
Tuning the Performance of I/O-Intensive Parallel Applications �

Anurag Acharyazy Mustafa Uysalz Robert Bennettz Assaf Mendelsonz Michael Beynonz

Je� Hollingsworthz Joel Saltzzy Alan Sussmanzy

zDept of Computer Science

University of Maryland, College Park MD 20742
yCenter for Excellence in Space Data and Information Sciences

Goddard Space Flight Center, Greenbelt MD 20771

Abstract

Getting good I/O performance from parallel programs is a
critical problem for many application domains. In this pa-
per, we report our experience tuning the I/O performance
of four application programs from the areas of satellite-data
processing and linear algebra. After tuning, three of the
four applications achieve application-level I/O rates of over
100 MB/s on 16 processors. The total volume of I/O re-
quired by the programs ranged from about 75 MB to over
200 GB. We report the lessons learned in achieving high I/O
performance from these applications, including the need for
code restructuring, local disks on every node and knowledge
of future I/O requests. We also report our experience on
achieving high performance on peer-to-peer con�gurations.
Finally, we comment on the necessity of complex I/O inter-
faces like collective I/O and strided requests to achieve high
performance.

1 Introduction

I/O has been identi�ed as one of the major obstacles to
achieving high performance from parallel computers. As a
result, signi�cant e�ort has been put into trying to improve
the performance of I/O on these machines. To date, most
researchers have focused on observing the I/O behavior of
existing applications and on trying to improve the ability of
I/O systems available on parallel machines to execute these
applications [2, 3, 4, 7, 9]. We take a di�erent approach.
Instead of assuming that the applications are �xed and that
the I/O system alone is open to modi�cation, we believe
that both the applications and the I/O system have to be
tuned to achieve good performance. In this paper, we con-
centrate on tuning the applications to improve their I/O

�This research was supported by ARPA under contract No.
DABT63-94-C-0049, Caltech subcontract #9503, by NASA under
contract No. NAS5-32337, USRA/CESDIS subcontract #555541 and
by NSF under grant No. ASC9318183. Hollingsworth was supported
in part by a UMCP General Research Board award.

To appear in the Fourth Annual Workshop on I/O in Par-
allel and Distributed Systems, May 27, 1996, Philadel-
phia

performance, hopefully also improving their execution time.
Our goal in this research was to �nd out what strategies
were required to achieve good I/O performance for these
applications, and to identify common strategies that work
for a variety of applications. We were also interested in
seeing what support from I/O libraries and �lesystems was
necessary to achieve good performance.

To eliminate an under-con�gured I/O system, often a
cause of I/O bottlenecks, as a cause of poor performance,
we conducted our experiments on a parallel machine with
an aggressive I/O con�guration. Our experimental plat-
form consisted of a 16-processor IBM SP-2 with six fast
disks attached to every processor. A widely used micro-
benchmark indicated the maximum application-level band-
width to be 400 MB/s using the Unix raw disk interface
and 270 MB/s using the Unix �lesystem interface. All pro-
cessors are connected to a high performance switch by a
40 MB/s bi-directional link. Each node on our platform has
substantial resources and can perform I/O for itself and for
other nodes. This con�guration also allowed us to investi-
gate the performance of applications on both peer-peer and
client-server architectures.

For our study, we selected I/O-intensive applications from
two areas: satellite-data processing (earth science) and out-
of-core sparse-matrix factorization (scienti�c computation).
The earth-science applications are currently in production
use at NASA Goddard Space Flight Center and the out-of-
core sparse-matrix factorization applications have been de-
veloped at the University of Maryland with a near-term goal
of solving very large submarine structural acoustics prob-
lems. I/O is required in these applications for accessing pre-
existing data, for intermediate results (i.e., for out-of-core
processing) and for producing �nal output.

For each program the objective was simple: make it run
as fast as possible and keep track of what was required to
achieve this. The results of this exercise are encouraging.
Foremost, we were able to obtain application-level I/O rates
of over 100 MB/s for three out of four applications. We
also observed several common characteristics in the ways in
which we achieved high performance from our applications.
First, although it appeared that the initial versions of some
of the applications would bene�t from complex I/O inter-
faces, such as strided requests, after tuning relatively simple
I/O primitives proved to be su�cient. Second, local disks on
compute nodes were required to achieve good performance
for all of the applications. Third, information about future
I/O requests was available for all applications and could be

1

used to schedule the requests. Both prefetching, initiated
by applications, and write-behind, provided by the operat-
ing system, were successfully used.

The rest of this paper is divided into six sections. In the
next section, we describe our experimental con�guration.
Section 3 reports on our e�orts to characterize our con�g-
uration using micro-benchmarks. In Sections 4 and 5 we
describe each of our application areas, report the I/O per-
formance, and discuss the steps required to achieve this per-
formance. Section 6 describes the lessons we learned tuning
the applications. Finally, Section 7 summarizes our work.

2 Systems background

All our experiments were performed on a 16-node IBM SP-
2 running AIX 3.2.5. Each node is identically con�gured
with one POWER2 processor, 64 MB of main memory, two
fast-wide SCSI buses and a 40 MB/s bi-directional link to
a multi-stage high-performance switch. Each SCSI bus has
three 2.2 GB IBM Star�re 7200 SCSI disks. The peak band-
width for each disk is 8 MB/s and the peak bandwidth
for each SCSI bus is 20 MB/s. The overall system has 96
disks totaling over 200 GB, a peak aggregate disk band-
width of 640 MB/s and a peak aggregate SCSI bandwidth
of 480 MB/s. The SCSI buses and the network adaptor are
connected to an 80 MB/s MicroChannel bus.

Each disk contains a separate �lesystem. Although,
AIX 4.1 is able to stripe �lesystems across multiple disks
in a single node, it has only recently become available for
the SP-2 and has not yet been installed on our machine.

Jovian-2 is a multi-threaded parallel-I/O library devel-
oped at the University of Maryland. It provides an interface
similar to the POSIX lio listio() interface, which allows
multiple I/O requests to be issued with a single call. Jovian-
2 consists of two parts; the client proxy, which runs in the
same thread as the application, and a separate server thread.
The server thread can serve requests from both local and re-
mote processes; local requests are handled as a special-case
for fast processing. Jovian-2 is able to take advantage of
multi-disk con�gurations. It allows the application process
running on each node to control the scheduling of the associ-
ated I/O server. Our current implementation assumes that
a standard Unix �le system with asynchronous I/O calls is
available on individual nodes. On the SP-2, our implementa-
tion uses the user-space communication primitives provided
by IBM's Message Passing Library (MPL).

Jovian-2 is signi�cantly di�erent from the original Jovian
I/O library [1]. These changes were prompted by our experi-
ence with real I/O-intensive applications and by changes in
our experimental platform. There are four main di�erences.
First, Jovian assumed a loosely synchronous model of com-
putation and provided a collective-I/O interface; Jovian-2
makes no such assumption and provides a simple
lio listio()-like interface. Since all clients were guaran-
teed to participate in a request, Jovian servers would wait for
requests from all their clients before issuing disk requests.
Jovian-2 servers, on the other hand, try to keep the disk
busy by issuing disk requests as soon as possible. Second,
Jovian assumed that individual requests would be small and
provided support for coalescing multiple requests. Jovian-
2 assumes programmers are aware of the costs of I/O and
individual I/O requests are of substantial size. Third, Jo-
vian servers were implemented as separate processes; Jovian-
2 servers are implemented as threads in the application's

4k 16k 64k 1m 4k 16k 64k 1m
Block size

0

2

4

6

8

10

12

14

16

18

20

M
eg

ab
yt

es
/s

ec

<1,0>
<1,1>
<2,2>
<3,3>

Read Write

Figure 1: Maximum application-level I/O rates for JFS.
<x,y> indicates the number of disks on each of the two SCSI
buses.

address-space. Finally, Jovian did not provide support for
striping over multiple disks whereas Jovian-2 supports user-
customizable striping.

