
The Dynamic Probe Class Library - An Infrastructure for Developing
Instrumentation for Performance Tools

Luiz DeRose Ted Hoover Jr.
laderose@us.ibm.com hoov@us.ibm.com

Advanced Computing Technology Center Tools Development Dept.
IBM Research IBM

Yorktown Heights, NY 10598 USA Poughkeepsie, NY 12601 USA

Jeffrey K. Hollingsworth �

hollings@cs.umd.edu

Computer Science Department
University of Maryland

College Park, MD 20742 USA

Abstract

The complexity of both parallel architectures and paral-
lel applications poses several problems for the development
of performance analysis and optimization tools. In this pa-
per, we describe the motivations and the main aspects of
the design of the Dynamic Probe Class Library (DPCL), an
object based C++ class library that provides an infrastruc-
ture to reduce the cost of writing instrumentation for per-
formance tools. Additionally, we present some of the per-
formance tools built on top of DPCL, which demonstrate
the power and flexibility of the library.

1 Introduction

As parallel architectures become more complex, due to
deep-memory hierarchies, clustered SMPs, and more intri-
cate distributed interconnects, application developers face
new and more complex performance tuning and optimiza-
tion problems. Moreover, the sensitivity of parallel system
performance to slight changes in application code, together
with the large number of potential application performance
problems (e.g., load balance, data locality, or input/output)
and continually evolving system software, make application

�Jeff Holingsworth has been visiting the Advanced Computing Tech-
nology Center at IBM Research on Sabbatical for the past five months.

tuning complex and often counter-intuitive. Thus, it is not
surprising that users of parallel systems often complain that
it is difficult to achieve a high fraction of the theoretical
peak performance, and are constantly asking for more ap-
plication performance analysis tools. However, also due to
the complexity of parallel systems, programming tools are
becoming expensive to build and maintain. Moreover, the
available tool development resources are shrinking rapidly.
In summary, more performance tools are needed, but fewer
tools can be created.

When observing the costs associated with development
of performance tools, it is clear that one of the major costs
is in developing the instrumentation. The specific cost
of developing the instrumentation depends on the type of
instrumentation chosen and has to be played against the
user effort required to use the tool, but in general, writing
the instrumentation package requires substantial interaction
across different system components, such as operating sys-
tem, run-time libraries, and compilers. This interaction re-
quires substantial communication, coordination, and coop-
eration across development groups, which tend to be expen-
sive. The exact fraction of the cost will vary between tools,
but often the direct and indirect costs of writing the instru-
mentation software dominates the cost of the tool.

In order to address these issues, IBM decided to invest
resources into building a general-purpose infrastructure that
flexibly supports the generation of arbitrary instrumenta-
tion. This infrastructure allows the reuse of large portions



of the instrumentation system, such that the cost of writ-
ing performance tools could be reduced. In this paper we
present the Dynamic Probe Class Library (DPCL), an ob-
ject based C++ class library that provides the necessary in-
frastructure to allow tool developers and sophisticated tool
users to build parallel and serial tools through a technol-
ogy called dynamic instrumentation. DPCL takes the ba-
sic components needed by tool developers and encapsulates
them into C++ classes. Each of these classes provides the
member functions necessary to interact and instrument a
running application with software patches called probes.

The remainder of this paper is organized as follows: In
x2, we begin by discussing the motivation for the develop-
ment of DPCL, the dynamic instrumentation approach, the
Dyninst project, and the main components of DPCL. In x3
we present some of the prototype tools being developed us-
ing DPCL. In x4 we address some issues regarding current
and future work with DPCL. Finally, x5 summarize our con-
clusions.

2 Dynamic Probe Class Library

2.1 Motivation

DPCL evolved from the application development needs
of the high performance computing community. In the past
the development of parallel application tools such as de-
buggers and performance tools have traditionally focused
on extending the serial development model to very large,
highly scalable, parallel applications. In most cases, each
solution built a unique infrastructure to support the require-
ments of the tools being developed. Over time, the effort of
maintaining multiple unique tool infrastructures exceeded
the effort of developing new features within the tools. A
new approach was needed.

