

Speed vs. Accuracy in Simulation for I/O-Intensive Applications

Hyeonsang Eom Jeffrey K. Hollingsworth
Computer Science Department

University of Maryland
College Park, MD 20742

{hseom, hollings}@cs.umd.edu

Abstract
This paper presents a family of simulators that have been
developed for data-intensive applications, and a method-
ology to select the most efficient one based on a user-
supplied requirement for accuracy. The methodology con-
sists of a series of tests that select an appropriate simula-
tion based on the attributes of the application. In addi-
tion, each simulator provides two estimates of application
execution time: one for the minimum expected time and
the other for the maximum. We present the results of ap-
plying the strategy to existing applications and show that
we can accurately simulate applications tens to hundreds
of times faster than application execution time.

1. Introduction
Storage devices are frequently a major bottleneck for

computer systems. To make this situation worse, the size
of data stored in such systems is rapidly growing. Also,
customer data storage frequently doubles in size every
nine months [13], and many satellite data repositories can
grow at the rate of one or two tera-bytes per day. Peta-
byte level data sets will not be uncommon in a few years.
To make efficient use of such complex systems, it is im-
portant to model the performance of I/O-intensive appli-
cations [1, 4, 8] and to efficiently simulate their perform-
ance to give feedback which permits improvement by
changing algorithms, replacing hardware components, or
changing configurations.

The performance of an application is determined by
both the program to run and the machine it runs on. To
evaluate the target application and machine, the applica-
tion can be run directly on the real hardware. Alterna-
tively, the code can be executed on a hardware simulator
for the machine architecture. However, this execution-
driven simulation is very slow. In order to increase simu-
lation speed, it is necessary to construct an abstract ver-
sion of the application that captures its execution behavior
and then use a simulator modeling the target architecture
at a coarser-grained level.

There are many different levels of fidelity possible
when simulating I/O-intensive systems. The variety of
simulation options create a speed vs. accuracy trade-off.
The primary difference between simulations is the granu-
larity of the events in the simulation. For example, each
instruction is emulated in an instruction-level simulation
while instructions grouped in basic blocks are executed in

an execution-driven simulation [5]. At an even coarser
level, an event could be a complex data transfer operation
corresponding to millions of machine instructions. A sec-
ond source of changing fidelity comes from event de-
pendency: some events should occur after other events.
For example, an event representing a receive operation for
a message needs to be processed after an event for the
corresponding send operation. For accurate performance
prediction, it is important to preserve this dependency; yet
to preserve it, events need to be individually processed in
the correct order.

This paper presents a set of event-based simulation
options (simulators) for data-intensive applications, and a
methodology to select the most appropriate one based on
a user-supplied requirement for accuracy. The methodol-
ogy consists of a series of tests that select the least expen-
sive simulation that provides desired accuracy based on
the attributes of the application and its execution. The
main advantage of using the methodology is that, given
multiple simulation options, it determines if the result of
the less expensive option is sufficiently accurate, and uses
it. Our technique is primarily intended to help application
developers choose between different application options
or select application resources to request (i.e. to manage
their allocation at a supercomputing center) although it
could be used to help configure new systems or to design
new hardware. Currently our method is semi-automated
with many of the tests conducted automatically by proc-
essing application event data.

2. Execution model
The execution of I/O-intensive applications is mod-

eled by a series of events performed on a collection of
items called a data block. Events represent read, write,
send, receive, and compute operations for each data
block1. The execution of events can depend on that of
other events. For example, a message send event must
proceed the corresponding receive event. In addition,
multiple events can depend on a single event. The specific
events and the relationship of the events for an application
execution are described via dynamic Work-Flow Graphs
(WFGs). In a WFG, nodes correspond to events and edges
represent their dependency. The abstract model represents

1 Initially, our target I/O-intensive applications run on message passing
systems.

Copyright 2000 IEEE. Published in the Proceedings of IPDPS 2000, May 2000 Cancun, Mexico. Personal use of this material is permitted. However, permission to re-
print/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes
Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

the major activities that determine the execution time of
data-intensive applications and thus serves as a natural
representation for simulators.

Figure 1 illustrates three WFGs that represent the
execution of a simple application on two processors and
two disks. Disk1 and Disk2 are attached to Processor1
and Processor2, respectively. The vertical lines, one for
each of the processors and disks, represent the processing
of events by a device. In this graph, three data blocks are
read from the disks, and subsequently used in either local
or remote computation. Although we have placed the send
event before the compute event on Processor1, there is no
ordering constraint that forces the events to be processed
in this order.