3 Micro-benchmarks

We conducted a series of experiments using micro-bench-
marks to characterize the performance of our experimen-
tal platform. These experiments had two goals. First, we
wanted to determine the maximum application-level I/O
bandwidth, which is a more realistic baseline to evaluate the
performance of applications than peak disk or SCSI trans-
fer rates. Second, we wanted to determine the parameters
and con�gurations that provide the best performance. This
information is needed to tune applications to e�ectively use
the I/O system.

In this section we present results for both the native Unix
�lesystem available on the SP-2 and for Jovian-2. For our
study, we used Jovian-2 for the earth-science applications
and the Unix �lesystem for the sparse-matrix factorization
applications.

3.1 Journaled File System

The Journaled File System is the default Unix �lesystem
available on AIX 3.2. To measure single node JFS per-
formance, we used a modi�ed version of the widely used
iozone benchmark [13]. iozone determines the maximum
application-level I/O bandwidth by making a sequence of
contiguous write requests followed by a sequence of contigu-
ous read requests. Our version of this program supports
multi-disk con�gurations and can generate multiple simul-
taneous requests per disk. It issues all requests using a single
lio listio() call and waits for all of them to complete be-
fore issuing the next set.

We performed experiments for request sizes between 4 KB
and 4 MB; with one to six outstanding requests per disk and
six di�erent disk con�gurations. For each experiment, the
benchmark wrote and read back a 70 MB �le. We used a
70 MB �le to ensure we measured disk activity and not �le
cache performance. Along the request-size dimension, the
bandwidth curves saturate around 1 MB requests. Increas-
ing the number of outstanding requests did not provide much

2

bene�t. In most cases, the best performance was achieved
with just one or two outstanding requests. Of the various
con�gurations tested, the con�guration with two disks per
SCSI bus provided the best performance in almost all cases.
The additional bandwidth provided by adding a third disk
on a SCSI bus did not increase performance because of con-
tention between disks for the bus.

Figure 1 presents the maximum application-level read
and write bandwidths for a set of request sizes on four disk
con�gurations. We repeated these experiments using the
Unix raw disk interface instead of JFS. The maximum read
bandwidth achieved was 25.2 MB/s and the maximum write
bandwidth was 23.5 MB/s. Although the raw disk con�g-
uration provided noticeably higher throughput, we decided
that any potential bene�t from using raw disks would be
o�set by the loss in functionality.

3.2 Jovian-2

To test the performance of the Jovian-2 parallel-I/O library
for various I/O con�gurations, we performed experiments
for three kinds of con�gurations:

� Local-access: data is located on the same node that
the I/O requests are made on.

� Client-server: the nodes participating in the experi-
ment are partitioned into clients and servers as shown
in Figure 2(a). Clients run both the application thread
and the I/O-server thread whereas servers run only
the I/O-server thread. All I/O requests are made on
clients.

� Peer-peer: all nodes run both the application and the
I/O-server thread as shown in Figure 2(b). I/O re-
quests can originate from any node.

In these experiments, the primary parameter was the
number of nodes that performed I/O. On each node that
performed I/O, we used four disks (two on each SCSI bus),
since that provided the best performance, as shown in Sec-
tion 3.1. Both �le size and request size were scaled with the
number of disks. For the local-access and the one-client-one-
server cases, a single processor wrote and read back a 70 MB
�le. For larger con�gurations, the �le size was scaled to en-
sure at least 70 MB of data per node. �le In addition, we
read a 70 MB �le on every node between every write experi-
ment and the subsequent read experiment. For each con�g-
uration, the �le was striped over all available disks { local
disks for the local-access case, server disks for client-server
con�gurations, and all disks on all the nodes for peer-peer
con�gurations.

The request size was scaled to request at least one strip-
ing unit from every disk. For a con�guration that used
d disks, a request of striping unit size � d KB was used.
For con�gurations with multiple clients (or multiple peers),
non-overlapping requests were generated. For peer-peer con-
�gurations using n nodes, 1=n of I/O was local and the rest
remote.

Results for a representative subset of the experiments
are presented in Table 1. All measurements include time re-
quired to ush the �le cache. For comparison, the maximum
JFS bandwidths for four disks per node are 15.0 MB/s (read)
and 16.8 MB/s (write). For non-local requests, Jovian-2
reads �les from disk using JFS and delivers them to the re-
questing application using MPL. An upper bound for the

bandwidth that can be achieved for individual non-local re-
quests can be computed by adding the time taken to read a
striping unit from the disk into the memory of the server
node and the time taken to move it to the client node.
We measured the maximum communication bandwidth for
128 KB messages to be 32 MB/s.1 Combining this with the
maximum application-level I/O bandwidth via JFS (from
Table 1), we arrive at 10.3 MB/s as an upper bound for
non-local bandwidth for individual requests. In compari-
son, Jovian-2 achieved a read bandwidth of 9.3 MB/s for a
one-server-one-client con�guration. For con�gurations with
relatively large I/O bandwidth { more servers than clients
and large peer-peer systems, the read and write bandwidths
are comparable. For con�gurations with relatively small I/O
bandwidth, write bandwidth is much higher than read band-
width, due to write-behind in the �lesystem.

4 Earth-Science Applications

The two earth-science programs, included in our applica-
tion suite, pathfinder and climate, constitute a process-
ing chain for Advanced Very High Resolution Radiometer
(AVHRR) data. The Path�nder AVHRR data sets are global,
multichannel data from NOAAmeteorological satellites. Both
pathfinder and climate are currently in production use by
NASA's Goddard Distributed Active Archive Center and,
together, are representative of a large class of NASA earth-
science applications. Furthermore, the structure of these
applications is similar to the large set of programs currently
being developed to process data from the Earth Observation
System [6] satellites.

Path�nder: This program is the �rst in the processing
chain and processes AVHRR global area coverage data. Its
input consists one or more daily data sets which contain
satellite imagery and several ancillary �les which contain
topographic and cartographic data about the earth and in-
formation that helps determine the position of the satellite
at any given time. Each daily data set contains fourteen �les,
each containing data corresponding to a little more than one
orbit. The output of the program is a single multichannel
image of the world. Pathfinder performs calibration for
instrument drift, topographic correction, masking of cloudy
pixels, registration of individual pixels with locations on the
ground and compositing of multiple pixels corresponding to
the same ground location. The size of one daily data set is
about 680 MB, the total size of all ancillary �les is about
100 MB and the size of the output is 228 MB.