A second motivation was the realization that many of the
techniques used in the debugging and tuning of serial appli-
cations did not scale to the dimensions required by the HPC
community. Debugging using just simple print statements
embedded within code can easily generate large quantities
of data on a massively parallel application. An approach
was needed that allowed data to be gathered from an appli-
cation that was more flexible than the traditional approach.
This requirements lead to the adoption of dynamic instru-
mentation technology being developed at the University of
Wisconsin [4] and University of Maryland [1]. Dynamic
instrumentation provides the flexibility for tools to insert
probes into applications as the application is running and
only where it is needed.

The reality is that development of performance tools for
HPC is extremely hard. The compiler technology and pro-
gramming models change constantly, the entry point for de-
veloping tools is too high for Independent Software Vendors

to develop competitive offerings, and the investment in tools
is too low to solve the problem. Thus, a common approach
was needed to support a wide variety of tools that could be
powerful, robust, and scalable.

DPCL represents an initial solution to the problem. By
using DPCL as a foundation for tools development, the tools
community can build a common tool infrastructure and re-
duce the time to market for new tools. An added benefit
is in the portable nature of the tools that can be developed.
This will allow tools builders to adapt more quickly to the
changing technology and programming models.

DPCL is beneficial to developers and users at several lev-
els. First, tool developers can focus on developing tools that
address the requirements that they are trying to fulfill, with-
out having to worry on developing the instrumentation in-
frastructure. Second, tools researchers can focus on the re-
search by using the DPCL infrastructure to build prototypes
quickly. A desirable side effect of reducing instrumenta-
tion cost is that it becomes cost effective to experiment with
more speculative analysis techniques. Novel and innova-
tive ideas can be evaluated inexpensively. Thus, trial and
error is less costly. Third, users that need specialized tools
can also benefit of DPCL by having an infrastructure to de-
velop the required tools in-house with less effort. Finally,
tool users will ultimately have more choices of better and
portable tools.

2.2 Dynamic Instrumentation

Traditionally, instrumentation systems have had to ei-
ther optimize their instrumentation for minimal overhead or
maximum information. To keep overhead low, few events
can be recorded and the amount of information per event
must also be kept low. However, this could mean that key
events may not have been recorded. Likewise, if too much
instrumentation is inserted, the overhead may be so high
that it is no longer representative of the un-instrumented
program’s execution behavior.

Also, many instrumentation systems require that pro-
grams be re-compiled to be instrumented. While this is
generally possible, for large applications it can be time con-
suming. Even worse, for third party libraries and applica-
tions users where the source code may not be available, re-
compiling will not be possible.

An alternative is to allow a program to be modified while
it is executing, and not have to re-compile, re-link, or even
re-execute the program to change it. This dynamic instru-
mentation approach provides several practical benefits com-
pared with traditional static compilation. For example, if we
are measuring the performance of a program and discover a
performance bottleneck, it might be necessary to insert ad-
ditional instrumentation into the program to understand the
problem.



Dynamic instrumentation allows flexibility in gather-
ing data, which can be used to focus attention on specific
items of interest, increase accuracy by reducing interference
caused by gathering unwanted data, or increase convenience
to the user by delaying the decision point for instrumenta-
tion until run-time. With dynamic instrumentation the in-
strumentation code need only to reside in the application
as long as it is needed to gather data. When a problem is
suspected the instrumentation can be inserted into the ap-
plication to gather data needed to verify the problem. Once
the problem is verified the instrumentation can be replaced
with more detailed instrumentation to establish the cause of
the problem. If the initial guess turns out to be incorrect,
the original instrumentation can be replaced with new in-
strumentation that examines other possible causes.

2.3 Dyninst

The Dyninst Application Program Interface (API) per-
mits the insertion of code into a running program [1]. Us-
ing this API, a program can attach to a running application,
create a new bit of code and insert it into the application.
The program being modified is able to continue execution
and doesn’t need to be re-compiled, re-linked, or even re-
started. The next time the modified program executes the
block of code that has been modified; the new code is exe-
cuted in addition to the original code. The API also permits
changing subroutine calls or removing them from the appli-
cation program.

