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Abstract 
We introduce a set of techniques to both measure and op-
timize memory access locality of Java applications running 
on cc-NUMA servers. These techniques work at the object 
level and use information gathered from embedded hard-
ware performance monitors. We propose a new NUMA-
aware Java heap layout. In addition, we propose using dy-
namic object migration during garbage collection to move 
objects local to the processors accessing them most. Our 
optimization technique reduced the number of non-local 
memory accesses in Java workloads generated from actual 
runs of the SPECjbb2000 benchmark by up to 41%, and 
also resulted in 40% reduction in workload execution time. 

1. Introduction 
The dominant architecture for the medium and large 

shared-memory multiprocessor servers is cache-coherent 
non-uniform memory access (cc-NUMA) machines. In cc-
NUMA architectures, processors have a faster access to 
the memory units local to them compared to the remote 
memory units. For example the remote and local latencies 
in mid-range Sun Fire 6800 servers is around 300ns and 
225ns, respectively where the latencies in high-range Sun 
Fire 15K servers are around 400ns and 225ns[1]. 

Prior research[2-5] has shown that dynamic page 
placement techniques on cc-NUMA systems are most ef-
fective for applications with regular memory access pat-
terns, such as scientific applications. In these applications, 
large static data arrays that span many memory pages are 
divided into segments and distributed to multiple compu-
tation nodes resulting in one or a few computation nodes 
accessing each data segment most. For example, in prior 
work[6], we have shown that dynamically placing pages 
local to the processors accessing them most results in up to 
16% performance improvement for a suite of OpenMP ap-
plications. 

However, unlike scientific applications, Java programs 
tend to make extensive use of heap-allocated memory and 
typically have significant pointer chasing[7]. Thus, unlike 
scientific applications, dynamic page placement tech-
niques may not be as beneficial for Java applications since 
they allocate many objects, with different access patterns, 

on the same memory page. Since the page placement 
mechanism used in the operating system is transparent to 
the standard allocation routines, the same memory page 
can be used to allocate many objects that are accessed by 
different processors. Due to Translation Lookaside Buffer 
size issues, cc-NUMA servers tend to use super pages of 
several megabytes, which further increase the likelihood 
of allocating the objects that have different access patterns 
on the same memory page.  As a result, to better optimize 
memory access locality in Java applications running on cc-
NUMA servers, heap objects should be allocated or 
moved so that objects that are mostly accessed by a proc-
essor reside in memory local to that processor. 

In this paper, we propose a set of techniques to both 
measure and optimize the memory access locality of Java 
server applications running on cc-NUMA servers. These 
techniques exploit the capabilities of fine grained hard-
ware performance monitors to provide data to automatic 
feedback directed locality optimization techniques. We 
propose the use of several NUMA-aware Java heap lay-
outs for initial object allocation and use of dynamic object 
migration during garbage collection to move objects local 
to the processors accessing them most. 

We also evaluate the potential of existing well-known 
locality optimization techniques and present the results of 
a set of experiments where we applied a dynamic page 
migration scheme to a Java server application. In our ex-
periments, we used the dynamic page migration scheme 
we previously proposed[6]. 

2. Hardware and Software Components 
In this section, we describe the hardware and software 

components we used in this research.  

2.1. Sun Fire Servers and Hardware Monitors 
In our measurements, we used a Sun Fire 6800 server 

which is based on the UltraSPARC III processors. It sup-
ports up to 24 processors and 24 memory units which are 
grouped into 6 system boards. Each processor has its own 
on-chip and external caches. The machine uses a single 
snooping coherence domain that spans all devices con-
nected to a single Fireplane address bus. 
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In Sun Fire servers, processors on a system board have 
faster access to the memory banks on the same board (lo-
cal memory) compared to the memory banks on another 
board (non-local memory). For example, back-to-back la-
tency measured by a pointer-chasing benchmark on a Sun 
Fire 6800 server is around 225ns if the memory is local 
and 300ns if it is non-local[1]. 

The Sun Fire Link Bus Analyzer[8] has an 8-deep 
FIFO that records a limited sequence of consecutive ad-
dress transactions on the system interconnect. Each re-
corded transaction includes the requested physical address, 
the requestor processor identifier, and the transaction type. 
The bus analyzer is configured with mask and match reg-
isters to select events based on specific transaction pa-
rameters. 

The information the bus analyzer provides about the 
addresses in the transactions is at the level of physical ad-
dresses. Thus, to accurately evaluate the memory perform-
ance of an application, the address transactions have to be 
associated with virtual addresses used by the application. 
We used the meminfo system call in Solaris 9 to create a 
mapping between physical and virtual memory pages in 
the applications. 

The Sun Link bus analyzer is a centralized hardware 
that listens to the system interconnect. However, the tech-
niques we propose in this paper do not require use of such 
centralized hardware. Alternatively, since most processors 
now include hardware support for performance monitor-
ing, on-chip hardware monitors of the processors in a mul-
tiprocessor server can also be used to gather profiles re-
quired by our techniques in a distributed fashion. 