Each orbit �le consists of about 10,000-13,000 scan lines,
each scan line containing 3584 bytes. Input data is read in
scan line by scan line, in chunks of 128 lines. Processing
is done one chunk at a time. Ancillary �les are not cached
in memory. Instead, the data from these �les is read when
needed. The calibration, correction, masking and registra-
tion operations depend only on the data in the chunk being
processed; the composition operation combines data from
multiple chunks. For the �rst four operations, pathfinder
maintains large in-core scratch data-structures which are
reused for every chunk. For composition, pathfindermain-
tains an out-of-core intermediate version of the composite
image. After the �rst four operations have been performed
on a chunk, each data value in the chunk is mapped into the

1This measurement was done by determining the time required to
send one million 128 KB messages between a pair of nodes.

3

Local Data Shared Data

application
thread

I/O
thread

I/O

Request

thread

Client Node Server Node

Request

Request

Shared and

Local Data

Shared and

Local Data

I/O
thread

I/O
thread

application
thread

application

Request

thread

Peer-Peer Node Peer-Peer Node

Request

Request

Request

(a) (b)

Figure 2: Con�gurations for (a) client-server and (b) peer-peer execution models

Four-way striping on each node (2 disks per SCSI bus), 128 KB striping unit

one client,varying servers 4 nodes 8 nodes Peer-peer
Con�guration local c1-s1 c1-s2 c1-s4 c1-s8 c3-s1 c7-s1 c6-s2 c5-s3 c4-s4 pp-2 pp-4 pp-8

Read bandwidth 14.3 9.3 17.5 21.2 22.8 8.5 8.9 16.6 23.3 25.9 13.8 16.5 26.0
Write bandwidth 16.7 8.7 16.3 20.6 21.6 9.7 19.8 24.8 30.0 27.9 21.2 26.2 33.2

Table 1: Micro-benchmark performance for Jovian-2. All bandwidths are aggregate and are in MB/s. cx -sy corresponds to a
client-server con�guration with x clients and y servers; pp-x corresponds to a peer-peer con�guration with x peers.

intermediate image and is compared with the correspond-
ing pixel. If the new value is \better", it is copied into
the pixel. In e�ect, the composition operation has been im-
plemented as an out-of-core max-reduction. Note that the
mapping between the pixels in the satellite images and the
two-dimensional output image generated by pathfinder is
complex and many-to-one. Once all input data has been
processed, the intermediate image is scanned for pixels that
have no data associated with them. This happens, for ex-
ample, if the satellite image is clouded. Data for such pixels
is computed by interpolation. Finally, the output image is
generated by concatenating information about the data set
with the intermediate image. The total I/O performed by an
optimized sequential version, including I/O for out-of-core
accesses, is over 28 GB.

Although processing of the AVHRR global area coverage
data is representative of many earth science applications,
some similar programs process even more data. For exam-
ple, the input volume is sixteen times higher for the AVHRR
local area coverage data which is higher resolution; the cor-
responding output size for the global 1km data products is
sixty-four times larger. For MODIS, the primary instrument
of the Earth Observation System, both the input and the
output are at least two orders of magnitude larger than the
AVHRR global area coverage data processed by pathfinder.

Climate: This program processes the output of pathfinder
and generates the AVHRR Land Climate data product. It
performs a data selection and reduction operation. It ex-
tracts three frequency bands of the image generated by
pathfinder and reduces them to a single band latitude-
longitude grid. The output of climate is vegetation index

map which is used to track global land cover change. Input
to climate is the 228 MB �le generated by pathfinder, of
which the program reads 54 MB. In addition, climate reads
21.5 MB from an ancillary �le. The output image is about
130 KB. The total I/O volume for climate is 75.5 MB.

I/O Optimizations:

� In both programs, input was being read one scan line
at a time (3.5KB for pathfinder,10KB for climate).
We aggregated input reads to 512KB in both cases.

� A recurrent I/O pattern in both programs was the em-
bedding of small I/O requests in the innermost loops.
Each such occurrence generated nested sequences of
small requests with �xed strides. This occurs in three
situations: (1) reading of topographic data, (2) read-
ing of the land-sea mask and (3) reading and writing
of data for the out-of-core max-reduction. The request
size was almost always two bytes and the subsequent
seek distance was 20 MB. Relatively straightforward
loop restructuring transformations were su�cient to
aggregate the I/O and move it to the outermost loop.
In the �rst two cases, the I/O was converted to block
reads, whereas for the out-of-core max-reduction, it
was converted to block read-modify-writes.

� All I/O in both programs was bu�ered, using the stdio
library with 4 KB bu�ers. In most cases, including
the patterns described above, this bu�ering was inap-
propriate. In the case of the patterns described above,
individual requests were small (two bytes) and the dis-
tance between successive accesses (20 MB) was very

4

large. We replaced the bu�ered-I/O calls by their un-
bu�ered analogues.

Parallelization:

In pathfinder, the map between the input satellite im-
ages and the output global composite image is data-dependent
and cannot be computed a-priori. The amount of computa-
tion depends roughly upon the size of the input data pro-
cessed. However, this relationship is weak as: (1) night
images are not processed, (2) clouded images are partially
processed and (3) ocean images are partially processed. The
categorization of an image is also data-dependent and can
be determined only after the data has been unpacked and
partially processed.

We parallelized pathfinder by partitioning the output
image in equal-sized horizontal strips. Each processor is re-
sponsible for all processing needed to generate its partition
of the output image. We chose to partition the output im-
age (instead of the input data) as this allows all combination
operations2 to be local to individual processors. No inter-
processor communication is needed. We chose a horizon-
tal partitioning scheme to take advantage of the row-major
storage format used in all �les (input, ancillary as well as
output �les). Horizontal striping allows I/O to be performed
in large contiguous blocks.

Each processor computes the map from the input data
set to the output image by subsampling (one scan line per
chunk) all input �les. It then reads the chunks that intersect
with its partition of the output image. For each chunk, it
maps each input pixel into the output image. Pixels that
map into its partition are processed further, others are ig-
nored. The individual partitions of the output image are also
too large to be stored in main memory. Therefore, the com-
position operation is still out-of-core. Once all processing is
completed, the �nal result is produced by concatenating the
individual partitions.

In climate, the mapping between the pixels of the input
image and those of the output image is data-independent
and can be computed a-priori. The amount of computation
to be done is proportional to the amount of input data. We
parallelized climate by horizontally partitioning the output
image. Each processor reads the data that maps to its par-
tition of the output image. Load balance is achieved by en-
suring that all processors read approximately equal amounts
of data.

For both pathfinder and climate, the �nal image is gen-
erated by concatenating the images generated by individual
processors.

Use of Parallel I/O:

In our experiments, we used four disks per node, two
disks on each SCSI bus. We replaced calls to Unix I/O
routines by calls to Jovian-2 routines. All ancillary �les
were replicated and striped across the four disks on every
node. For client-server con�gurations, all input and out-
put �les were striped over all the disks of all server nodes;
for peer-peer con�gurations, these �les were striped over all
participating disks. Every node running a pathfinder pro-
cess (that is, the clients in client-server con�gurations and
all participating nodes in peer-peer con�gurations) created

2All input pixels that map to a single pixel in the output image
are combined by a max-reduction operations to get the �nal value of
an output pixel.

a separate temporary �le to hold its partition of the interme-
diate image. This �le was striped over the four local disks.
The striping-unit size in all cases was 128 KB.