Figure 1 An Illustration of Work Flow Graphs.
WFGs are generated by executing instrumented pro-

grams; the programs can be either real ones or application
emulators. Application emulators are kernels of the target
applications, whose execution behavior represents that of
a whole application or class of applications. The emula-
tors model the computation and data-access patterns of
the applications in a controlled manner. They efficiently
provide a representation of the application’s dynamic be-
havior. More information about application emulators can
be found in [20].

Our hardware simulators perform discrete-event
simulation by processing the events of WFG produced by
applications or emulators. The simulators maintain one
global simulation clock and a resource clock for each ma-
jor hardware component. In our system, a resource clock
is associated with each of the disks and processors. When
an event is processed, the resource clocks are updated.
The global clock tracks the largest resource-clock value.
The processor clocks are also used as network clocks
since we assume that protocol processing is performed by
the processors. We ignore time of flight for messages
since protocol processing costs dominate hardware la-
tency on most current clusters.

3. Simulation options
We now describe the different simulation options and

their relative costs. The simulation options we consider
are all discrete-event based, but differ in terms of the
granularity of simulated events and the fidelity of hard-

ware data used in the simulation. The options are divided
into two main categories: fine-grained and coarse-grained.

Coarse-grained simulation includes two categories:
dependency-preserving and non-dependency-preserving.
In dependency-preserving mode, events are processed one
by one according to their dependency order. However, in
resource-event simulation, all events for each resource are
aggregated as a single “resource event.” In essence, we
simply add up the time of the requests for each resource
and report the largest sum. Although extremely coarse,
this simulation option often provides useful insight into
the minimum execution time of an application.

There are three sub-methods of dependency-
preserving simulation: macro-event-round-robin, macro-
event queue, and micro-event queue. The first two are
efficient, but somewhat inaccurate versions of the third.
Micro-event-queue-based simulation precisely orders all
events using a global event-processing queue. The macro-
event-queue option coarsens the granularity of events by
treating each WFG as a “macro-event,” and determines
the processing order of WFGs using a global WFG queue.
On the other hand, the macro-event-round-robin method
decides the order by selecting WFGs in a round-robin
fashion across all processors without using a queue.

Our fine-grained simulation models the following
execution phenomena: contention/congestion for shared
resources, disk seek time, variation in I/O time (e.g., due
to disk layout), CPU involvement in I/O, and event-
completion delay due to platform-dependent artifacts.

4. Selecting the simulation options
We have developed a taxonomy of I/O simulation

that allows selecting the most efficient simulation method
to meet a user-supplied target error bound. The key idea is
to start with coarse-grained simulation that tends to have a
large error range and repeatedly try more sophisticated
techniques until the error bound has been reduced to
within the user-supplied threshold. Figure 2 shows the
taxonomy. Ellipses in the figure represent tests where a
decision is made. Rectangles depict running a specific
simulation technique and testing whether the technique
meets the accuracy requirement. Based on the results of
these tests, new simulation options are run, and their acc-

Figure 2 Decision Tree to Select Simulation Method.

Disk1 Disk2Processor1 Processor2

Read

Compute

Read Read

Compute

Compute

Send

Receive

compute

Event Dependency

Event

No

Group-of-Events
Dependency

Yes

Contention or
Congestion YesNo

I/O Scale
Large Small

Sequential
I/O

Yes No

START!

Macro-Event
Round-Robin

Mode

Resource-
Event
Mode

Micro-Event
Queue Mode

Fine-Grained
Simulation

Macro-Event
Queue Mode

uracy evaluated.
Initially, the WFGs to be simulated are tested to de-

cide whether it is possible to predict execution time using
a coarse-grained option. These validity tests check
whether there are any critical application or platform per-
formance factors that would be lost with our coarse-
grained options. There are three such tests: conten-
tion/congestion, sequential I/O, and I/O scale.

Contention or Congestion Test: checks whether
there will likely be runtime contention or congestion for
resources. When testing for contention or congestion, we
consider only limited networking capacity2. Communica-
tion end-point congestion [19] and link contention typi-
cally occur when the communication rate is high and one
or more processors are involved in a many-to-one or one-
to-many communication. We determine whether there is
likely to be communication contention or congestion by
running two short communication-only programs with the
same communication parameters as the application to be
simulated. The first test program measures communica-
tion time including contention or congestion by sending
data to/from servers. The second test program measures
communication time in the absence of contention or con-
gestion, using a simple ping-pong benchmark. The effect
of communication contention or congestion is the differ-
ence between the per-block communication times of the
two test programs times the maximum number of data
blocks communicated per processor. The parameters of
the two communication programs for the conten-
tion/congestion test are set as follows:

Fan-out: indicates how many processors receive
a data block, and is set to the maximum number of
processors that any processor communicates with
during the execution of the target application.

