
 1

NUMA-Aware Java Heaps for Server Applications

Mustafa M. Tikir Jeffrey K. Hollingsworth
Computer Science Department

University of Maryland
College Park, MD 20742

 {tikir,hollings}@cs.umd.edu

Abstract
We introduce a set of techniques to both measure and op-
timize memory access locality of Java applications running
on cc-NUMA servers. These techniques work at the object
level and use information gathered from embedded hard-
ware performance monitors. We propose a new NUMA-
aware Java heap layout. In addition, we propose using dy-
namic object migration during garbage collection to move
objects local to the processors accessing them most. Our
optimization technique reduced the number of non-local
memory accesses in Java workloads generated from actual
runs of the SPECjbb2000 benchmark by up to 41%, and
also resulted in 40% reduction in workload execution time.

1. Introduction
The dominant architecture for the medium and large

shared-memory multiprocessor servers is cache-coherent
non-uniform memory access (cc-NUMA) machines. In cc-
NUMA architectures, processors have a faster access to
the memory units local to them compared to the remote
memory units. For example the remote and local latencies
in mid-range Sun Fire 6800 servers is around 300ns and
225ns, respectively where the latencies in high-range Sun
Fire 15K servers are around 400ns and 225ns[1].

Prior research[2-5] has shown that dynamic page
placement techniques on cc-NUMA systems are most ef-
fective for applications with regular memory access pat-
terns, such as scientific applications. In these applications,
large static data arrays that span many memory pages are
divided into segments and distributed to multiple compu-
tation nodes resulting in one or a few computation nodes
accessing each data segment most. For example, in prior
work[6], we have shown that dynamically placing pages
local to the processors accessing them most results in up to
16% performance improvement for a suite of OpenMP ap-
plications.

However, unlike scientific applications, Java programs
tend to make extensive use of heap-allocated memory and
typically have significant pointer chasing[7]. Thus, unlike
scientific applications, dynamic page placement tech-
niques may not be as beneficial for Java applications since
they allocate many objects, with different access patterns,

on the same memory page. Since the page placement
mechanism used in the operating system is transparent to
the standard allocation routines, the same memory page
can be used to allocate many objects that are accessed by
different processors. Due to Translation Lookaside Buffer
size issues, cc-NUMA servers tend to use super pages of
several megabytes, which further increase the likelihood
of allocating the objects that have different access patterns
on the same memory page. As a result, to better optimize
memory access locality in Java applications running on cc-
NUMA servers, heap objects should be allocated or
moved so that objects that are mostly accessed by a proc-
essor reside in memory local to that processor.

In this paper, we propose a set of techniques to both
measure and optimize the memory access locality of Java
server applications running on cc-NUMA servers. These
techniques exploit the capabilities of fine grained hard-
ware performance monitors to provide data to automatic
feedback directed locality optimization techniques. We
propose the use of several NUMA-aware Java heap lay-
outs for initial object allocation and use of dynamic object
migration during garbage collection to move objects local
to the processors accessing them most.

We also evaluate the potential of existing well-known
locality optimization techniques and present the results of
a set of experiments where we applied a dynamic page
migration scheme to a Java server application. In our ex-
periments, we used the dynamic page migration scheme
we previously proposed[6].

2. Hardware and Software Components
In this section, we describe the hardware and software

components we used in this research.

2.1. Sun Fire Servers and Hardware Monitors
In our measurements, we used a Sun Fire 6800 server

which is based on the UltraSPARC III processors. It sup-
ports up to 24 processors and 24 memory units which are
grouped into 6 system boards. Each processor has its own
on-chip and external caches. The machine uses a single
snooping coherence domain that spans all devices con-
nected to a single Fireplane address bus.

 2

In Sun Fire servers, processors on a system board have
faster access to the memory banks on the same board (lo-
cal memory) compared to the memory banks on another
board (non-local memory). For example, back-to-back la-
tency measured by a pointer-chasing benchmark on a Sun
Fire 6800 server is around 225ns if the memory is local
and 300ns if it is non-local[1].