4.1 Results and Analysis

We ran pathfinder and climate for one daily data set on a
variety of con�gurations. An unmodi�ed version of
pathfinder ran for 18,800 seconds on a single processor of
the SP-2. Of this, about 13,600 seconds (76%) of the time
was spent waiting for I/O; 580 seconds for input, 50 seconds
for output and the remaining 12,970 seconds of I/O for the
out-of-core max-reduction.

Table 2 shows the breakdown of total I/O volume for
the parallel version of pathfinder. The volume changes
with con�guration for two reasons. First, every processor
constructs the map from the input images to the output im-
age by reading one scan line per chunk of 128 scan lines.
As a result, the total amount of input grows with the num-
ber of processors that are running the application (clients
in client-server, all nodes in peer-peer). This growth can
be avoided by partitioning the task of constructing the map
between input and output coordinates and having each pro-
cessor report its share of the map to all other processors.
Second, the size of the block that is read during the out-
of-core max-reduction is determined by the bounding box
around the pixels that are to be updated. Since the pixels
to be updated are sparsely distributed, �ner partitions of
the intermediate image �le are able to eliminate holes, re-
ducing the total volume of I/O for this phase. The volume
of intermediate reads is consistently much higher than the
volume of intermediate writes. This is because some on-disk
data has to be read to decide whether any pixels are to be
updated. Writes are needed only if at least one of the pixels
need to be updated, and then only for the bounding box
around the pixels to be updated.

The breakdown of total I/O volume for climate does not
change with con�guration. The I/O for climate consists
almost exclusively of read requests. Total local I/O (for
ancillary �les) is about 21.5 MB and total non-local I/O
(input data) is 54 MB. The output volume is 130 KB.

Early results indicated that there was a large di�erence
between the performance of peer-peer and client-server con-
�gurations for pathfinder. With abbreviated input (one
orbit �le instead of fourteen), pathfinder running on a four
processor peer-peer con�guration was able to achieve only
a 400 KB/s per-processor non-local read bandwidth. With
the same input, it was able to achieve a per-processor non-
local read bandwidth of 6 MB/s on a client-server con�g-
uration of the same size (three clients, one server). The
write bandwidth on a four-processor peer-peer con�gura-
tion was better at 3 MB/s but was much lower than the
7.4 MB/s achieved on the corresponding client-server con-
�guration of same size (three clients, one server). Note that
the non-local reads are used to input the satellite data in
chunks of 128 scan lines and are interspersed with compu-
tation, whereas the non-local writes are used for �nal out-
put and are bunched together. The total execution time
for an abbreviated pathfinder run (single orbit �le) on a
four processor peer-peer con�guration was 510 seconds, of
which 320 seconds was I/O waiting time. In comparison,
the execution time on a three-client-one-server con�gura-
tion was 290 seconds, of which 103 seconds was I/O wait-
ing time. In contrast, the Jovian-2 micro-benchmark, which
does no computation, achieved comparable performance on

5

4 nodes 8 nodes 12 nodes 16 nodes
Con�g (client/server) c3-s1 c7-s1 c6-s2 c5-s3 c11-s1 c10-s2 c9-s3 c15-s1 c14-s2 c13-s3

Input 1,508 3,100 2,700 1,838 4,751 4,334 3,924 6,350 5,952 5,561
Intermediate read 20,341 12,306 13,143 11,261 10,507 10,699 11,094 9,275 9,600 9,893
Intermediate write 6,301 4,493 4,701 3,697 3,973 4,039 4,130 3,683 3,871 3,809
Total 28,378 20,126 20,771 17,024 19,459 19,300 19,376 19,536 19,651 19,492

Table 2: Breakdown of total I/O volume (in MB) for pathfinder. Output volume is 228 MB for all con�gurations.

both peer-peer and client-server con�gurations (see Table 1).
This might lead to speculation that applications that do sig-
ni�cant amount of computation hamper I/O performance
on peer-peer con�gurations. Section 5 provides a counter-
example. It provides performance results for a program that
performs substantial computation and I/O on a peer-peer
con�guration. It achieves good performance by using exten-
sive global information about future I/O requirements and a
one-sided communication model. Our current hypothesis is
knowledge of future I/O requirements is necessary to achieve
good computation and I/O performance on peer-peer con-
�gurations. We intend to test this hypothesis in our future
research. For the rest of the experiments with pathfinder
and climate, we limited ourselves to client-server con�gu-
rations.

Figure 3 shows a breakdown of execution time for
pathfinder for a set of client-server con�gurations. There
are three interesting points. First, pathfinder is now
compute-bound. Except for the 15-client-1-server case, I/O
waiting time is less than 25% of the total time. In many
cases, it is substantially less (10% in one case). Second, for
a given number of nodes, con�gurations with a small number
of servers achieved the best performance. This is unsurpris-
ing as the bulk of the I/O is for intermediate read/write
operations and is directed to local disks. It should be noted
that increasing servers in a �xed size con�guration has two
conicting e�ects: (1) it increases the bandwidth for non-
local I/O (by increasing the number of nodes that act as
servers) and (2) it decreases the bandwidth for local I/O
(by reducing the number of clients). Increasing the number
of servers beyond two for any of the con�gurations provided
no bene�t and actually increased the execution time for the
twelve- and sixteen-processor con�gurations. Third, the ex-
ecution time does not reduce signi�cantly from the twelve-
processor to the sixteen-processor con�gurations. There are
two reasons for this. First, since all processors independently
compute the map from input coordinates to output coordi-
nates, the amount of input data read during the partitioning
phase increases with the number of processors. Second, as
the number of processors grows, each chunk (128 input scan
lines) is partitioned between more processors. Each proces-
sor that processes a part of a chunk has to unpack, parse
and map the entire chunk before it is able to isolate the
portion it needs to process. Therefore, the total amount
of processing done on every chunk grows roughly with the
number of processors. As was mentioned earlier, growth in
the amount of total input read volume can be avoided by
partitioning the task of computing the map between input
and output coordinates, followed by a global exchange of in-
formation. An even better solution would be to compute the
map from satellite image coordinates to the output image co-
ordinates during the process of converting raw sensor read-

ings (level 0 data in NASA parlance) to the AVHRR orbital
data �les (level 1b data in NASA parlance). This conver-
sion occurs earlier in the processing chain than pathfinder.
This change would also help eliminate the growth in the to-
tal amount of computation as individual processors can now
read only the portions of chunks that map to their partition
of the output image. Note that this would require restruc-
turing of pathfinder code to process variable-size chunks.

Table 3 presents the aggregate bandwidths sustained by
pathfinder for di�erent kinds of I/O. Recall that both in-
put and output I/O are non-local, whereas both interme-
diate reads and writes are to local disks. It is interesting
to note that for con�gurations with many clients and few
servers, the aggregate I/O rate achieved is greater than the
value indicated by the micro-benchmark results presented in
Table 1. This is made possible by the fact that, beyond an
initial barrier for con�guration purposes, all client processes
are independent. This allows di�erent clients to utilize the
server(s) at di�erent times. A parallel-I/O library that pro-
vides a collective-I/O interface and coalescing of requests
from multiple clients would usually not be able to do this
as it would wait until requests are received from all clients
before issuing any requests to the disks. A collective-I/O
library that provided only partial coalescing and issued disk
requests without waiting for all requests to arrive, would be
able to utilize the server(s) over a longer time.