Communication rate: is the per-processor block-
sending rate, and is computed as:

_* local disk IOFO N T ,

where FO is the maximum fan-out value of the exe-
cution of the application, _local diskN is the maximum
number of disks on any one node used during the
execution, and IOT is the mean per-block I/O time.
FO and _local diskN are computed from the input WFGs
of the application. IOT is measured by running a sim-
ple I/O benchmark program parameterized by the size
of data blocks, number of local disks used, and disk-
seek method (either sequential or completely ran-
dom). To measure IOT , the block-size parameter is set
to the mean block size used by the application, and
the other two parameters are set to _local diskN (defined
above) and sequential seek respectively.

Data-block size: is the data-block size of the test
programs, and is set to the mean data-block size used
by the application.

2 We found limited networking capacity to be the main source of conten-
tion or congestion in our experiments.

Sequential I/O Test: evaluates if the data-block ac-
cess is (fully) sequential for each disk during execution.
The information is extracted from the WFG logs by ex-
amining the file offsets of adjacent disk requests. If I/O is
not completely sequential, then it is necessary to decide
whether to simulate disk I/O seek time.

I/O Scale Test: determines if the disk seek time is
large enough to require incorporation into the simulation.
A parameterized test program that performs I/O opera-
tions of a similar size to the application being simulated is
run. The test program is run twice, once using totally se-
quential I/O requests and once with completely random
I/O requests. If the additional time due to random seeking
is larger than the target error, then a fine-grained simula-
tion that includes seek time needs to be performed.

Group-of-Events-Dependency Test: decides if the
non-dependency-preserving resource-event simulation
can be selected. The test checks whether there are group-
of-events dependencies. Group-of-events dependencies
occur when one group of events must finish before any
event in the next group can be started. For example, in
some database applications, the results of one query must
be processed before the next query can be started. This
type of dependency information is explicitly represented
in WFGs.

5. Error bound of simulations
Our simulators produce two values for the expected

running time of the application: an optimistic value, Tpl,
which corresponds to the shortest running time and Tph
which is a pessimistic estimate of the longest running
time. If the maximum error is within the target error, the
simulator is selected; otherwise, the next-most-detailed
simulation is run. We now explain each simulator in de-
tail.

5.1 Resource-event simulation
Resource-event simulation processes all events of

each resource as a single “resource event” without con-
sidering dependencies between events. It is the simplest
of our techniques. The error-bound test that determines
whether the simulation can be used checks to see if a sin-
gle resource dominates execution time and thus hides the
execution time of other activities. If a single resource
dominates the execution time, we can greatly reduce the
fidelity of the other parts of the simulation without reduc-
ing accuracy. We regard the resource with the maximum
clock value as the candidate for the dominant one, and set
Tpl to this value.

()
max ()R

pl
R esource

T T= ,

where RT is the final clock value of a resource R. How-
ever, it is possible that activities of resources other than
the dominant resource are not hidden by the dominant one
because of order constraints. Based on this, Tph is com-
puted as:

()()

()&
_ ()

() max (), / .

max (), / .,

p p d d

Overlap

ph p p d d

Overlap

d iskp rocessor

p rocessor
local d isk

T E T E w comm

T
T E T E wo comm

+ + +

=
+ + +

∑

where p

OverlapE is the total maximum error introduced for a
processor p, and dE is the error for a disk d. In the worst
case, all events of a resource might need to be processed
after all events of another resource (i.e. resource event by
resource event) for all resources. Hence, the simplest,
highly conservative, estimate of execution time could be
the sum of the values of all resource clocks and the total
maximum error introduced for the resources. However,
this estimation is too conservative because operations of
one disk are performed in parallel with those of other
disks. Therefore, Tph is the sum of the worst-case disk
time plus the worst-case processor time, where the proc-
essor time is computed as the sum of the values of all
processor clocks and the associated non-overlapping error
for the processors, if there is inter-processor communica-
tion. Otherwise, Tph is the maximum of the per-processor
sums of the worst-case processor and disk times across all
processors.

When computing the maximum error introduced for
disks, dE , we need to consider Random I/O and I/O
Variation. Therefore, dE is computed for a disk d as:

_ _
d d d

Rand IO IO VarE E E= +
The random I/O effect represents the error introduced by
not simulating seek times for the disks. The difference
between per-block I/O time using sequential seek and the
time using Random Seek, _Rand SeekT , computed in the I/O
scale test is used to quantify this phenomenon. The
maximum error introduced for a disk d, is,

_ _ *d d
Rand IO Rand Seek IOE T N= ,

where d
ION is the total number of I/O operations for the

disk. The I/O variation effect indicates the variation of I/O
time among processors, and is measured as the maximum
Difference in per-block I/O time between any two proces-
sors, _IO DiffT . The maximum error due to this phenomenon
for a disk d, is,

_ _ *d d
IO Var IO Diff IOE T N=

For the maximum error introduced for processors,
p

OverlapE , we need to consider computation and I/O Overlap.
The overlapping effect represents CPU involvement in
I/O, and the worst-case per-block effect of this phenome-
non is computed as the per-block wall-clock time spent in
I/O routines, _IO CPUT . The total error caused by this phe-
nomenon for a processor p, is,

_ *p p
Overlap IO CPU IOE T N= ,

where p
ION is the total number of I/O operations for the

processor.