2.2. Java HotSpot Server VM (version 1.4.2) 
For efficient garbage collection, the Java HotSpot VM 

exploits the fact that a majority of objects die young[9]. 
To optimize garbage collection, heap memory is managed 
in generations, which are memory pools holding objects of 
different ages, as shown in Figure 1. Each generation has 
an associated type of garbage collection that can be con-
figured to make different time, space and application 
pause tradeoffs. 
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Figure 1 The default memory layout of HotSpot VM. 

Garbage collection happens in each generation when 
the generation fills up. Objects are initially allocated in the 
young generation. Because of infant mortality, most ob-
jects die in the young generation. When the young genera-
tion fills up it causes a minor collection. Minor collections 
can be optimized assuming a high infant mortality rate. A 

young generation full of dead objects is collected very 
quickly. Some surviving objects are moved to a tenured 
generation depending on how many minor collections they 
survived. When the tenured generation needs to be col-
lected, there is a major collection, which is often much 
slower because it involves all live objects. 

2.3. The SPECjbb2000 Benchmark 
The SPECjbb2000 is a benchmark for evaluating the 

performance of servers running typical Java business ap-
plications. The performance metric used is the throughput 
in terms of transactions per second. 

The SPECjbb2000 represents an order processing ap-
plication for a wholesale supplier[10] with multiple ware-
houses. This benchmark loosely follows the TPC-C speci-
fication for its schema, input generation, and transaction 
profile. SPECjbb2000 replaces database tables with Java 
classes and data records with Java objects. SPECjbb2000 
does no disk I/O. It runs in a single JVM. 

The SPECjbb2000 emulates a 3-tier system. The mid-
dle tier, which includes business logic and object manipu-
lation, dominates the other tiers of the system. Clients are 
replaced by driver threads with random input to represent 
the first tier. The third tier is represented by binary trees 
rather than a separate database and database storage is im-
plemented using in-memory binary trees of objects. 

We chose to use SPECjbb2000 for our measurements 
to be able to isolate the impact of our optimization tech-
niques on the memory performance of the Java server ap-
plications. An alternative benchmark is the 
SPECjAppServer[11] benchmark. However, this bench-
mark tests performance for a representative J2EE applica-
tion and each of the components that make up the applica-
tion environment, including hardware, application server 
software, JVM software, database software, JDBC drivers, 
and the system network. 

3. Optimizing with Dynamic Page Migration 
Prior to evaluating our new object centric optimization 

techniques, we quantify the impact of existing optimiza-
tion techniques on the memory access locality of Java ap-
plications. Such quantification enables us to compare the 
effectiveness of specialized techniques with respect to a 
more general technique and to verify the need for such 
specialized techniques. 

As a general locality optimization technique, we choose 
dynamic page migration since this technique has been 
studied extensively and is known to yield performance 
improvements for many scientific applications running on 
cc-NUMA servers. For our experiments, we choose the 
dynamic page migration scheme we had developed for 
OpenMP applications[6]. 

To quantify the impact of dynamic page migration on 
memory access locality of SPECjbb2000, we ran 
SPECjbb2000 for 6, 12, 18 warehouses with and without 
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dynamic page migration. For each number of warehouses, 
we counted the number of non-local memory accesses and 
measured the percentage reduction in the number of non-
local memory accesses due to dynamic page migration 
compared to the original execution. We also measured the 
percentage improvement in the throughput for each num-
ber of warehouses when dynamic page migration is used. 

Table 1 presents the percentage reduction in the total 
number of non-local memory accesses when dynamic 
page migration is used. The first column gives the number 
of page migrations triggered. The third column gives the 
percentage of non-local memory accesses without page 
migration and the fourth column shows the percentage of 
non-local memory accesses with page migration. The fifth 
column lists the percentage reduction in the total number 
of non-local memory accesses when page migration is 
used. The sixth column gives the performance improve-
ment in the throughput. 

 
Non-Local  

Memory Accesses # of 
Ware-
houses 

# of 
Migra-
tions w/o  

Mig. 
with 
Mig. 

Reduc-
tion 

% Im-
prove-
ment 

6 69,796 72.0 % 52.3 % 27.4 % -2.8 % 
12 145,607 77.0 % 58.1 % 24.5 % -3.4 % 
18 165,794 77.5 % 61.3 % 20.9 % -3.1 % 

Table 1 Performance improvement due to dynamic 
page migration for SPECjbb2000. 

Table 1 shows that running SPECjbb2000 with dy-
namic page migration, the number of non-local memory 
accesses are reduced around 25% for all configurations 
compared to not using dynamic page migration. It also 
shows that dynamic page migration was not able to im-
prove the throughput for any configuration even though it 
reduced the number of non-local accesses. Instead, dy-
namic page migration reduced throughput around 3% 
since the reduction in non-local accesses did not overcome 
the overhead introduced by migrating many pages. 

More importantly, Table 1 shows that unlike scientific 
applications where the reduction in the number of non-
local memory accesses can be as much as 90%[6], dy-
namic page migration was not as effective in reducing the 
number of non-local memory accesses for SPECjbb2000. 
We suspect this is due to fact that objects that are accessed 
mostly by different processors are allocated in the same 
memory page. Instead, to better optimize memory access 
locality for this type of workload on a cc-NUMA server, 
we object level migration will be more effective. 