Another point of interest is that the intermediate re-
quests have substantial locality and are able to take good
advantage of the operating-system �le cache for both reuse
and write-behind. This is facilitated by the parallelization
scheme, which ensures that all intermediate I/O is to lo-
cal disks and that each processor processes exactly the data
that maps into its segment of the output image.

Figure 4 shows the breakdown of execution time for
climate. Computation for climate scales well. The to-
tal I/O time was consistently about 4-5% of the total com-
putation time for all the con�gurations we experimented
with. We did not run climate on larger con�gurations, since
the individual partitions of the input data would become
very small. Recall that the total I/O volume for climate
is 75.5 MB. Table 4 presents the aggregate I/O rates for
climate. As in the results for pathfinder, independent
requests allow climate to achieve a larger aggregate band-
width than was indicated by the Jovian-2 micro-benchmark.

Table 5 presents end-to-end I/O rates for both
pathfinder and climate. It shows that both programs are
now compute-bound. It also shows that it is possible to
achieve end-to-end I/O rates over 26 MB/s in earth-science
applications.

6

0

500

1000

1500

2000

2500

3000

3/1
4

7/1
8

6/2 5/3 11/1
12

10/2 9/3 15/1
16

14/2 13/3

Configuration (Clients/Servers)

se
co

nd
s Open/Close

I/O non-local

I/O local

Computation

Figure 3: Breakdown of execution time for pathfinder. The numbers in the bottom row indicate the total number of nodes
in the con�guration. An unmodi�ed version of pathfinder ran for 18,800 seconds on a single processor of the SP-2. Of this,
about 13,600 seconds (76%) of the time was spent waiting for read/write operations.

4 nodes 8 nodes 12 nodes 16 nodes
Con�g (client/server) c3-s1 c7-s1 c6-s2 c5-s3 c11-s1 c10-s2 c9-s3 c15-s1 c14-s2 c13-s3

Input 18.0 25.4 45.6 38.5 26.4 60.0 60.3 15.0 65.8 68.9
Output 22.2 34.3 55.8 40.0 41.8 108.0 94.5 63.0 126.0 135.2
Intermediate read 85.8 246.4 192.6 151.5 510.4 453.0 388.8 634.5 644.0 600.6
Intermediate write 65.7 169.4 147.2 118.0 278.3 256.0 230.4 406.5 372.4 338.0
Overall 64.8 96.2 122.1 103.5 85.0 163.0 162.5 43.8 161.6 170.0

Table 3: Aggregate application-level I/O rates for pathfinder. All rates are in MB/s. The aggregate I/O rate is computed
by multiplying the per processor application-level I/O rate by the number of clients. Per processor I/O rate is computed as
the sum of I/O volumes for all clients divided by the sum of time spent in I/O routines by all clients.

4 nodes 8 nodes 12 nodes 16 nodes
Con�g (client/server) c3-s1 c7-s1 c6-s2 c5-s3 c11-s1 c10-s2 c9-s3 c15-s1 c14-s2 c13-s3

path�nder 11.8 17.9 17.5 16.2 20.8 22.7 21.7 18.8 26.5 25.5
climate 1.2 2.5 2.3 1.9 { { { { { {

Table 5: End-to-end I/O rates for pathfinder and climate. All rates are in MB/s. The rate is computed by dividing the
total data volume by the total execution time.

7

30

40

50

60

70

3/1
4

7/1
8

6/2 5/3

Configuration (Clients/Servers)

se
co

nd
s

Open/Close

I/O non-local

I/O local

Computation

Figure 4: Breakdown of execution time for climate. The numbers in the bottom row indicate the total number of nodes in
the con�guration.

4 nodes 8 nodes
Con�g (client/server) c3-s1 c7-s1 c6-s2 c5-s3

Local I/O 35.1 77.0 64.2 56.5
Non-local I/O 17.7 25.2 34.2 31.5
Overall 19.2 27.8 36.0 32.7

Table 4: Aggregate application-level I/O rates for climate,
in MB/s. The aggregate I/O rate is computed by multi-
plying the per-processor application-level I/O rate by the
number of clients. Per-processor I/O rate is computed as
the sum of I/O volumes for all clients divided by the sum of
time spent in I/O routines by all clients.

5 Out-of-core Sparse-Matrix Factorization

Many scienti�c and engineering applications require the so-
lution of very large sparse linear systems. Assuming a to-
tal memory pool of 50 GB, the largest sparse system (with
5% sparsity and double-precision complex arithmetic) that
can be solved in-core on current supercomputers consists of
about 250,000 equations.3 Demands of some applications
are far beyond that limit. In particular, submarine struc-
tural acoustics problems can require the solution of sparse
linear systems with 2-3 million equations. Such applica-
tions require e�cient out-of-core methods. We have im-
plemented an out-of-core parallel sparse Cholesky factor-
ization, along with associated programs for parallel sym-
bolic factorization and parallel matrix partitioning. We have
selected two of these programs, the sparse-matrix parti-
tioner (partitioner) and the Cholesky factorization pro-
grams (factor) for our study. Like pathfinderand climate,
this pair of programs forms a processing chain.

Sparse Cholesky factorization arises in the direct solu-
tion of symmetric positive-de�nite systems of linear equa-
tions. The Cholesky factor of a symmetric positive de�nite
matrix A is a lower-triangular matrix L with positive diag-
onal, such that A = LLT . Our parallel out-of-core sparse
Cholesky factorization is a parallelization of a left-looking
supernodal Cholesky factorization algorithm [11]. This par-
ticular formulation of Cholesky factorization is based on su-

3We arrive at this number by calculating the number of double-
precision complex values that a 50 GB memory will hold and by using
this number and the sparsity to compute the corresponding number of
equations. This number is an overestimate, as it ignores the memory
required to hold the data-structures used to e�ciently store the sparse
matrix.

1 for i = 1 to S do

2 for all Sj with j < i and Sij 6= ;

3 Read Sj

4 Update Si with Sj

5 Discard Sj

6 Factor Si

7 Write Si to disk

Figure 5: Out-of-core Sparse Cholesky Factorization

pernodes. Each supernode is a set of contiguous columns
such that every adjacent column in the set has an identical
sparsity structure below the diagonal. Using supernodes en-
ables the use of e�cient dense linear-algebra kernels [5], as
well as large transfers between secondary storage and pri-
mary memory. These applications assume a peer-peer con-
�guration and directly use Unix I/O calls.

Partitioner: this program has two input �les, the matrix
�le which contains the structure of the original matrix (A)
and its non-zero values, and the index �le which contains the
sparsity structure of the factor L. The index �le is generated
by a symbolic factorization of A prior to the execution of
partitioner. Partitioner performs two operations: (1)
computing and allocating space for the �ll-ins, which are
locations in A that are originally zero, but will become non-
zero (in L) after the factorization; and (2) distributing the
Cholesky factor, L, to the processors participating in the
factorization.

The Cholesky factor is partitioned using a 2-D strategy
originally developed in [17]. The processors are organized in
a k �m grid. Let Pr;q denote the processor number at the
rth row and qth column of the processor grid. Supernode
i of matrix A is mapped to processors in the (i mod m)th

column of the processor grid. A supernode is further par-
titioned among the processors in a column of the processor
grid, such that block j of supernode i is mapped to pro-
cessor Pj mod k;i mod m. This mapping ensures that com-
munication takes place only within the processors placed in
the same column or in the same row of the processor grid.
Hence, each processor communicates with at most k + m
other processors.