5.2 Macro-event-round-robin simulation
Macro-event-round-robin simulation processes the

events of a single WFG atomically as a “macro-event”
while selecting the next WFG to process in a round-robin
fashion across disks. The error-bound computation takes
into account communication Balance, Fan-Out & the
number of disks, Event-completion Delay, Random I/O,
I/O Variation, and computation & I/O Overlap. Tpl and Tph
are computed as follows:

pl p Balance FOT T E E= − −

_ _ _ph p Event Delay Rand IO IO Var OverlapT T E E E E= + + + + ,
where pT is the final global clock value at the completion
of the simulation.

The unbalanced-communication error, BalanceE , repre-
sents the maximum difference of the accumulated com-
munication time between any two processors, and ac-
counts for the simulation error caused by round-robin
processing of macro-events.

()()
max () min ()p p

Balance Comm Commp rocessorp rocessor
E T T= − ,

where p
CommT is the total protocol-processing time (proces-

sor communication time) on a processor p. When I/O and
communication are not overlapped and there are the same
number of I/O operations on different disks, the comple-
tion times can be different due to the non-overlapping
between I/O and communication. The maximum differ-
ence in the completion time between any two disks is

BalanceE . Since these completion times can vary across
disks, and an I/O event for a disk starts being processed at
the completion time of the previous I/O event for the
same disk, I/O events can be processed out of order when
the next I/O event to process is selected in a round-robin
fashion across disks. In the worst case, an I/O event is
processed BalanceE earlier than it should be. When an I/O
operation completes, this time advances the clocks on all
of the processors that receive that block (since message
passing advances a resource clock to the larger of the
sender or receiver’s clocks). Since all events of a WFG
are processed atomically, the completion times of I/O
events are immediately propagated to the receivers with-
out allowing any other events to be processed between the
I/O events and receive events. Therefore, in the worst
case, an I/O event that was processed earlier by BalanceE
would prevent other events from being processed during
the “waiting” time on the corresponding receiver, result-
ing in a delay in processing those events by that amount.

The fan-out error, FOE , indicates the simulation error
caused by increasing event granularity by processing the
events of WFGs atomically, and is computed as:

, / .

,
FOl

FO
FOh

E if I O is overlapped with comm
E

E otherwise
=

If I/O is completely overlapped with communication, the
fan-out error is,

*FOl commE FO T= ,

where FO is the maximum fan-out, and commT is the per-
block communication time (contention/congestion-free as
computed by the contention/congestion test). The extra
potential error results from the fact that all events of a
WFG are processed one after another without being inter-
leaved by processing of events of any other WFG. This
could result in the loss of interleaving opportunities for
event processing, thereby causing a delay in processing of
some events. Since all events of a WFG are processed
together in macro-event-queue simulation, this results in
advancing the processor clock of each node receiving the
data block for the WFG without allowing any other events
to be processed while that node would be “waiting.” If
some events that should have been processed during the
time are processed later, simulation time can be increased
by that amount. Therefore, we subtract FOlE from pT when
computing the lower bound.

On the other hand, if I/O can not be completely over-
lapped with communication, the fan-out error, is,

() *FOh disk commE FO N T= + ,
where diskN is the total number of disks used, because the
simulation error which is equal to diskN * commT , can be
added to the fan-out error. Since all events of a WFG are
processed atomically, some communication events can be
processed earlier than if events from other WFGs were
interleaved. When this happens, the communication
events are processed earlier than they should have been
processed. In the worst case, diskN communication events,
one from each disk, can be processed earlier than they
should be processed. In this case, the completion of an I/O
event could be incorrectly delayed by diskN * commT . Subse-
quently this effect would be propagated to all receivers of
the data block, contributing to simulation error by that
amount.

Event-completion delay, random I/O, I/O variation,
and computation & I/O overlap constitute the error
sources that can cause an underestimation of application
execution when using our micro-event or macro-event
simulations.

The simulation error, _Event DelayE , due to event-
completion-delay represents the effect of delay in comple-
tion of some operations until completion of dependent
operations. The delay is measured as the maximum dif-
ference in simulation time value between any two proces-
sors.