Runtime code changes are useful to support a variety of
applications including debugging, performance monitoring,
and supporting the composition of applications out of ex-
isting packages. Depending on the use, the code can ei-
ther augment the existing program with ancillary operations
such as measuring the application performance or adding
additional print statements, or alternatively, it can be used to
alter the semantics of the program by changing the subrou-
tines executed or manipulating application data structures.
The second type of change is most useful for either perfor-
mance steering, or other debugging applications. The API
supports both of these uses.

To allow the benefits of runtime code modification to
be made available to a broader user community, the API
provides a machine independent interface to binary modifi-
cation. Traditionally, post compiler instrumentation tools
have provided interfaces that allow machine or assembly
language level code to be inserted. Instead, the Dyninst in-
terface is more analogous to a machine independent inter-
mediate representation of the instrumentation as an abstract
syntax tree. This allows the same instrumentation code to
be used on different platforms. For example, consider in-
strumentation code to monitor the behavior of a database
system (i.e., tracking commit and abort operations). The

instrumentation code would be specific to the particular
database system, but because the instrumentation is ma-
chine independent, it would work with any machine archi-
tecture where the database system was installed.

2.4 DPCL

One of the goals of DPCL was to build upon the base
function provided by the Dyninst API and extend it using a
robust scalable design. This required the design of DPCL
to consider the following requirements:

� Provide an infrastructure that allows tools to probe sin-
gle process applications up to very large MPI applica-
tions running across 4096 processors.

� Provide a secure infrastructure.

� Provide thread safe instrumentation to support
threaded processes.

� Provide multiple probe types to support a variety of
tools.

� Provide the ability for probes to communicate back to
the tool.

� Provide support for C, C++, and Fortran applications.

The Dynamic Probe Class Library (DPCL) is a value-
added layer built on top of the Dyninst API. While Dyninst
provides a good substrate for tools development, its focus
is on modifying a set of running processes on a single ma-
chine. The DPCL layer adds additional support for multiple
nodes in a parallel machine, a security layer to authenti-
cate inter-node instrumentation requests, and a data trans-
port layer to gather data from nodes in a parallel computer
and provide them to a single front-end process.

While Dyninst works on multi-processor machines since
it uses the native platform’s debugger interface (ptrace or
procfs) it does not allow requests to cross between nodes
in a parallel computer. Likewise, it lacks support for iden-
tifying the processes from separate nodes that are part of a
parallel job. DPCL provides features that allow it to interact
with the Parallel Operating Environment (POE) on IBM SP
systems to identify the processes of a parallel job (the user
simply needs to identify the process id the front-end pro-
cesses associated with the job). Once it has this informa-
tion, it starts instrumentation processes on each node that is
running a process from the parallel job.

There are also differences in the security models be-
tween Dyninst and DPCL. Dyninst relies on the host op-
erating system’s security for ptrace and procfs system calls.
These calls restrict debuggers to only be attached to pro-
cesses owned by the same user as the one running the de-
bugger. However, with DPCL’s multi-node feature, it is nec-
essary to add additional security. DPCL extends the security



model provided by Dyninst by extending security require-
ments across SP system or cluster. DPCL must ensure that
DPCL based tools cannot create or connect to parallel appli-
cations that are not owned by the tool user. Multiple levels
of security are supported by conforming to the level of secu-
rity that is enforced within the system. DCE based security
is the strongest level of security provided. If the SP system
is configured using DCE the DPCL daemons must acquire
the DCE credentials of the tool user before being able to in-
strument processes. This is done when the DPCL client first
establishes a connection to a remote node. The DPCL super
daemon initiates a secure conversation with the DPCL client
library to forward the user credentials. Upon receiving and
validating the user credentials, the DPCL super daemon will
spawn a DPCL daemon using these credentials. This allows
the user to only access the processes that are owned by the
tool user. If the SP system is not configured to enforce usage
under DCE security DPCL will provides a level of simple
user authentication to processes on remote nodes.

The third value-added component of DPCL is a data
transport interface to move data gathered on each node to
the front-end node. Using this interface, a tool developer
can write instrumentation code that makes a simple library
call to send data, and the DPCL system will handle buffer-
ing the data, and moving it to the front-end node.

2.4.1 DPCL Structure

DPCL is a C++ library that encapsulates the client server
infrastructure needed to manage large parallel applications
(See Figure 1). It consists of a client library from which
end user tools can be created, a run time library that is used
by DPCL for instrumentation and communication, a dae-
mon that interfaces with the Dyninst library to instrument
and manage user processes, and a super daemon to manage
security and client connections to the DPCL daemons.

