC 2009). Also available as Preprint ANL/

MCS-P1666-0809.

Buttari A, Dongarra J, Kurzak J, Luszczek P and Tomov S (2008)

Using mixed precision for sparse matrix computations to

enhance the performance while achieving 64-bit accuracy.

ACM Transactions of Mathematical Software 34(4): 17:1–

17:22. doi:10.1145/1377596.1377597.

Callahan D, Chamberlain BL and Zima HP (2004) The cascade

high productivity language. In: Ninth international workshop

on high-level parallel programming models and supportive

environments (HIPS ‘04), pp. 52–60.

Chung IH and Hollingsworth JK (2004) Automated cluster-based

web service performance tuning. In: Proceedings of the 13th

IEEE international symposium on high performance distribu-

ted computing (HPDC ‘04). Washington, DC: IEEE Computer

Society, pp. 36–44. doi:10.1109/HPDC.2004.4.

Free Software Foundation (2013) Optimize Options – Using the

Gnu Compiler Collection (GCC). Available at: http://gcc.

gnu.org/onlinedocs/gcc/Optimize-Options.html.

Hartono A, Norris B and Sadayappan P (2009) Annotation-

based empirical performance tuning using Orio. In: IEEE

international symposium on parallel distributed process-

ing (IPDPS 2009), pp. 1–11. doi:10.1109/IPDPS.2009.51

61004.

MPI Forum (2012) MPI: A message-passing interface standard

(version 3.0). Section 14.3.6, pp. 567–572. Available at:

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

Nelder JA and Mead R (1965) A simplex method for function

minimization. The Computer Journal 7(4): 308–313. doi:10.

1093/comjnl/7.4.308.

Rahman SF, Guo J and Yi Q (2011) Automated empirical tuning

of scientific codes for performance and power consumption.

In: Proceedings of the 6th international conference on high

performance and embedded architectures and compilers

(HiPEAC ‘11). New York: ACM Press, pp. 107–116. doi:10.

1145/1944862.1944880.

Semke J, Mahdavi J and Mathis M (1998) Automatic tcp

buffer tuning. In: Proceedings of the ACM SIGCOMM

‘98 conference on applications, technologies, architectures,

and protocols for computer communication (SIGCOMM

‘98). New York: ACM Press, pp. 315–323. doi:10.1145/

285237.285292.

Shin J, Hall MW, Chame J, Chen C, Fischer PF and Hovland PD

(2010) Speeding up nek5000 with autotuning and specializa-

tion. In: Proceedings of the 24th ACM international confer-

ence on supercomputing (ICS ‘10). New York: ACM Press,

pp. 253–262. doi:10.1145/1810085.1810120 .

Ţăpuş C, Chung IH and Hollingsworth JK (2002) Active Har-

mony: towards automated performance tuning. In: Proceed-

ings of the 2002 ACM/IEEE conference on supercomputing

(Supercomputing ‘02). Los Alamitos, CA: IEEE Computer

Society Press, pp. 1–11.

Tiwari A and Hollingsworth JK (2011) Online adaptive code

generation and tuning. In: Proceedings of the 2011 IEEE

International parallel & distributed processing symposium

(IPDPS ‘11). Washington, DC: IEEE Computer Society,

pp. 879–892. doi:10.1109/IPDPS.2011.86.

Tiwari A, Tabatabaee V and Hollingsworth JK (2009) Tuning par-

allel applications in parallel. Parallel Computing 35(8–9):

475–492. doi:10.1016/j.parco.2009.07.001.

Wheeler K, Murphy R and Thain D (2008) Qthreads: An API

for programming with millions of lightweight threads. In:

IEEE International symposium on parallel and distributed

processing (IPDPS 2008), pp. 1–8. doi:10.1109/IPDPS.

2008.4536359.

Wheeler KB, Murphy RC, Stark D and Chamberlain BL (2011)

The Chapel tasking layer over Qthreads. In: Proceedings of

CUG 2011.

Yi Q, Seymour K, You H, Vuduc R and Quinlan D (2007)

POET: Parameterized optimizations for empirical tuning.

In: IEEE International symposium on parallel and distribu-

ted processing (IPDPS 2007), pp. 1–8. doi:10.1109/IPDPS.

2007.370637.

Chen and Hollingsworth 401

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Author biographies

Ray S Chen is a graduate student at the University of

Maryland’s Department of Computer Science. His research

interests include dynamic binary instrumentation and auto-

mated performance tuning. He is advised by Dr. Jeffrey K.

Hollingsworth.

Jeffrey K Hollingsworth is a Professor in the Computer Sci-

ence Department at the University of Maryland, College Park,

and affiliated with the Department of Electrical Engineering

and the University of Maryland Institute for Advanced

Computer Studies. His research interests include instrumen-

tation and measurement tools, resource aware computing,

high performance distributed computing, and programmer

productivity. Dr. Hollingsworth’s current projects include the

Dyninst runtime binary editing tool, and Harmony - a system

for building adaptable, resource-aware programs. He

received his PhD and MS degrees in computer science from

the University of Wisconsin. He earned his B.S. in Electrical

Engineering from the University of California at Berkeley.

Dr. Hollingsworth is a senior member of IEEE and a

member of ACM.

402 The International Journal of High Performance Computing Applications 27(4)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