4. Inadequacy of Page Level Optimization 
Java programs tend to make extensive use of heap-

allocated memory and typically have significant pointer 
chasing. Since typical object sizes are much smaller com-
pared to the commonly used memory page sizes, Java ap-

plications are likely to allocate many objects in the same 
memory page. Moreover, if an application uniformly ac-
cesses the objects in a page, a page level memory locality 
optimization technique may not be as effective in reducing 
the number of non-local memory accesses to the page. 

To investigate whether page level optimization tech-
niques, such as dynamic page migration, are too coarse 
grained to be effective in reducing the number of non-
local memory accesses in Java server applications, it is 
necessary to measure the memory behavior of these appli-
cations at the object granularity. 

4.1. Measuring Memory Access Locality 
To gather information about the object allocations by a 

Java application and the internal heap allocations required 
by the virtual machine, we modified the source code of the 
HotSpot VM. For each heap allocation, we inserted con-
structs to record the type of the allocation (i.e. object, ar-
ray, and code buffer), the address and size of the allocation 
and the requestor thread. To capture the changes in the ad-
dresses during garbage collection, we also modified the 
source code of garbage collection modules in the HotSpot 
VM and inserted additional instrumentation code. For each 
surviving object, the instrumentation code records the new 
and the old addresses of the object. 

We only instrument object allocations that survive one 
or more garbage collections. During each garbage collec-
tion, we map the newly surviving objects back to the cor-
responding object. Since most of the objects die before 
one garbage collection, we eliminate overhead due to very 
short lived objects. 

We used the Sun Fire Link monitors to sample the ad-
dress transactions during the execution of the application 
and later associate those transactions with the correspond-
ing objects. Even though the information collected by the 
hardware monitors is sampled and does not include every 
access, it provides sufficiently accurate profiling informa-
tion. More importantly, since the monitors are imple-
mented in hardware level, they neither interfere with the 
memory behavior of the application running nor introduce 
significant overhead1. 

Our memory access locality measurement algorithm is 
a two phase algorithm. During the execution phase, we run 
the application on the modified virtual machine to gather 
information about the heap allocations and to sample the 
address transactions via hardware performance counters. 
At the end of execution phase, we generate a trace of heap 
allocations and memory accesses by the processors. In the 
post-processing phase, we process the generated trace and 
report measurement results. 

                                                           
1 We take samples after a fixed number of transactions since our earlier 
work [7] on dynamic page migration has shown that sampling address 
transactions at fixed transaction boundaries produces samples that are 
more representative of the overall transactions compared to other sam-
pling techniques. 
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We first instrument the executable of the virtual ma-
chine at the start of main function to create an additional 
helper thread for sampling the address transactions. We 
use DyninstAPI[12] to insert the instrumentation code. 
Moreover, to eliminate perturbation of sampling on the 
address transactions and memory behavior of the target 
Java application, we bind the helper thread to execute on a 
separate processor that does not run any of the threads in 
the application. The helper thread initializes some instru-
mentation structures and samples address transactions via 
the Sun Fire Link monitors for the remainder of the run. 

Our algorithm divides the execution of Java applica-
tions into distinct intervals. We refer to the time period 
from the start of a garbage collection until its termination 
as garbage collection interval and the time period between 
two consecutive garbage collection iterations as execution 
interval. 

We do not sample address transactions during garbage 
collection intervals since current Java virtual machines are 
engineered to have a small memory footprint that would 
likely not have a significant impact on the memory behav-
ior of the applications. To associate address transactions 
with heap allocations during the post-processing phase of 
our algorithm, we need to store the order information for 
both address transactions and allocation records. Thus, we 
use the index of the last sampled address transaction, 
which is maintained by the helper thread. 

The post-processing phase combines the allocation re-
cords and address transactions recorded during each exe-
cution interval and sorts them according to the order they 
are requested during the execution. It then tries to associ-
ate address transactions with allocation records generated 
during the same execution interval. If a transaction is not 
associated with an allocation record in the execution inter-
val being processed, the post processing phase tries to as-
sociate the same transaction with an allocation record that 

is recorded during an earlier execution interval. At termi-
nation, the post-processing phase reports memory access 
locality both for total and non-local accesses. 

4.2. Experimental Results 
We now present the results of experiments we con-

ducted to measure the memory access locality in a finer 
granularity for SPECjbb2000 running on HotSpot Server 
VM. During our experiments, we observed that 
SPECjbb2000 exhibits similar memory access locality re-
gardless of the number of warehouses. Thus, due to space 
limitations, we only present the results of SPECjbb2000 
for 12 warehouses. In these experiments, we sampled the 
address transactions every 512 transactions. 

Prior to describing the results of experiments, we 
briefly discuss the execution overhead and perturbation in 
SPECjbb2000 introduced by our measurements. The re-
sults of our experiments show that the throughput of 
SPECjbb2000 is reduced by 3% due to our source code 
instrumentation of HotSpot VM. In addition, we observed 
that 0.08% percent of all address transactions sampled are 
associated with the additional buffers we used to store al-
location records and sampled transactions. Thus, our 
measurement has neither a significant impact on the exe-
cution performance nor a significant perturbation on the 
memory behavior of SPECjbb2000. 