_ ()()
max () min ()p p

Event Delay p rocessorp rocessor
E T T= −

The simulation errors, _Rand IOE , _IO VarE , and OverlapE , due
to random I/O, I/O variation, and computation & I/O
overlap are computed using the equations for the effects
of the phenomena described in Section 5.1 for resource-
event simulation as follows:

_ _
()

max()d
Rand IO Rand IO

d isk
E E= ; _ _

()
max()d

IO Var IO Var
d isk

E E= ;

()
max()p

Overlap Overlap
p rocessor

E E=

5.3 Macro-event-queue simulation
Macro-event-queue simulation processes WFGs as

“macro-events” using a global WFG queue. The error
ranges consider the same error sources that affect the ac-
curacy of macro-event-round-robin simulation except
unbalanced communication. This error source is not con-
sidered because communication imbalance does not intro-
duce any simulation error due to in-order processing of
macro-events as explained in Section 5.2. Tpl and Tph are
computed as follows:

pl p FOT T E= −

_ _ _ph p Event Delay Rand IO IO Var OverlapT T E E E E= + + + + ,
where pT is the result of the simulation.

5.4 Micro-event-queue simulation
Micro-event-queue simulation processes WFG events

as “micro-events” using a global event queue. Computing
the error range of this simulation considers event-
completion delay, random I/O, I/O variation, and compu-
tation & I/O overlap as the error sources that determine
the accuracy of the simulation. Tpl and Tph are computed
as follows:

pl pT T=

_ _ _ph p Event Delay Rand IO IO Var OverlapT T E E E E= + + + + ,
where pT is the result of the simulation.

5.5 Fine-grained simulation
Fine-grained simulation uses a global event queue to

process fine-grained events that represent detailed-level
application activities such as movement of data between
components of devices. The accuracy of the simulation is
not affected by any of the error sources that influence
coarse-grained simulation: unbalanced communication,
fan-out, the number of disks, event-completion delay,
random I/O, I/O variation, and computation & I/O over-
lap. Other error sources that affect the accuracy include
limitations in the system’s ability to overlap I/O & com-
munication. Also, contention and congestion for shared
resources are only modeled to a limited extent. We as-
sume that the amount of error due to the other sources is
also zero because for the type of applications we are in-
terested in, communication and I/O operations are per-
formed on large blocks of data, and thereby these effects
tend to be very small.

6. Examples of applying the strategy
This section presents some examples to validate the

accuracy of our strategy, and demonstrate its utility to
efficiently predict the execution time of I/O-intensive
applications. We explain how to apply the strategy to two
data-intensive applications: Titan and the Virtual Micro-
scope. Titan [4] is a parallel shared-nothing database
server that stores satellite data, and processes queries for

the data. The Virtual Microscope [8] is a server that proc-
esses queries from multiple clients for digitized images of
visual microscope slides.

6.1 Validation of error bounds
To demonstrate the correctness of the error bounds

used in our strategy, we show that actual measurements
for Titan and the Virtual Microscope are within the error
ranges of the simulation options. We performed our vali-
dation experiments on 12 nodes of an IBM SP2 with four
disks attached to each node.

Figure 3 shows the results of simulation for Titan and
the Virtual Microscope. The columns show the predicted
time, actual (percent) error of the predicted time with re-
spect to the corresponding actual measurement, and (low
and high) raw and combined error bounds with their error
ranges for each option. The lower and upper bounds for
each option are computed based on the predicted time and
maximum error shown in Section 5. The combined lower
and upper bounds are the maximum of all available low
bounds and the minimum of all high bounds, respectively.
This allows us to produce a hybrid range based on the
composition of the simulations that have been performed.
The combined error bounds are shown in the last three
columns of Figure 3.

The input parameter sets commonly include data-
block size, the location of input-data files, the total vol-
ume of data to process, the structure of 2D processor
mesh (including the total number of processors), the total
number of disks per processor, the location and size of a
query window, the number of queries, and per-block
computation time. The additional parameters for the Vir-
tual Microscope are the number and size of slides. In all
cases, the measured execution times, 336.8 seconds for
Titan and 683.4 seconds for the Virtual Microscope, fall
within the error bounds shown in Figure 3. Although we
present the results for the resource-event option in Figure
3 for Titan, the group-of-events dependency test indicates
that the technique produces unreliable results, so we don't
show the error bounds for this case. The raw and com-
bined bounds are the same in Figure 3 for the Virtual Mi-

croscope because the results of all coarse-grained options
are the same in the Virtual Microscope case. They are
identical since there is neither random I/O, group-of-
events dependencies, nor communication.