The client library provides a set of C++ classes that al-
lows tools to connect, examine, and instrument single pro-
cesses and large applications. This is done through the cre-
ation of probes to be inserted at set of possible instrumen-
tation points that include function entry points, exit points,
and call sites. Three different types of probes are available:

Point probes: probes that are inserted at available instru-
mentation points within the application and executed
when the point is reached during processes execution.

One shot probes: probes that are executed at the current
point in time regardless of where the process is execut-
ing

Phase probes: probes that are associated with a phase
timer in which the probe is executed each time the
timer expires regardless of where the application is
running.

Figure 1. DPCL Structure

For more complex probes a “ProbeModule class” is
available to dynamically load external modules into the ap-
plication and to be called from other probe expressions.

The role of the Super Daemon is to establish secure con-
nections to the DPCL daemons. There is one Super Daemon
per server node and used by all DPCL based tools connect-
ing to that node.

The DPCL daemon performs multiple roles. First, it in-
terfaces with the Dyninst library to directly instrument pro-
cesses. It also manages and forwards any probe commu-
nications back to the client library in addition to extending
Dyninst capabilities by allowing probe modules to be dy-
namically loaded. There is one DPCL daemon created per
user on each server node.

An additional capability provided by DPCL is the abil-
ity for probes to send messages back to the end user tool.
When probes are built using probe expressions or written in
the form of probe modules, calls to a special DPCL func-
tion called “Ais send()” can be defined that allow any probe
to send a message back to the tool. When probes are in-
serted into an application the tool has the option of defining
a call back function to receive these messages. This allows
tools to optionally use data that is collected from within the
application as the application is running.

2.4.2 Scalability

The scalability requirements of DPCL required the design
to consider how to manage a potentially large set of pro-
cesses in such a way that is efficient and would not gener-
ate excessive memory requirements on end user tools de-
veloped using DPCL. Consider the case of a tool that is de-
signed to gather a hardware counter profile from each of the
functions within a SPMD style application consisting of 128
MPI tasks. A tool would potentially need to collect all the



instrumentation points representing each function entry and
exit points across the entire application and subsequently
insert probes at each of the points. The number of points to
be collected could easily number in the thousands requiring
the tool to maintain large data structures to manage all the
points and the probes after they have been inserted.

DPCL was designed to allow tools to intelligently man-
age scenarios such as this. First, when DPCL examines
the source structure of the application it only looks at each
process down to the module level. If the tool needs to ex-
amine the source structure below the module level it must
“expand” the module to retrieve the additional information.
This significantly reduces the amount of information for-
warded to the client side of the DPCL. This also allows
the tool to incur the overhead of extracting low-level source
structure and instrumentation points for only the modules
it is interested. Second, DPCL recognizes that the applica-
tion being instrumented is SPMD by only maintaining one
copy of the source object tree representing the process on
the client side. This requires the tool to look at only one
copy of the source object tree of the 128 processes to find
valid instrumentation points. Instrumentation points found
within the tree can be used across any of the processes in
the application. Next, instead of adding probes to each of
the processes within the application, a single instance of the
application object can be used to apply the probes across
the entire application using a single call to the application
object member function.

In summary, DPCL was designed from the beginning to
be scalable and extendable. This allows DPCL to support a
large variety of tools and allow it to be easily extended to
support additional tool requirements over time.

3 DPCL Based Tools

One of the DPCL goals is to increase innovation in tools
development. In this section we demonstrate the flexibility
provided by DPCL, by briefly describing some of the tools
being developed or extended with DPCL. We first present
an update to the classic print statement as a debugging tool.
Next, we describe a dynamic profiler tool, followed by a
graphical user interface for dynamic instrumentation. Fi-
nally, we discuss the interface of an existing tool (Paraver)
with DPCL.