Our measurement technique gathered 10M allocation 
records during the execution of SPECjbb2000 with 12 
warehouses. In addition, it took 33M samples from the ad-
dress transactions in the system interconnect. The post-
processing phase of our technique associated 97.4% of the 
samples taken with an allocation. That is, 2.6% of all sam-
ples taken were not associated with any allocation during 
the execution. The majority of the unassociated address 
transactions fall into the code space of the HotSpot VM. 

 
Memory Accesses Non-Local Accesses Allocation 

Type 
Number of  
Allocations Count Percentage Count Percentage 

thread local buffer (tlab) 85,351 11,490,677 34.5 9,632,456 83.8 
object 9 1 0.0 0 0.0 
array 18 159 0.0 3 1.9 
large array 1 224 0.0 0 0.0 
permanent object 34,907 220,596 0.7 179,899 81.6 
permanent array 9,516 15,593 0.0 11,433 73.3 
scavenge survivor move 7,376,785 435,170 1.3 354,129 81.4 
scavenge old move 602,940 1,849,777 5.6 1,732,677 93.7 
compact move 1,932,844 14,628,184 43.9 12,107,329 82.8 
active table 1 17,113 0.1 13,259 77.5 
code cache  1 3,511,678 10.5 2,821,164 80.3 
stack 27 125,564 0.4 102,154 81.4 
memory chunks 249 35,644 0.1 18,970 53.2 
jni handles 86 65,938 0.2 65,673 99.6 

Table 2 Detailed measurement results for memory behavior of SPECjbb2000 with 12 warehouses. 
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Table 2 presents detailed results of our experiments. In 
the second column, it gives the number of allocation re-
cords gathered from each type of heap allocation. The 
third and fourth columns give the number of memory ac-
cesses associated with the heap allocations for the corre-
sponding allocation type and the percentage of the associ-
ated transactions among all transactions. The fifth column 
gives the number of non-local accesses, and the sixth col-
umn presents the percentage of non-local memory ac-
cesses for each allocation type. Table 3 presents the results 
for associated transactions presented in Table 2 for each 
heap segment in Java heap. 

Table 2 shows that the majority of allocation records 
we recorded were due to garbage collection of surviving 
objects. It also shows that there are only a few heap alloca-
tions for internal data structures used by the virtual ma-
chine itself whereas there are moderate numbers of thread-
local and permanent allocations. 

More importantly, Table 2 shows that accesses to heap 
allocated objects are mainly due to the Thread Local Allo-
cation Buffers (TLAB) allocated from the eden space of 
the Java heap and the surviving objects moved into old 
generation during garbage collection. TLABs are the 
thread-local storage used by the threads for object alloca-
tions in the young generation. Table 2 and 3 show that 
around 12% of accesses are associated with the internal 
structures and permanent allocations by the virtual ma-
chine and 10% of these accesses are due to the code cache 
used for interpreter and Java method codes. That is, even 
though HotSpot VM contributes to the memory behavior 
of the SPECjbb2000, its contribution is not significant. 

 
Memory 
Accesses Java Heap 

Region 
Count  % of All 

Accesses 

% 
Non-
Local 

Accesses 

Young Gen. 11,926,231 35.8 83.7 
Eden Space 11,389,586 34.2 83.8 

Survivor Space 536,645 1.6 82.7 
Old Gen. 16,477,990 49.5 84.0 
Permanent Gen. 236,189 0.7 81.0 
Internal Structures 3,755,937 11.3 80.4 

Table 3 Memory activity per Java heap region. 

Overall, Table 2 and 3 show that Java server applica-
tions are good candidates for memory locality optimiza-
tions due to the high percentage of non-local memory ac-
cesses. Table 2 and 3 also show that the memory behavior 
of SPECjbb2000 is mostly defined by the heap allocations 
and memory accesses it requested and the memory behav-
ior of Java virtual machine is not significant since only a 
small percentage of memory accesses are due to the inter-
nal data structures used by the virtual machine. Thus, lo-
cality optimization techniques that focus on optimizing the 

memory behavior of an application rather than the mem-
ory behavior of the underlying virtual machine hold the 
greatest opportunity. 

4.3. Estimating Potential Optimization Benefits 
To investigate whether page level optimization tech-

niques are too coarse to optimize the memory locality of 
Java server applications, it is necessary to investigate po-
tential benefits of possible finer grain optimization tech-
niques. In this section we present an estimation study that 
roughly predicts the benefits of possible finer grain opti-
mization techniques. The estimation study is based on the 
heap allocations and accesses gathered during our meas-
urement experiments. 

In this study, we consider three object level placement 
techniques. Static-optimal placement has information 
about all accesses to each heap allocation by processors 
during the execution and places objects in the memory 
pages local to the processors that access them most at allo-
cation time. Prior-knowledge placement has information 
about the accesses to each surviving allocation during the 
next execution interval and moves allocations to the mem-
ory pages local to the processors accessing them most in 
garbage collection intervals. Lastly, object-migration 
placement uses object access frequencies by processors 
since the start of execution up to the current time. At gar-
bage collection, it migrates heap allocations to memory 
local to the processors that access them most. 