6.2 Application of the strategy
In this section, we present a simulation study to show

the process of selecting an appropriate simulation option
using our methodology. For each of the applications, we
use a larger configuration than in the previous validation
study: 12 TB and 1,200 nodes for Titan, and 1.2 TB (and
12 nodes) for the Virtual Microscope. In all cases, we set
the target error bound to 20%.

Figure 4 shows the results of simulation options that
can be used for the version of Titan in the larger configu-
ration. It presents the predicted time, (low and high) raw
and combined error bounds with their error ranges. The
simulation results for the resource-event option in this
figure are also unusable because there are group-of-events
dependencies.

The macro-event-round-robin simulator is first tried.
In this simulation mode, we first check whether I/O is
overlapped with communication. I/O is not overlapped
with communication in the target platform since we as-
sume that the platform is a scaled-up version of the SP2
used in the previous section. Consequently, the results of
running the macro-event-round-robin simulator are
checked to see whether the option is sufficiently accurate.
Since the desired error is 20%, this test fails because the
current simulation error range, 58%, is larger than the
target error.

Next the macro-event-queue-based simulator is run.
The low and high estimates of execution time provided by
this option are checked to determine whether its error
range is within the target error. Since the error range, 6%,
is less than the target error, the result of macro-event-
queue-based simulation is used as the final predicted time
(boldfaced in the table). The relative simulation error,
95.1%, is larger than that of the coarser-grained macro-
event-round-robin option because the lower bound of this
option is much smaller than that of the macro-event-

Range of Time Predicted Time
(secs) Raw Combined

Titan
Simulation

Option Measured Time: 336.8

Actual
Error
(%) Low High Error (%) Low High Error (%)

Resource Event 185.6 44.9 N/A N/A N/A N/A N/A N/A
Macro-Event RR 355.8 5.6 335.9 404.4 20.4 335.9 404.4 20.4
Macro-Event Queue 302.4 10.2 302.2 351.0 16.1 335.9 351.0 4.5
Micro-Event Queue 302.3 10.2 302.3 350.9 16.1 335.9 350.9 4.5

Range of Time Predicted Time
(secs) Raw Combined

Virtual Microscope
Simulation

Option Measured Time: 683.4

Actual
Error
(%) Low High Error (%) Low High Error (%)

Resource Event 619.2 9.4 619.2 705.0 13.9 619.2 705.0 13.9
Macro-Event RR 619.2 9.4 619.2 705.0 13.9 619.2 705.0 13.9
Macro-Event Queue 619.2 9.4 619.2 705.0 13.9 619.2 705.0 13.9
Micro-Event Queue 619.2 9.4 619.2 705.0 13.9 619.2 705.0 13.9

Figure 3 Simulation Results for the Titan and Virtual Microscope Emulators with 12 GB Data.

Range of Time
Raw Combined

Simulation
Option

Predicted
Time
(secs) Low High Error (%) Low High Error (%)

Resource Event 2,364.5 N/A N/A N/A N/A N/A N/A
Macro-Event RR 5,177.9 4,844.8 7,660.3 58.1 4,844.8 7,660.3 58.1
Macro-Event Queue 2,650.7 2,630.7 5,133.1 95.1 4,844.8 5,133.1 6.0
Micro-Event Queue 2,650.6 2,650.6 5,133.0 93.7 4,844.8 5,133.0 5.9

Figure 4 Simulation Results for Titan with 12 TB Data on 1,200 Nodes.
round-robin option. However, the absolute simulation
error, the difference between the lower and upper bounds
of this option, is smaller than that of the macro-event-
round-robin option. We show the results from the micro-
event-queue-based simulator for illustrative purposes
even though there is no need to run this simulator based
on the achieved error bounds with the previous technique.

Figure 5 shows simulation time in seconds and the
speedup with respect to the corresponding predicted time.
The speedup factor indicates how much faster it is to
simulate an application rather than running it. In this ex-
ample, the final simulation option used takes less than
five minutes as shown in Figure 5. By applying the strat-
egy in choosing the best option, we can avoid using the
micro-event-queue option that takes more than twenty
minutes, but that provides a result of the similar fidelity.

 Sim. Time Speedup wrt Pred. Time
 Resource Event 32.8 72.1
 Macro-Event RR 177.3 29.2
 Macro-Event Queue 275.8 9.6
 Micro-Event Queue 1,343.8 2.0

Figure 5 Titan with 12 TB Data on 1,200 Nodes.
Figure 6 shows the predicted time, low and high error

bounds and error ranges of each simulation option for the
Virtual Microscope with 1.2 TB data set on 12 nodes (100
GB data per node). For all four options shown, the pre-
dicted execution time is just over 18 hours (66,126 sec-
onds). The simulation's predicted error bound is 14%.