The Sun Fire Link Bus Analyzer[8] has an 8-deep
FIFO that records a limited sequence of consecutive ad-
dress transactions on the system interconnect. Each re-
corded transaction includes the requested physical address,
the requestor processor identifier, and the transaction type.
The bus analyzer is configured with mask and match reg-
isters to select events based on specific transaction pa-
rameters.

The information the bus analyzer provides about the
addresses in the transactions is at the level of physical ad-
dresses. Thus, to accurately evaluate the memory perform-
ance of an application, the address transactions have to be
associated with virtual addresses used by the application.
We used the meminfo system call in Solaris 9 to create a
mapping between physical and virtual memory pages in
the applications.

The Sun Link bus analyzer is a centralized hardware
that listens to the system interconnect. However, the tech-
niques we propose in this paper do not require use of such
centralized hardware. Alternatively, since most processors
now include hardware support for performance monitor-
ing, on-chip hardware monitors of the processors in a mul-
tiprocessor server can also be used to gather profiles re-
quired by our techniques in a distributed fashion.

2.2. Java HotSpot Server VM (version 1.4.2)
For efficient garbage collection, the Java HotSpot VM

exploits the fact that a majority of objects die young[9].
To optimize garbage collection, heap memory is managed
in generations, which are memory pools holding objects of
different ages, as shown in Figure 1. Each generation has
an associated type of garbage collection that can be con-
figured to make different time, space and application
pause tradeoffs.

 T enu red

P erm

C ode S pace ,
L ibrarie s,

In te rnal D ata
S tructures

Su
rv

iv
or

 S
pa

ce

E den
S pace

Su
rv

iv
or

 S
pa

ce

R
es

er
ve

d
V

irt
ua

l

R
es

er
ve

d
V

irt
ua

l

Y oung

Pe
rm

an
en

t G
en

.

Figure 1 The default memory layout of HotSpot VM.

Garbage collection happens in each generation when
the generation fills up. Objects are initially allocated in the
young generation. Because of infant mortality, most ob-
jects die in the young generation. When the young genera-
tion fills up it causes a minor collection. Minor collections
can be optimized assuming a high infant mortality rate. A

young generation full of dead objects is collected very
quickly. Some surviving objects are moved to a tenured
generation depending on how many minor collections they
survived. When the tenured generation needs to be col-
lected, there is a major collection, which is often much
slower because it involves all live objects.

2.3. The SPECjbb2000 Benchmark
The SPECjbb2000 is a benchmark for evaluating the

performance of servers running typical Java business ap-
plications. The performance metric used is the throughput
in terms of transactions per second.

The SPECjbb2000 represents an order processing ap-
plication for a wholesale supplier[10] with multiple ware-
houses. This benchmark loosely follows the TPC-C speci-
fication for its schema, input generation, and transaction
profile. SPECjbb2000 replaces database tables with Java
classes and data records with Java objects. SPECjbb2000
does no disk I/O. It runs in a single JVM.

The SPECjbb2000 emulates a 3-tier system. The mid-
dle tier, which includes business logic and object manipu-
lation, dominates the other tiers of the system. Clients are
replaced by driver threads with random input to represent
the first tier. The third tier is represented by binary trees
rather than a separate database and database storage is im-
plemented using in-memory binary trees of objects.

We chose to use SPECjbb2000 for our measurements
to be able to isolate the impact of our optimization tech-
niques on the memory performance of the Java server ap-
plications. An alternative benchmark is the
SPECjAppServer[11] benchmark. However, this bench-
mark tests performance for a representative J2EE applica-
tion and each of the components that make up the applica-
tion environment, including hardware, application server
software, JVM software, database software, JDBC drivers,
and the system network.

3. Optimizing with Dynamic Page Migration
Prior to evaluating our new object centric optimization

techniques, we quantify the impact of existing optimiza-
tion techniques on the memory access locality of Java ap-
plications. Such quantification enables us to compare the
effectiveness of specialized techniques with respect to a
more general technique and to verify the need for such
specialized techniques.