In this estimation study, we measured the potential re-
duction in the number of non-local memory accesses for 
each placement technique using heap allocation records 
and memory accesses we gathered using our measurement 
tool. Figure 2 presents the percentage of non-local mem-
ory accesses in the original execution of SPECjbb2000 as 
well as using each placement technique. 
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Figure 2 Potential reduction in non-local memory ac-
cesses for object level optimization techniques. 

Figure 2 shows that heap allocations in the young gen-
eration would significantly benefit from both static-
optimal and prior-knowledge placement. It also shows that 
object-migration would not be effective in reducing the 
number of non-local memory accesses in young genera-
tion. Figure 2 also shows that the heap allocations in the 
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old generation would also benefit from static-optimal and 
prior-knowledge placements. Unlike heap allocations in 
the young generation, allocations in the old generation 
however would benefit from object migrations. 

Figure 2 shows that the prior-knowledge placement is 
more effective in the old generation compared to other 
placement techniques. It also shows that the static-optimal 
placement alone yields a significant reduction in non-local 
accesses in the old generation. This indicates 
SPECjbb2000 has some dynamically changing memory 
behavior in the old generation. More importantly, Figure 2 
shows that dynamic object migration responds to this 
changing behavior quite well and yields a significant re-
duction in the number of non-local memory accesses in 
the old generation. 

In Figure 2, the significant reduction in the number of 
non-local memory accesses in the young generation for the 
static-optimal placement indicates that heap allocations in 
the young generation are mostly accessed by single proc-
essors. Thus, we further investigated heap allocations in 
the young generation. We found that 94% of all accesses 
to the heap allocations in the young generation are re-
quested by the same processor that requested the alloca-
tion. This can be explained with the fact that each thread 
allocates its TLABs from young generation in which the 
thread allocates its objects. Moreover, since the mortality 
rate for the objects in TLABs are high, most of the ac-
cesses to those allocations are most likely to be from the 
same thread. Thus, if thread local buffers were placed lo-
cal to the processor thread is running on, a substantial 
memory access locality would be possible. 

The thread local allocation buffers were initially cre-
ated as a way to reduce synchronization overhead for mul-
tithreaded applications on UMA multiprocessor systems. 
Extending them to improve memory access locality on 
NUMA multiprocessor systems is described in Section 5. 

Using the fact that 94% of all observed accesses to the 
heap allocations in the young generation are requested by 
the same processors that allocated them, we calculated the 
potential reduction in the number of non-local memory 
accesses for a hybrid optimization technique. The hybrid 
optimization technique places heap allocations local to the 
processors that requested them in the young generation 
and uses dynamic object migration in old generation. We 
have found that such hybrid technique would reduce the 
number of non-local memory accesses by 73%. 

5. NUMA-Aware Java Heap Layouts 
To optimize memory access locality of Java server ap-

plications, we propose the use of two different Java heap 
configurations. The first one, NUMA-Eden, uses a 
NUMA-aware young generation and the original old gen-
eration of the HotSpot VM we used. The second one, 
NUMA-Eden+Old, uses both NUMA-aware young gen-
eration and NUMA-aware old generation. 

The NUMA-Eden configuration focuses on optimizing 
the locality of the accesses to the objects in the young 
generation where as the NUMA-Eden+Old configuration 
focuses on optimizing the locality of the accesses to the 
objects in young and old generations. The NUMA-
Eden+Old is more likely to be more effective than the 
NUMA-Eden since it targets all memory accesses in the 
application. However, it requires gathering object access 
frequencies by processors at runtime. 

5.1. NUMA-Aware Young Generation 
To optimize the locality of memory accesses to the ob-

jects in the young generation, we propose to divide eden 
space in the young generation into segments where each 
locality group of processors is assigned a segment. We do 
not change the layout of survivor spaces due to the fact 
that memory accesses to the survivor spaces throughout 
the execution of Java sever applications is insignificant 
compared to memory accesses to eden space. In addition, 
we divide the eden space to equal sized segments. Figure 3 
shows the layout for the young generation. 

To allocate objects in the young generation in the pro-
posed layout, the virtual machine needs to identify the 
processor that the requestor thread runs on, and place the 
object in the segment of the corresponding locality group 
of the processor. If application threads are bound to exe-
cute on fixed processors in the cc-NUMA server or affin-
ity scheduling is used in the underlying OS, virtual ma-
chines can easily identify the processor an application 
thread runs through OS provided system calls. 
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Figure 3 The NUMA-aware young generation layout. 

When there is not enough space for object allocations 
in the young generation, the java virtual machine triggers 
minor garbage collection. For our NUMA-aware allocator, 
the java virtual machine may trigger minor collections in 
several ways; one approach is to trigger minor garbage 
collection when there is not enough space in a segment for 
object allocation. However, such an approach may trigger 
minor collections more often compared to original heap 
due to fragmentation caused by dividing the region into 
locality based segments. Alternatively, the virtual machine 
may fall back to its original behavior and allocate the ob-
jects from segments that have enough space, thus eliminat-
ing additional minor collections. Since minor collection 
algorithms are engineered to be fast, we believe additional 
minor collections will not have a significant impact on the 
execution performance of Java server applications. Thus, 
in this paper, when a segment does not have enough space 
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for object allocations, we trigger minor garbage collection. 
Moreover, we collect all segments, even if they are not 
full, in parallel to eliminate future synchronization due to 
minor collection requests by other segments. 