3.1 Dynamic Printf “a Modern Alternative”

It is a well-known fact that print statements are still the
most widely used debugger technique. Thus, one of the first
example tools ever developed using DPCL was the Dynamic
Printf, which demonstrates DPCL’s flexibility, in addition
to showing users that use print statements as their primary
technique in debugging and tuning applications a modern

alternative. The purpose of the tool is to take an application
that is running and allow the user to dynamically insert and
remove print statements into an application to examine the
values of variables. This was done to save the user from
stopping the application, updating the source code to add
printfs, recompiling, and then restarting the application only
to find that the wrong values were printed.

Although it is provided as a demonstration sample, it
highlights some key features of DPCL. First, the tool can
attach to a running application and examine its source struc-
ture object hierarchy. Application variable objects (called
Data Objects) are contained within the object hierarchy.
Data objects can be used in probe expressions to pass refer-
ences to these variables into probe module functions. By
inserting probes into the application, variable values are
printed eliminating the need to hard coding print statements.

3.2 DynaProf

DynaProf is a dynamic profiling tool for serial, MPI,
OpenMP, and mixed mode programs. It provides a com-
mand line interface, shown in Figure 2, similar to gdb. Dy-
naprof allows users to install probes at selected functions
call entry and call exit points, in order to provide inclusive
and exclusive profiling data, as well as one level inclusive
call tree information.

Dynaprof is modular in that the instrumentation it inserts
has a well defined format, much like loadable kernel mod-
ules on AIX and Linux. Users can start a new application or
attach to a running application. Currently, three probes are
provided, one for wall clock profiling of functions, one for
hardware counter profiling of functions, and one for statis-
tical sampling of the program counter on the basis of hard-
ware counter or cycle counter overflows.

3.3 Graphical User Interface for Dynamic Instru-
mentation

DPCL is currently being used to develop tools that give
end users control on how probes are inserted into applica-
tions. By providing visual representations of parallel ap-
plications and their source structure in a scalable way, users
would be able to have direct control on where the probes are
placed in their application. Figure 3 shows this visual rep-
resentation. The graphical user interface is divided in three
main panes. The left pane displays the process list infor-
mation and allows the user to select the processes to be in-
strumented. The middle pane shows the application source
tree, for selection of the functions to be instrumented. Fi-
nally, the right pane is used for probe selection.

Adding a probe to an application is defined by intersec-
tion of the selection of set of processes to be instrumented,
selection of an object in the source structure hierarchy, and



(dynaprof) help
gdb Run gdb in the current directory: gdb [args].
make Run make in the current directory: make [args].
load Load an executable: load [exe [args]].
attach Attach to a running executable: attach [exe pid1].
poeload Load a POE application: poeload [exe [args]].
poeattachAttach to a running POE application: poeattach [pid of poe].
use Load instrumentation code into the process: use ¡module¿.
run Continue/Run the instrumented process.
info Display information about the process.
list Print info about the executable, modules or functions:

list [modules—functions] [pattern].
instr Instrument functions with current probe:

instr [¡modpat¿—¡module funpat¿].
quit Abort the current process and exit.
help Display this text.
? Display this text.
(dynaprof)

Figure 2. DynaProf help command

Figure 3. A graphical user interface for probes
placement

the probe being selected. In this case the probe selection
may not represent a single probe to be inserted at single in-
strumentation point within the application, but potentially a
set of probes that are inserted as a group to perform a sin-
gle action. For example: If a user first selects a single task
within a multi task MPI job, then selects the source object
that represents a module within the application, and finally
one of the hardware counter probes, the result of adding a
probe is that all the functions contained within the module
on the selected task will have a counter probe inserted at the
entry and exit points. By providing a higher-level view, the
tool can free the user from having to search for individual
instrumentation points.

3.4 Paraver

In addition to developing new DPCL based tools, we
are also collaborating with tools developers to integrate the
DPCL technology into existing tools. One such example is

Figure 4. Performance trace visualization of a
mixed mode application with Paraver

the collaboration between the Advanced Computing Tech-
nology Center (ACTC) at IBM Research with the European
Center for Parallelism in Barcelona (CEPBA) for the inte-
gration of DPCL into Paraver [2], a flexible parallel pro-
gramming and visualization tool for performance analysis
of sequential and parallel applications (see Figure 4).