This program has two phases with similar I/O access

8

patterns. The �rst phase sequentially reads the index �le
to extract the supernodal structure of the matrix. All re-
quests in this phase are very large (25 MB) and contiguous.
Furthermore, all requests are read requests and use blocking
I/O calls. With the exception of the columns on the par-
tition boundaries, all I/O in this phase is to the local disk.
Requests in the second phase also access large contiguous
chunks but the request size is smaller (5 MB) and two local
�les, instead of one, are used.

Factor: as mentioned above, this program implements left-
looking supernodal Cholesky factorization. Figure 5 pro-
vides a high-level algorithm. Parallelism in factor is achieved
at several levels, both in computation and I/O. First, since
each supernode is partitioned among k processors, updates
to a supernode are performed in parallel. Second, multi-
ple supernodes can be updated in parallel, as long as the
dependences are satis�ed. That is, supernode Sj can up-
date supernode Si as long as the factorization (step 6) has
been performed on Sj. In our implementation, at most m
supernodes are updated in parallel, where m is the hori-
zontal dimension used in the processor grid. Third, each
supernode is striped across k processors. The stripe size de-
pends on the sparsity of the supernode and is determined
by partitioner. Fourth, asynchronous I/O primitives are
used to overlap the computation with I/O. The prefetch
mechanism uses a pre-computed schedule to issue as many
asynchronous I/O requests as possible given the memory
constraints. The requests are issued in the order that the
corresponding data will be used. We have not attempted
to improve the communication balance for the factor. Our
relatively simple technique provided acceptable performance
for moderately unstructured matrices but did not perform
well on sara-2, which is very sparse.

A key data structure in factor is the elimination tree [10]
generated during symbolic factorization using the structure
of the sparse matrix. This structure contains dependency in-
formation between di�erent supernodes and does not change
over the course of the computation. Therefore the exact se-
quence of supernode update operations is known a-priori
and can be used to generate a schedule for I/O and com-
munication for all processors. This information can be ex-
ploited when performing step 3 of algorithm in two ways :
(1) prefetching to overlap the I/O of Sj with the ongoing-
computation, and (2) caching to avoid the re-reading of su-
pernodes to be used in the near future. Each processor is-
sues prefetch I/O requests based on the schedule generated
from the elimination tree and availability of memory space.
A static prefetch horizon of two dependency levels per su-
pernode is used, generating at most 2m outstanding read
requests on each processor. The prefetch horizon was deter-
mined empirically and depends on the per-processor physical
memory available for user programs as well as the relative
I/O and computation rates. I/O requests in factor can be
both local and non-local; step 3 of Figure 5 requires non-
local I/O when Sj is not stored on local disk. Prefetched
non-local data is injected into the communication network
when the local computation reaches an appropriate point in
the schedule.

5.1 Results and Analysis

We ran partitioner and factor on a variety of peer-peer
con�gurations. In all con�gurations, we used only one lo-
cal disk at each node. To evaluate the bene�t of future

Partitioner Factorization
Matrix Read Write Read Write
skirt 381 403 20,200 377
sara-1 488 534 49,000 509
sara-2 301 1,939 220,800 838

Table 7: Application I/O volumes (in MB) for 16 processors.

knowledge provided by the elimination tree, we conducted
experiments with two versions of factor { one that used the
information for prefetching (factor) and the other that did
not (factor-np). In factor-np, processors make explicit
I/O requests to their peers and service the requests from
their peers at particular points in the execution. Speci�-
cally, a processor is available to serve I/O requests from its
peers either after step 4 of the algorithm outlined in Figure 5
or while it is waiting for the completion of its non-local I/O
requests. As before, all computation on a supernode is per-
formed at the processor in which the data is stored. Since
I/O operations are performed on demand, non-local requests
pay for one round-trip delay as well as any delay incurred
by the processor that is servicing the request. Such delays
may occur due to local computation at the service node and
due to interactions with other peers.

We used three input matrices in our experiments { skirt,
sara-1 and sara-2. Table 6 presents some characteristics of
these matrices. The �rst two, skirt and sara-1 correspond to
roughly the same number of equations but skirt has fewer
non-zeroes and is more sparse. The third matrix, sara-2
is similar in the number of non-zeroes to sara-1 but corre-
sponds to twice as many equations. As a result, sara-2 is
signi�cantly more sparse than the other two, contains rel-
atively thin supernodes and needs more space to store the
sparse-matrix data-structures.

Table 7 shows the total amount of I/O performed by both
applications for the three matrices. Since the elimination
tree is replicated over all processors, the size of partitioner's
output, and consequently the size of factor's input, in-
creases with the number of processors. The table shows
the I/O volumes for 16 processors, the largest possible con-
�guration on our machine.

Table 8 presents the aggregate application-level I/O rates
achieved by partitioner. This number is computed by di-
viding the total volume of I/O by the sum of the time spent
issuing I/O requests and the time spent waiting for them to
complete. The superlinear growth in the application-level
I/O rate, seen for all three phases, is a caching e�ect. The
index �le is read in both the Read-1 and Read-2 phases. For
the 16 processor con�guration, the Read-2 phase is operat-
ing entirely out of the �le cache. Similarly, the write phase
bene�ts from the write-behind nature of the �le cache. The
performance of writes lags signi�cantly behind that of reads
because of a group of small unbu�ered writes that dominate
the write time. This e�ect can be easily eliminated by using
a bu�er to collect these writes (stdio should be adequate).

The breakdown of execution time for partitioner is
shown in Table 9. It shows that (1) I/O is a small frac-
tion (7.6%-25%) of the total execution time and (2) I/O
scales well with increasing numbers of processors. In fact,
I/O scales better than the computation for all three matri-
ces. For these matrices, I/O takes less than 25% of the total
program execution time, often signi�cantly less.

9

Matrix N jAj jLj Type Description
skirt 45,361 1:3� 106 45:8� 106 Real NASA
sara-1 44,856 2:6� 106 30:4� 106 Complex Structural Acoustics
sara-2 80,651 2:9� 106 28:4� 106 Complex Structural Acoustics

Table 6: Characteristics of input matrices. N is the number of equations. jAj denotes the number of nonzeros in the input
matrix, and jLj is the number of nonzeros in the Cholesky factor.

4 nodes 8 nodes 16 nodes
Matrix Read-1 Read-2 Write Read-1 Read-2 Write Read-1 Read-2 Write
skirt 14.1 19.4 9.9 43.0 45.8 19.7 108.8 380.9 41.1
sara-1 12.3 15.9 9.3 18.6 29.5 18.7 106.1 430.7 15.1
sara-2 20.4 49.6 2.5 42.1 76.4 16.4 103.2 297.8 15.5

Table 8: Aggregate application-level I/O rates (MB/s) for partitioner.