A NUMA-aware young generation may also have addi-
tional benefits. If garbage collection threads are bound to 
execute on processor groups and each collector thread col-
lects the dead objects in the eden space associated with the 
same locality group that the thread is bound to execute, the 
memory access locality of garbage collection threads can 
be optimized. Since the garbage collection threads are 
known to suffer cold cache misses, such optimization can 
improve the performance of garbage collection threads. 

5.2. NUMA-Aware Old Generation 
Our experiments described in Section 4 show that al-

most 50% of all memory accesses are accesses to the ob-
jects in the old generation. Moreover, they also show that 
84% of accesses to the objects in the old generation are 
non-local memory accesses. Thus, for fine grain memory 
locality optimization techniques to be effective for Java 
server applications, they should also optimize memory ac-
cess locality for the objects in the old generation. More-
over, to optimize the memory access locality for the ob-
jects in the old generation, the fine grain optimization 
techniques should try to keep the objects local to the proc-
essors accessing them most during the lifetimes of objects. 
We refer to the location of an object as the preferred loca-
tion if the object is placed in a memory page that is local 
to the processor accessing it most. To be able to identify 
the processors accessing the objects most, we use the ad-
dress transaction samples taken form hardware perform-
ance counters as described in Section 4. 

When an object is promoted to the old generation, it 
stays in the old generation during the rest of its lifetime. If 
the object survives another full collection after being pro-
moted to the old generation, its address may change due to 
the copying collector. More importantly, the object may be 
accessed by different processors during the distinct inter-
vals of its lifetime. Thus, for a fine grain optimization 
technique to be effective, it should for each old generation 
object identify the preferred location of the object and 
place the object to its preferred location during garbage 
collection. 

To optimize the locality of memory accesses to the ob-
jects in the old generation, we propose a dynamic object 
migration scheme. In this scheme, when an object is pro-
moted to old generation during minor garbage collection, 
the preferred location of the object is identified and the 
object is placed in its preferred location. During full gar-
bage collection, the preferred location of each object in the 
old generation is identified and the object is placed at its 
preferred location. Moreover, to match the dynamically 
changing behavior of the application, after a fixed number 
of minor garbage collections, the preferred locations of the 

objects in the old generation are re-computed and objects 
are migrated as needed. 

After the preferred location of an object is identified, 
the virtual machine needs a means to place the object in its 
preferred location. Thus, similar to NUMA-aware young 
generation, we propose to divide old generation into seg-
ments where each locality group of processors is assigned 
a segment (Figure 4)2. 
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Figure 4 The NUMA-aware old generation layout. 

5.3. Experimental Setup 
To evaluate the effectiveness of fine grained optimiza-

tion techniques based on the proposed heap layouts, we 
evaluated our approach using a hybrid execution simula-
tor. To drive our simulation, we generated a representative 
workload from an actual run of the Java server applica-
tion3. 

A workload generated for an actual run must be repre-
sentative of the memory behavior of the actual run. In Sec-
tion 4.1, we described how we gather a representative 
trace of heap allocations and accesses to those allocations 
to measure the memory access locality of Java server ap-
plications. To generate a representative workload for an 
actual run, we use the sampled traces generated by our 
measurement tool and extrapolate to full workload. A 
workload is a sequence of object allocation and access re-
quests by processors in the same order they were re-
quested during the actual run of the application. 

For each trace entry for a surviving object, we first 
identify the trace entry that is the source of the object. If 
the source of the surviving object is a TLAB allocation, 
we insert a separate allocation request into the workload 
following the request for the TLAB. We manipulate 
TLABs and objects allocated in them separately for easy 
tracking of live objects for garbage collection.  

For each trace entry that accesses an allocation, we first 
identify the trace entry for the heap allocation that is being 
accessed. If the heap allocation is of type other than 
TLAB, we identify the corresponding allocation request in 
the workload. Moreover, if the heap allocation corre-
sponds to a surviving object that has survived multiple 
garbage collections, we map the object back to the source 
where the object is allocated. After identifying the alloca-
tion request, we insert an access request for it into the 
workload. 
                                                           
2 The VM needs to adaptively size the heap segment for each group. 
3 We chose to implement heap management algorithms as separate pro-
grams due to the code size and complexity of the JVM implementation as 
well as to allow controlled experiments not possible in a live system. 
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For each request inserted in to the workload, the infor-
mation required for the execution of the request is also ex-
tracted from the trace entry it corresponds to. For all re-
quests, we also extract the locality group that will execute 
the action from the trace entry the action is inserted for. 

We implemented a separate program, Workload Execu-
tion Machine (WEM), to consume the generated workload 
trace and issue the memory allocations and accesses to the 
machine. The WEM takes both a workload and a heap 
configuration as input and runs the workload using the 
heap configuration given. At termination, WEM reports 
the total time spent to run the workload and the total time 
spent for garbage collection in addition to the number of 
local and non-local accesses to the heap objects. 