The Paraver tracing environment uses DPCL for instru-
mentation of MPI, OpenMP, and mixed mode programs.
In message passing applications all MPI calls are instru-
mented, while in OpenMP programs, DPCL is used to in-
strument the start and end of all parallel regions. Addition-
ally, in both cases, the enclosing user functions are also in-
strumented, and the user can also provide a file with func-
tion names for dynamic instrumentation. The Paraver trac-
ing environment uses the DPCL instrumentation to collect
detailed quantitative data of the program performance, in-
cluding hardware counters information.

4 Future Work

4.1 Debugger Support

The version of DPCL that has currently been released
provides good support for developing measurement and
monitoring tools. However, to implement debuggers, some
additional features are required. In particular, information
about mapping line numbers to instructions, variable infor-
mation (names of local variables, their location in mem-
ory and type), and fine-grained instrumentation are needed.
Compilers provide the first two types of information when
they are invoked with the debugger flag. All that is required
is that DPCL read this information from the binary, and pro-
vide an interface to tool users. Currently, the representation



of this information in executables varies between platforms
and even among compilers on the same platform. By pro-
viding a common interface to this information, it is possible
for people to write portable debuggers.

Additionally, the instrumentation granularity of DPCL
needs to be improved to allow arbitrary instrumentation
points. Currently, it is possible to instrument procedure en-
try, exit and call sites. However, for debugging (such as a
conditional breakpoint), we need to be able to insert instru-
mentation code at any location in the application. By pro-
viding a common interface to this information, it is possible
to write portable debuggers.

4.2 Open Source

DPCL is distributed as part of IBM’s Parallel Environ-
ment for AIX as a licensed program product. The next step
in its development is to make it available under an open
source license to allow it to evolve under guidance of a
broader development community. To fulfill its goal as a tool
development platform it must be able to support tools across
a wide variety of hardware and operating system. Establish-
ing an open source community will enable tool developers
and researchers to share the benefits and costs of extend-
ing the capabilities of DPCL, while protecting their tool de-
velopment investments. Work is being done to host a web
based collaborative open source project as part of the IBM
developerWorks Open Source Zone.

The first area currently being addressed is multi-platform
support. Work is underway to port DPCL to Linux to im-
prove the tools development capabilities on Linux PCs and
clusters. Areas that need to be addressed include support to
the ELF/DWARF style executables, in addition to support-
ing open standards for additional parallel application exe-
cution environments such as MPICH [3] from Argonne Na-
tional Laboratory.

4.3 DPCL - Dyninst compatibility

Another area being addressed is the convergence of mul-
tiple Dyninst implementations that currently exist. When
DPCL was originally developed as a prototype it was based
on the University of Maryland version of Dyninst. To en-
able some of the extended features required by DPCL new
features were added to the Dyninst API and developed on
an independent base from the University version. Although
explicit steps were taken to maintain compatibility between
the two versions of the API over time, each version evolved
in slightly different directions. Work is underway to ad-
dress any remaining compatibility issues to allow DPCL to
be ported to additional platforms using the University ver-
sion of Dyninst as its base.

5 Conclusions

In this paper, we described the motivations and the main
aspects of the design of the Dynamic Probe Class Library
(DPCL), an object based C++ class library that provides
the necessary infrastructure to reduce the cost of writing in-
strumentation for performance tools. DPCL allows the dy-
namic instrumentation of serial, shared memory, and mes-
sage passing applications, requiring only the information
found on the executable.

In addition to reducing the cost of tools development,
because DPCL is based on dynamic instrumentation tech-
nology, it also reduces the intrusion cost of instrumentation,
increases flexibility and usability of tools, and provides a
mechanism for interoperability among tools.

References

[1] B. R. Buck and J. K. Hollingsworth. An api for runtime code
patching. Journal of High Performance Computing Applica-
tions, 14(4):317–329, Winter 1994.

[2] European Center for Paral-
lelism of Barcelona (CEPBA). Paraver - Parallel Program
Visualization and Analysis Tool - Reference Manual, Novem-
ber 2000. http://www.cepba.upc.es/paraver.

[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
performance, Portable Implementation of the MPI Message-
Passing Interface Standard. Parallel Computing, 22(6):789–
828, 1996.

[4] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchitha-
padam, and T. Newhall. The Paradyn Parallel Performance
Measurement Tools. IEEE Computer, 28(11):37–46, Novem-
ber 1995.