As a general locality optimization technique, we choose
dynamic page migration since this technique has been
studied extensively and is known to yield performance
improvements for many scientific applications running on
cc-NUMA servers. For our experiments, we choose the
dynamic page migration scheme we had developed for
OpenMP applications[6].

To quantify the impact of dynamic page migration on
memory access locality of SPECjbb2000, we ran
SPECjbb2000 for 6, 12, 18 warehouses with and without

 3

dynamic page migration. For each number of warehouses,
we counted the number of non-local memory accesses and
measured the percentage reduction in the number of non-
local memory accesses due to dynamic page migration
compared to the original execution. We also measured the
percentage improvement in the throughput for each num-
ber of warehouses when dynamic page migration is used.

Table 1 presents the percentage reduction in the total
number of non-local memory accesses when dynamic
page migration is used. The first column gives the number
of page migrations triggered. The third column gives the
percentage of non-local memory accesses without page
migration and the fourth column shows the percentage of
non-local memory accesses with page migration. The fifth
column lists the percentage reduction in the total number
of non-local memory accesses when page migration is
used. The sixth column gives the performance improve-
ment in the throughput.

Non-Local

Memory Accesses # of
Ware-
houses

of
Migra-
tions w/o

Mig.
with
Mig.

Reduc-
tion

% Im-
prove-
ment

6 69,796 72.0 % 52.3 % 27.4 % -2.8 %
12 145,607 77.0 % 58.1 % 24.5 % -3.4 %
18 165,794 77.5 % 61.3 % 20.9 % -3.1 %

Table 1 Performance improvement due to dynamic
page migration for SPECjbb2000.

Table 1 shows that running SPECjbb2000 with dy-
namic page migration, the number of non-local memory
accesses are reduced around 25% for all configurations
compared to not using dynamic page migration. It also
shows that dynamic page migration was not able to im-
prove the throughput for any configuration even though it
reduced the number of non-local accesses. Instead, dy-
namic page migration reduced throughput around 3%
since the reduction in non-local accesses did not overcome
the overhead introduced by migrating many pages.

More importantly, Table 1 shows that unlike scientific
applications where the reduction in the number of non-
local memory accesses can be as much as 90%[6], dy-
namic page migration was not as effective in reducing the
number of non-local memory accesses for SPECjbb2000.
We suspect this is due to fact that objects that are accessed
mostly by different processors are allocated in the same
memory page. Instead, to better optimize memory access
locality for this type of workload on a cc-NUMA server,
we object level migration will be more effective.

4. Inadequacy of Page Level Optimization
Java programs tend to make extensive use of heap-

allocated memory and typically have significant pointer
chasing. Since typical object sizes are much smaller com-
pared to the commonly used memory page sizes, Java ap-

plications are likely to allocate many objects in the same
memory page. Moreover, if an application uniformly ac-
cesses the objects in a page, a page level memory locality
optimization technique may not be as effective in reducing
the number of non-local memory accesses to the page.

To investigate whether page level optimization tech-
niques, such as dynamic page migration, are too coarse
grained to be effective in reducing the number of non-
local memory accesses in Java server applications, it is
necessary to measure the memory behavior of these appli-
cations at the object granularity.

4.1. Measuring Memory Access Locality
To gather information about the object allocations by a

Java application and the internal heap allocations required
by the virtual machine, we modified the source code of the
HotSpot VM. For each heap allocation, we inserted con-
structs to record the type of the allocation (i.e. object, ar-
ray, and code buffer), the address and size of the allocation
and the requestor thread. To capture the changes in the ad-
dresses during garbage collection, we also modified the
source code of garbage collection modules in the HotSpot
VM and inserted additional instrumentation code. For each
surviving object, the instrumentation code records the new
and the old addresses of the object.

We only instrument object allocations that survive one
or more garbage collections. During each garbage collec-
tion, we map the newly surviving objects back to the cor-
responding object. Since most of the objects die before
one garbage collection, we eliminate overhead due to very
short lived objects.