5.4. Experimental Results 
We conducted experiments using the Workload Execu-

tion Machine by running the workload generated from an 
actual run of the SPECjbb2000 for 12 warehouses on the 
HotSpot Server VM. 

To investigate the impact of higher memory pressures 
on the effectiveness of the proposed heap configurations, 
we scaled the sampled set of objects accesses by 16 and 32 
times4. We chose two different scaling rates to investigate 
the impact of memory pressure increase on the effective-
ness of the proposed heap configurations. 

In each workload we generated, accesses to 42% of the 
object allocations did not exist in the samples taken. We 
believe these objects were short-lived, thus accesses to 
them were under sampled. Since we initialize all objects 
we allocate, similar to the HotSpot VM, we guarantee 
these objects are touched once. 

We ran each workload we generated under three heap 
configurations, Original, NUMA-Eden and NUMA-
Eden+Old. For NUMA-Eden+Old configuration, we trig-
gered dynamic object migration after every 3 minor col-
lections. We chose to trigger object migration after every 3 
minor collections for a slower rate of object migrations 
since our earlier work on page migration has shown that 
slower rate of migrations are more beneficial[6]. 

The number of garbage collections triggered for the 
Original, NUMA-Eden, and NUMA-Eden+Old is 10, 13 
and 13 respectively, of which 2 are full collections. The 
full garbage collections are forced garbage collections re-
quested by the SPECjbb2000 rather than full collections 
triggered due to lack of heap space. The NUMA-aware 
heap configurations trigger more minor garbage collec-
tions compared to the original heap configuration since in 
these configurations, a minor collection is executed when 
a segment for a locality group in the young generation is 
full, even if the others still have available space. 

                                                           
4 Replicating the full workload of the original program requires scaling 
the sampled set by a factor of 70. We chose lower rates due to large 
memory and disk space requirements of scaled workload. 

5.4.1. Reduction in Non-Local Memory Accesses 
We conducted a series of experiments where we ran the 

generated workloads. In these experiments we changed the 
underlying heap configuration and measured the percent-
age of the non-local memory accesses to the heap objects. 
Figure 5 presents the percentage of the non-local accesses 
to the objects allocated in young and old generations for 
each heap configuration compared to all accesses to the 
objects in each generation. It also presents the percentage 
of the non-local accesses to all objects compared to all ac-
cesses. In addition, Table 4 gives the percent reduction in 
the number of non-local objects accesses for the NUMA-
aware heap configurations with respect to the original 
heap configuration. 
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Figure 5 Non-local accesses by heap configuration. 

 
Scale  

Factor 
Heap  

Configuration 
Young 
Gen. 

Old  
Gen. 

All 
Gen. 

NUMA-Eden 57.6 % 0.3 % 28.1 % 16 
NUMA-Eden+Old 55.3 % 27.5 % 41.0 % 
NUMA-Eden 50.9 % 1.2 % 27.3 % 32 
NUMA-Eden+Old 48.0 % 30.2 % 39.5 % 

Table 4 Reduction in non-local memory accesses for 
each heap configuration. 

Figure 5 shows that the percentage of non-local object 
accesses for the original heap configuration is over 80% 
for all workloads. Moreover, it also shows that our 
NUMA-Eden heap configuration was able to reduce the 
number of non-local object accesses by around 28% com-
pared to the original heap configuration whereas the 
NUMA-Eden+Old configuration reduced the number of 
non-local object accesses by 39-41% for the workloads. 
Figure 5 also shows that unlike the NUMA-Eden configu-
ration, using a NUMA-Eden+Old configuration reduces 
the number of non-local object accesses in the old genera-
tion. This is due to the fact that NUMA-Eden uses the 
original old generation where as NUMA-Eden+Old uses 
NUMA-aware old generation with object migration. 

Figure 5 shows that even though NUMA-Eden and 
NUMA-Eden+Old use the same layout for the young gen-
eration, there is a slight difference in the percentage of 
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non-local memory accesses in the young generation for 
these configurations. This is due to the differences in ac-
tual page placements in the survivor spaces where we do 
not use a NUMA-aware layout. 

Figure 5 and Table 4 show that NUMA-aware heap 
configurations are effective in reducing the total number 
of non-local objects accesses. They also show that using 
both NUMA-aware young and old generation is more ef-
fective in reducing the number of non-local object ac-
cesses for each workload compared to using only NUMA-
aware young generation. Table 4 also shows that using 
both NUMA-aware young and old generations reduced the 
number of non-local object accesses in the workloads by 
about 40%. 

5.4.2. Execution Times 
For each experiment, we also measured the total time 

spent to execute each workload. Figure 6 presents the nor-
malized workload execution time for each heap configura-
tion with respect to the workload execution time for origi-
nal heap configuration. Figure 6 also presents the normal-
ized time spent for garbage collection. The bottom seg-
ment of each bar is just the execution time spent to run 
each workload whereas top segment of each bar is for the 
garbage collection time. 

Figure 6 shows that the garbage collection times for 
NUMA-Eden and original heap configurations are compa-
rable even though NUMA-Eden triggers more minor gar-
bage collections. This is due to the fact that minor garbage 
collection is fairly cheap since it both is executed by mul-
tiple GC threads in parallel and does not copy many ob-
jects due to the high mortality rate of young objects. 