In this example, there is neither network contention
/congestion, nor random I/O. Also, there is no group-of-
events dependency. As a result, the resource-event simu-
lator is run. The error range of that option is 14%, less
than the target error; therefore, the option is selected as
the best one. The other coarse-grained options show the
same simulation result as that of this option, and thus pro-
vide no additional fidelity. The results from the coarse-
grained simulators other than the chosen one are also
shown for illustrative purposes; there is no need to run th-

ose simulators based on the achieved error bounds with
the resource-event technique.

Figure 7 presents simulation time in seconds and the
ratio of the simulation time to the predicted execution
time. The speedup factor for the resource-event option
(the one selected by our methodology) is 917. This indi-
cates that we are able to predict the execution time of a
program over 900 times faster than running the applica-
tion. Also, our strategy selects the resource-event option
that takes about one minute rather than other coarse-
grained options that can take more than five minutes. The
results in this example show the benefit of using our op-
eration-selection strategy: when the most inexpensive
simulation option is sufficiently accurate, the strategy
identifies that fact and avoids running the more expensive
ones.

 Sim. Time Speedup wrt Pred. Time
 Resource Event 70.5 917.1
 Macro-Event RR 175.0 377.9
 Macro-Event Queue 260.7 253.6
 Micro-Event Queue 325.2 203.3

Figure 7 Virtual Microscope with 1.2 TB Data.

7. Related work
Many simulation studies have addressed trading

speed vs. detail. SimOS [17], a complete computer system
simulator, provides three interchangeable simulation
modes: positioning, rough-characterization, and accurate
modes. It allows selecting among the modes dynamically
so that it can simulate only interesting sections of execu-
tion in detail; however, it doesn’t provide a detailed strat-
egy to change its simulation mode in order to achieve the
best performance with respect to an error requirement.
Other simulation systems [6, 9, 12] that permit multi-level
simulation have also been developed. None of these sys-
tems allow selecting the most efficient level of simulation
that meets a target error bound. However, these systems
explicitly consider the effects of system activities such as

Range of Time
Raw Combined

Simulation
Option

Predicted
Time
(secs) Low High Error (%) Low High Error (%)

Resource Event 66,126.2 66,126.2 75,293.1 13.9 66,126.2 75,293.1 13.9
Macro-Event RR 66,126.2 66,126.2 75,293.1 13.9 66,126.2 75,293.1 13.9
Macro-Event Queue 66,126.2 66,126.2 75,293.1 13.9 66,126.2 75,293.1 13.9
Micro-Event Queue 66,126.2 66,126.2 75,293.1 13.9 66,126.2 75,293.1 13.9

Figure 6 Simulation Results for the Virtual Microscope with 1.2 TB Data.

caching and buffering while our system doesn’t.
A parallel simulation study [3] using Wisconsin

Wind Tunnel [16] showed various performance trade-offs
for six different network simulation models. However,
they did not provide a strategy to select the best model.
On the other hand, other studies [2, 16] focused on pro-
viding both efficient and accurate simulators by direct
execution and/or parallel simulation.

POEMS (Performance Oriented End-to-end Model-
ing System) [7] is an integrated end-to-end performance
modeling system that allows different target components
to be modeled at multiple levels of detail (multi-scale) by
different paradigms (analytic modeling, simulation, and
actual system execution). It is similar to our simulation
system in that it provides multiple options that allow trad-
ing simulation speed vs. simulation accuracy; however, it
does not estimate error bounds for each option, which
makes it impossible to provide an option selection strat-
egy with respect to a target error. COMPASS (COMpo-
nent-based Parallel System Simulator) [2] is a direct exe-
cution-driven, parallel simulator used for detailed simula-
tions within the POEM project.

A time warp simulation [10] asynchronously ad-
vances the clocks of Logical Processes (LPs) for events in
timestamp order while LPs communicate via messages. It
provides a rollback for out-of-order messages to restruc-
ture the simulation to process events for the messages in
the correct timestamp order. In our system, events can be
processed out of order due to event aggregation; however,
we quantify the error range resulting from the aggregation
rather than correcting it by performing an expensive roll-
back. In contrast to our approach, a number of technolo-
gies have been developed to reduce the cost of rollback.
Efficient checkpointing [14, 18] schemes that save LP
state, and GVT estimation and fossil collection [15], have
been devised to improve simulation performance and de-
crease the amount of required memory. A recent survey
on languages and libraries of Parallel Discrete-Event
Simulation (PDES) can be found in [11].

8. Conclusion and future directions
We described a set of event-based simulation options

for I/O-intensive applications and showed a time vs. accu-
racy trade-off depending on the level of event aggrega-
tion. We presented a strategy that allows selecting the
most efficient simulation option while meeting an error
bound for those options, and demonstrated its effective-
ness for two existing data-intensive applications.