4 nodes 8 nodes 16 nodes
Matrix Total I/O Total I/O Total I/O
skirt 309.6 77.6 (25.1%) 222.4 38.4 (17.3%) 162.0 19.3 (11.9%)

sara-1 522.3 79.2 (15.2%) 401.7 40.1 (10.0%) 319.8 24.3 (7.6%)
sara-2 2,568.4 541.7 (21.1%) 2,101.2 319.2 (15.2%) 1,568.4 177.9 (11.3%)

Table 9: Execution time breakdown for partitioner, in seconds

4 8 16 4 8 16 4 8 16 4 8 16 16
Number of Processors

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

T
im

e
(s

ec
on

ds
)

Non-Local I/O
Local I/O
Communication
Computation

skirt

sara1

sara2

Figure 7: Execution time breakdown for factor and factor-np. The graph shows results for 4-, 8- and 16-processor con-
�gurations for both factor and factor-np on skirt and sara-1. For sara-2, only the results for factor on a 16-processor
con�guration are shown; factoring sara-2 takes too long on other con�gurations to allow much experimentation. For skirt and
sara-1, the �rst three bars show the results for factor and the second three bars show the results for factor-np.

10

4 8 16 4 8 16 4 8 16 4 8 16 16 16
Number of Processors

0

30

60

90

120

150

180

210

240

270

300

A
g
g
re

g
a
te

 I
/O

 R
a
te

 (
M

B
/s

)

Read
Write

skirt sara1 sara2

Figure 6: Aggregate application-level I/O rates for factor.
Results are shown for 4-, 8- and 16-processor con�guration
for skirt and sara-1. For sara-2, only the results for the 16-
processor con�guration are shown; experiments for smaller
con�gurations take very long to complete.

Figure 6 shows the aggregate application-level I/O rates
seen by factor. It shows that factor is able to achieve an
application-level read bandwidth up to 170 MB/s and an
application-level write bandwidth up to 270 MB/s.

The execution time breakdowns for factor and
factor-np are shown in Figure 7. In addition to showing
how the di�erent parts of each program scale, this graph also
quantitatively demonstrates the utility of knowledge about
future I/O requests.

The breakdown for factor shows that the computation
scales linearly with the number of processors. The I/O per-
formance scales fairly well but not as much as the compu-
tation. Communication, however, does not scale well. In all
cases, I/O takes a fairly small percentage of the total exe-
cution time. Note that the sara-2 input data set was only
run on 16 processors, because the program runs for too long
on fewer processors. Even for this very sparse matrix, I/O
takes only about 20% of the total execution time.

Comparison of these results with corresponding results
for factor-np shows that lack of knowledge about future
I/O requests can degrade performance by between 23 and
86%. Furthermore, the fraction of execution time spent
waiting for I/O increased from between 1% and 7% for
factor to between 40% and 56% for factor-np. Almost
all of the increase in execution time is due to time spent
waiting for non-local I/O requests to complete.

The slowdown was more pronounced (86%) for sara-1
than for skirt. We speculate that this di�erence is due to
the di�erent amount of computation performed per supern-
ode. Recall that a processor is available to serve I/O re-
quests from other processors either after step 4 of the al-
gorithm outlined in Figure 5 or while it is waiting for the
completion of its own non-local I/O requests. The less sparse
nature of skirt results in a more uniform distribution of per-

supernode computation time. Also since nonzero precision
in skirt is less than nonzero precision in sara-1, the aver-
age per-supernode computation is also smaller for skirt. In
contrast, sara-1 has a large variation in the per-supernode
computation times caused by a few very large supernodes.
As a result, in certain phases of the computation for sara-
1, service of I/O requests from other processors is delayed
for large intervals causing cascaded performance degrada-
tion of non-local I/O. As mentioned above, non-local I/O
dominated the I/O costs for factor-np: for sara-1, 87% of
the I/O time was spent for non-local I/O, constituting 50%
of total runtime.

6 Lessons Learned

This section presents the lessons we learned from the studies
presented in this paper. We present our experiences as well
as guidelines for obtaining high I/O performance for I/O-
intensive applications.

Code restructuring is important:

� For the applications we have studied, it is not di�-
cult to restructure the code to coalesce small requests
into much larger ones. Based on our experience with
these applications as well as our examination of other
NASA satellite-data processing programs, we believe
that, while many I/O-intensive applications are cur-
rently not designed to generate large I/O requests,
relatively little e�ort is required to modify them to do
so. In other words, the problem is not that large I/O
requests cannot be generated, but that programmers
have not considered the problem of optimizing their
applications to take advantage of the performance ben-
e�ts provided by larger requests.

� For the applications we have studied, information about
future requests was available and could be used to
prefetch data. For pathfinder and climate, proces-
sors subsample the input �les in the partitioning phase.
At the end of this phase, every processor has com-
plete information about its future requests for input
reads. For the modi�ed version of the out-of-core max-
reduction (where modi�cation consisted of a pair of
simple loop-splitting and loop-reordering transforma-
tions), information about updates to all frequency bands
of the output image is known before any updates are
performed. For factor and partitioner, the sequence
of requests is available from the elimination-tree struc-
ture generated by symbolic factorization. Similar ex-
periences have been reported by Patterson et al [15].
They report that after relatively simple loop-splitting
transformations, signi�cant knowledge about future I/O
requests is available in all �ve I/O-intensive programs
they studied.

Furthermore, three of the applications in this study (all
the ones that write a signi�cant volume of data), could
be structured to take good advantage of the write-
behind provided by the operating-system �le cache.

� For the applications we have studied, it is possible to
partition the out-of-core intermediate data so that each
processor reads and writes to its own local disk(s).
As can be expected, and as we have shown in Sec-
tion 3, bandwidths for local disk access are substan-

11

tially higher than the bandwidths for non-local ac-
cesses. In addition, local accesses are guaranteed not
to interfere with I/O requests from other processors.
This increases the utility of the �le cache and makes
the overall behavior of the application more predictable.
Exploiting locality in this manner is bene�cial for out-
of-core applications [1, 2, 14] on both client-server and
peer-peer con�gurations. In either con�guration, ex-
ploiting locality improves I/O performance as well as
total execution time.

Diskful machines are important:

Diskful machines (machines with local disks) allow prob-
lems to be partitioned such that most of the I/O requests
are satis�ed by local disks. As noted above, local disk ac-
cesses have a higher application-level bandwidth with the
associated bene�t of guaranteed lack of contention for the
disk and the �le cache. As shown by the results in Sections 4
and 5, local disks attached to compute nodes can help con-
vert programs that request tens to hundreds of gigabytes
of I/O into compute-bound problems. In combination with
code restructuring to exploit locality, diskful machines can
improve both the I/O performance and the overall execution
time for out-of-core applications.

Complex I/O interfaces are not required:

� After code restructuring, most requests in the studied
applications were large. For large requests, the inter-
face is usually less important.

� Small strided requests were a recurrent pattern in the
original versions of pathfinder and climate. Nested-
strided requests [12] have been proposed for just such
patterns. However we found that these patterns were
caused by the embedding of small I/O requests in the
innermost loops. Relatively straightforward loop re-
structuring, including loop splitting, interchanging the
order of nested loops [18] and fusing multiple requests
were su�cient to coalesce these requests into large
block I/O requests.

� None of the applications studied required collective
I/O [1, 3, 16]. This is not surprising given the size
of the requests after code restructuring. All of the ap-
plications are parallelized in SPMD fashion. In our
earth-science applications all processes are indepen-
dent (apart from initial and possibly �nal synchro-
nization). Independent I/O requests were able to uti-
lize the servers when they would have been idle in a
collective-I/O model (see Section 4).