Figure 6 also shows that for each workload, both 
NUMA-Eden and NUMA-Eden+Old configurations out-
perform the original heap configuration in terms of work-
load execution time. While the NUMA-Eden reduces the 
workload execution times by up to 27%, the NUMA-
Eden+Old reduces the workload execution times by up to 
40%. Moreover, it also shows that using both NUMA-
aware young and old generation is even more effective 
compared to using only NUMA-aware young generation. 

More importantly, Figure 6 shows that as the workload 
size increases, the effectiveness of the NUMA-aware heap 
configurations increases. It shows that NUMA-aware heap 
configurations were able to reduce the workload execution 
time for the workload that is generated by scaling the 
original workload 16 times by around 20% compared to 
original heap configuration, whereas the reduction in the 
workload execution time by up to 40% for the workload 
generated by a higher scaling rate of 32. Thus, Figure 6 
shows that NUMA-aware heap configurations are effec-
tive in the presence of higher memory pressure. 

Overall, our experiments show that NUMA-aware heap 
configurations are effective in reducing the number of 
non–local memory accesses and workload execution times 

for Java server workloads. Our approach was able to re-
duce the number of non-local memory accesses in 
SPECjbb2000 workloads by up to 41%, and also resulted 
in 40% reduction in workload execution time. 
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Figure 6 Normalized workload execution time for each 
scaling factor and heap configuration. 

6. Related Work 
Most of the prior research on optimizing the locality on 

cc-NUMA architectures has been in the area of page mi-
gration and replication. Unlike our work in this paper, 
prior research has focused on optimizing the memory ac-
cess locality of scientific applications using coarse grain 
optimization techniques. Chandra et al.[13] investigated 
the effects of different OS scheduling and page migration 
policies for cc-NUMA systems using Stanford DASH 
multiprocessors. Verghese[4] studied the operating system 
support for page migration and replication in cc-NUMA 
multiprocessors. Noordergraaf and Pas[3] also evaluated 
page migration and replication using a simple HPC appli-
cation on the he Sun WildFire servers. More recently, Bull 
and Johnson[14] studied the interactions between data dis-
tribution, migration and replication for the OpenMP appli-
cations. More similar to our work is Wilson and Agli-
etti[5] who used dynamic page placements to improve the 
locality for TPC-C on cc-NUMA servers. 

Karlsson et al.[15] presented memory system behavior 
of the application servers in ECperf and SPECjbb2000 
benchmarks running on commercial cc-NUMA multiproc-
essor servers and found that a large fraction of the working 
data sets is shared among processors. Marden et al.[16] 
studied the memory system behavior of the server applica-
tions in the Java versions of SPECweb99 benchmark and 
reported that the cache miss rate becomes worse for the 
Java implementation when the size of the cache is in-
creased. Unlike these papers, our work focuses on per-
thread memory behavior of server applications, and opti-
mizes the locality of memory accesses in these applica-
tions. 

Shuf et al.[7] presented a Java allocation-time object 
placement technique that co-locates heap objects based on 
the notion prolific types. Calder et al.[17] presented a 
compiler-directed technique for cache conscious data 
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placement for pointer-intensive applications. Chilimbi et 
al.[18-20] described several techniques for improving 
cache locality of pointer-intensive applications. 

Berger et al.[21] introduced the Hoard memory alloca-
tor for multithreaded applications to avoid false sharing by 
using per-processor heaps. Steensgaard[22] and Domani et 
al.[23] investigated the benefits of using thread-local 
heaps to improve garbage collection performance in Java 
applications. Unlike these papers, our techniques work on 
objects shared among threads and use dynamic analysis of 
object access frequencies during program execution. 

7. Conclusions 
In this paper, we introduced new NUMA-aware Java 

heap layouts and dynamic object migration to optimize the 
memory access locality of Java server applications run-
ning on cc-NUMA servers and investigated the impact of 
these layouts on the memory performance of 
SPECjbb2000. We evaluated the effectiveness of our 
techniques using workloads we generated from actual runs 
of SPECjbb2000. 

Our proposed Java NUMA-aware heap layouts always 
reduced the total number of non-local object accesses in 
SPECjbb2000 compared to the original Java heap layout 
used by the HotSpot VM by up to 41%. Moreover, our 
proposed NUMA-aware heap layouts reduced the execu-
tion time of Java workloads generated from actual runs of 
SPECjbb2000 by up to 40% compared to original layout 
in the virtual machine. 

We have shown that using both the NUMA-aware 
young and old generations combined with dynamic object 
migration is more effective in optimizing the memory per-
formance of SPECjbb2000 compared to using only the 
NUMA-aware young generation. Lastly, we have shown 
that as the memory pressure increases in the Java server 
applications, our proposed NUMA-aware heap configura-
tions are more effective in improving the memory per-
formance of Java server applications. We believe the use 
of NUMA-aware heap layouts will be even more effective 
in improving the performance of Java server applications 
running on larger cc-NUMA servers where difference in 
access times between local and non-local memory ac-
cesses is larger. 
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