A future direction of this research is to dynamically
apply the option-selection strategy so that the best option
can be chosen at runtime. To do this, input events need to
be generated online. Also, a mechanism to accurately
transfer information of simulation status between different
simulators at option-change points needs to be imple-
mented. Once the best option is selected, it can be used to
the end of execution, or the strategy can periodically ap-

plied to adapt simulation method according to changes of
the attributes of the target application and its execution.

Acknowledgements
We thank one of the anonymous reviewers for their

extremely detailed and thoughtful comments.

References
1. R. Agrawal and J. Shafer, "Parallel Mining of Association Rules,"

IEEE Transactions on Knowledge and Data Engineering, 8(6),
1996, pp. 962-969.

2. R. Bagrodia, E. Deelman, S. Docy, and T. Phan, "Performance
Prediction of Large Parallel Applications Using Parallel Simula-
tions," ACM PPoPP, May 1999, Atlanta, GA, pp. 151-161.

3. D. C. Burger and D. A. Wood, "Accuracy vs. Performance in Paral-
lel Simulation of Interconnection Network," 9th ACM/IEEE IPPS,
April 1995, Santa Barbara, CA, pp. 22-31.

4. C. Chang, et al., "Titan: A High-Performance Remote-Sensing
Database," 13th ICDE, April 1997, United Kingdom, pp. 375-384.

5. R. G. Covington, et al., "The Efficient Simulation of Parallel Com-
puter Systems," International Journal in Computer Simulation, 1,
1991, pp. 31-58.

6. H. Davis, S. R. Goldschmidt, and J. Hennessy, "Multiprocessor
Simulation and Tracing Using Tango," 1991 ICPP, August 1991, St.
Charles, IL, pp. 99-107.

7. E. Deelman, et al., "POEMS: End-to-end Performance Design of
Large Parallel Adaptive Computational System," International
Workshop on Software and Performance, October 1998, Santa Fe,
NM, pp. 18-30.

8. R. Ferreira, et al., "The Virtual Microscope," 1997 AMIA Annual
Fall Symposium, October 1997, Nashville, TN, pp. 449-453.

9. R. S. Francis and I. D. Mathieson, "Compiler-Integrated Multiproc-
essor Simulation," International Journal in Computer Simulation,
1(2), 1991, pp. 169-188.

10. D. Jefferson, "Virtual Time," ACM TPLS, 7(3), 1985, pp. 405-425.
11. Y. H. Low, et al., "Survey of Language and Runtime Libraries for

Parallel Discrete-Event Simulation," The Journal of the Society for
Computer Simulation, 72(3), 1999, pp. 170-186.

12. P. S. Magnusson, et al., "SimICS/sun4m: A Virtual Workstation,"
Usenix 1998 Annual Technical Conference, June 15-18, 1998, New
Orleans, LA, pp. 119-130.

13. G. Papadopolous, The Future of Computing, 1997, Unpublished talk
at NOW Workshop.

14. R. Radhakrishnan, N. Abu-Ghazaleh, M. Chetlur, and P. A. Wilsey,
"On-line Configuration of a Time Warp Parallel Discrete Event
Simulator," 1998 ICPP, August 1998, Minneapolis, MN, pp. 28-35.

15. P. L. Reiher, "Parallel Simulation Using the Time Warp Operating
System," 1990 Winter Simulation Conference, December 1990, New
Orleans, LA, pp. 38-45.

16. S. K. Reinhardt, J. R. Larus, and D. A. Wood, "The Wisconsin
Wind Tunnel: Virtual Prototyping of Parallel Computers," ACM
SIGMETIRCS, May 1993, Santa Clara, CA, pp. 46-60.

17. M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod, "Using the
SimOS Machine Simulator to Study Complex Computer Systems,"
ACM Transactions on Modeling and Computer Simulation, 7(1),
1997, pp. 78-103.

18. J. S. Steinman, "Incremental state saving in SPEEDES using C++,"
1993 Winter Simulation Conference, December 13 - 16, 1993, Los
Angeles, CA, pp. 687 - 696.

19. M. Uysal, A. Acharya, R. Bennett, and J. Saltz, "A Customizable
Simulator for Workstation Networks," 11th IPPS, April 1997, Ge-
neva, Switzerland, pp. 249-254.

20. M. Uysal, T. M. Kurc, A. Sussman, and J. Saltz, "A Performance
Prediction Framework for Data Intensive Applications on Large
Scale Parallel Machines," 4th Workshop on Language, Compiler
and Run-Time Systems for Scalable Computers, May 1998, Pitts-
burgh, PA, pp. 243 -258.