We recognize that this paper describes experiences with
only four programs. However, we believe that a substantial
class of I/O-intensive programs will be able to achieve good
I/O performance with simple I/O interfaces. This belief is
based on our examination of other NASA satellite-data pro-
cessing programs and on the experiences reported by Pat-
terson et al [15]. The characterization study by Crandall et
al [4] provides another example. It describes a signi�cantly
di�erent program running on a machine with much lower
I/O bandwidth (the JPL terrain rendering application run-
ning on an Intel Paragon) that is able to achieve relatively
good I/O performance with just asynchronous I/O requests.

We speculate that with su�cient I/O bandwidth and e�-
cient asynchronous I/O support and an interface similar to
lio listio(), most I/O-intensive programs will be able to
achieve good I/O performance.

Good performance on peer-peer systems is possible:

Our experience with applications that do substantial I/O
and computation on peer-peer con�gurations was mixed. On
one hand, the performance of pathfinder on peer-peer con-
�gurations was poor; on the other hand, factor achieved
excellent performance. The problem of achieving good com-
putation performance on processors that are serving data
to others has been previously noted by Kotz and Cai [8].
In their experiments on a cluster of RS6000s, they found
that serving o�-processor I/O requests can slow a relatively
simple parallel program by between 17% and 98%. We be-
lieve that knowledge of future I/O requests (local and o�-
processor) is likely to be the key to achieving good I/O
performance on peer-peer con�gurations. Our experiments
with pathfinderused a general-purpose parallel-I/O library
which served requests as they arrived and had no informa-
tion about future I/O requests. In contrast, the I/O module
in factor had access to extensive information about future
requests and was able to control the scheduling of I/O re-
quests. The other version of factor, which did not take
advantage of this knowledge, performed signi�cantly worse.

7 Conclusions

In this paper we have shown that I/O-intensive parallel ap-
plications can be optimized so that I/O is not the limiting
factor in their performance. The results from both micro-
benchmarks and complete applications, run on an IBM SP-2
with multiple disks per node, show that we can achieve high
I/O rates from the hardware and into the applications. We
have been able to convert programs with very large I/O re-
quirements whose performance appears to be limited by the
I/O capabilities of the parallel machine into compute-bound
programs. Our experience has shown that achieving high
I/O performance does not require complex I/O strategies;
rather, appropriate restructuring of the applications to use
local secondary storage for staging intermediate results and
producing relatively small numbers of large I/O requests al-
lows an I/O library or the vendor �lesystem to provide a high
I/O bandwidth to the application. In addition, overlapping
the I/O with computation, either in the application or in
the operating system, provided large performance bene�ts.
For the applications we have studied, this bene�t derives
from the out-of-core nature of the algorithms used, which
are required because of the extremely large data sets to
be processed. These out-of-core algorithms did not require
complex I/O interfaces to achieve high I/O bandwidths. A
relatively simple interface like POSIX lio listio()was ad-
equate as long as the application and I/O system were con-
�gured properly.

Acknowledgements

We would like to thank our shepherd, David Kotz, for his
detailed comments. We would like to thank Tonjua Hines
and Steve Kempler from the Earth Science Data & Infor-
mation Systems Project (ESDIS) at NASA Goddard Space

12

Flight Center for many invaluable discussions about NASA's
remote sensing data processing requirements, and for help-
ing us gain access to NASA programs. We would also like
to thank Peter Smith and Mary James of the Goddard Dis-
tributed Active Archive Center (DAAC) for providing the
pathfinder and climate programs.

References

[1] R. Bennett, K. Bryant, A. Sussman, R. Das, and
J. Saltz. Jovian: A framework for optimizing paral-
lel I/O. In Proceedings of the 1994 Scalable Parallel
Libraries Conference, pages 10{20. IEEE Computer So-
ciety Press, October 1994.

[2] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel,
and M. Paleczny. A model and compilation strategy
for out-of-core data parallel programs. In Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles
& Practice of Parallel Programming, pages 1{10. ACM
Press, July 1995. ACM SIGPLAN Notices, Vol. 30, No.
8.

[3] A. Choudhary, R. Bordawekar, M. Harry, R. Krish-
naiyer, R. Ponnusamy, T. Singh, and Rajeev Thakur.
PASSION: Parallel and scalable software for Input-
Output. Technical Report SCCS-636, NPAC, Septem-
ber 1994. Also available as CRPC Report CRPC-
TR94483.

[4] P. Crandall, R. Aydt, A. Chien, and D. Reed. In-
put/output characteristics of scalable parallel appli-
cations. In Proceedings Supercomputing'95, December
1995.

[5] J.J. Dongarra, J. DuCroz, I.S.Du�, and S. Hammar-
ling. A set of level 3 Basic Linear Algebra Subpro-
grams. ACM Transactions on Mathematical Software,
16(1):1{17, 1990.

[6] M. King. Earth Observation System Project Science
homepage.
http://spso.gsfc.nasa.gov/spso homepage.html, 1995.

[7] D. Kotz. Disk-directed I/O for MIMD multiproces-
sors. In Proceedings of the 1994 Symposium on Operat-
ing Systems Design and Implementation, pages 61{74.
ACM Press, November 1994.

[8] D. Kotz and T. Cai. Exploring the use of I/O nodes for
computation in a MIMD processor. In Proceedings of
the IPPS'95 Third Annual Workshop on Input/Output
in Parallel and Distributed Systems, pages 78{89, April
1995.

[9] D. Kotz and N. Nieuwejaar. File-system workload on a
scienti�c multiprocessor. IEEE Parallel & Distributed
Technology, 3(1):51{60, Spring 1995.

[10] J. W. H. Liu. The Role of Elimination Trees in Sparse
Factorization. SIAM Journal of Matrix Analysis and
Applications, (11):134{172, 1990.

[11] E. G. Ng and B. W. Peyton. Block Sparse Cholesky
Algorithms on Advanced Uniprocessor Computers.
SIAM Journal on Scienti�c Computing, 14(5):1034{
1056, September 1993.

[12] N. Nieuwejaar and D. Kotz. Low-level interfaces for
high-level parallel I/O. In Proceedings of the IPPS'95
Third Annual Workshop on Input/Output in Parallel
and Distributed Systems, pages 47{62, April 1995.

[13] W. Norcutt. IOZONE benchmark program. Avail-
able at ftp://ftp.cs.umn.edu/packages/FreeBSD/2.0.5-
RELEASE/ports/utils/iozone, 1991.

[14] M. Paleczny, K. Kennedy, and C. Koelbel. Compiler
support for out-of-core arrays on parallel machines. In
Proceedings of the Fifth Symposium on the Frontiers of
Massively Parallel Computation, pages 110{118. IEEE
Computer Society Press, February 1995.

[15] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In Pro-
ceedings of the Fifteenth ACM Symposium on Operating
System Principles, pages 79{95, December 1995.

[16] J. Rosario and A. Choudhary. High-performance
I/O for massively parallel computers: Problems and
prospects. IEEE Computer, 27(3):59{68, March 1994.

[17] Edward Rothberg and Anoop Gupta. An E�cient
Block-Oriented Approach to Parallel Sparse Cholesky
Factorization. In Proceedings of Supercomputing '93,
pages 503{512, Portland, OR, November 1993.

[18] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, 1995.

13