We used the Sun Fire Link monitors to sample the ad-
dress transactions during the execution of the application
and later associate those transactions with the correspond-
ing objects. Even though the information collected by the
hardware monitors is sampled and does not include every
access, it provides sufficiently accurate profiling informa-
tion. More importantly, since the monitors are imple-
mented in hardware level, they neither interfere with the
memory behavior of the application running nor introduce
significant overhead1.

Our memory access locality measurement algorithm is
a two phase algorithm. During the execution phase, we run
the application on the modified virtual machine to gather
information about the heap allocations and to sample the
address transactions via hardware performance counters.
At the end of execution phase, we generate a trace of heap
allocations and memory accesses by the processors. In the
post-processing phase, we process the generated trace and
report measurement results.

1 We take samples after a fixed number of transactions since our earlier
work [7] on dynamic page migration has shown that sampling address
transactions at fixed transaction boundaries produces samples that are
more representative of the overall transactions compared to other sam-
pling techniques.

 4

We first instrument the executable of the virtual ma-
chine at the start of main function to create an additional
helper thread for sampling the address transactions. We
use DyninstAPI[12] to insert the instrumentation code.
Moreover, to eliminate perturbation of sampling on the
address transactions and memory behavior of the target
Java application, we bind the helper thread to execute on a
separate processor that does not run any of the threads in
the application. The helper thread initializes some instru-
mentation structures and samples address transactions via
the Sun Fire Link monitors for the remainder of the run.

Our algorithm divides the execution of Java applica-
tions into distinct intervals. We refer to the time period
from the start of a garbage collection until its termination
as garbage collection interval and the time period between
two consecutive garbage collection iterations as execution
interval.

We do not sample address transactions during garbage
collection intervals since current Java virtual machines are
engineered to have a small memory footprint that would
likely not have a significant impact on the memory behav-
ior of the applications. To associate address transactions
with heap allocations during the post-processing phase of
our algorithm, we need to store the order information for
both address transactions and allocation records. Thus, we
use the index of the last sampled address transaction,
which is maintained by the helper thread.

The post-processing phase combines the allocation re-
cords and address transactions recorded during each exe-
cution interval and sorts them according to the order they
are requested during the execution. It then tries to associ-
ate address transactions with allocation records generated
during the same execution interval. If a transaction is not
associated with an allocation record in the execution inter-
val being processed, the post processing phase tries to as-
sociate the same transaction with an allocation record that

is recorded during an earlier execution interval. At termi-
nation, the post-processing phase reports memory access
locality both for total and non-local accesses.

4.2. Experimental Results
We now present the results of experiments we con-

ducted to measure the memory access locality in a finer
granularity for SPECjbb2000 running on HotSpot Server
VM. During our experiments, we observed that
SPECjbb2000 exhibits similar memory access locality re-
gardless of the number of warehouses. Thus, due to space
limitations, we only present the results of SPECjbb2000
for 12 warehouses. In these experiments, we sampled the
address transactions every 512 transactions.

Prior to describing the results of experiments, we
briefly discuss the execution overhead and perturbation in
SPECjbb2000 introduced by our measurements. The re-
sults of our experiments show that the throughput of
SPECjbb2000 is reduced by 3% due to our source code
instrumentation of HotSpot VM. In addition, we observed
that 0.08% percent of all address transactions sampled are
associated with the additional buffers we used to store al-
location records and sampled transactions. Thus, our
measurement has neither a significant impact on the exe-
cution performance nor a significant perturbation on the
memory behavior of SPECjbb2000.

Our measurement technique gathered 10M allocation
records during the execution of SPECjbb2000 with 12
warehouses. In addition, it took 33M samples from the ad-
dress transactions in the system interconnect. The post-
processing phase of our technique associated 97.4% of the
samples taken with an allocation. That is, 2.6% of all sam-
ples taken were not associated with any allocation during
the execution. The majority of the unassociated address
transactions fall into the code space of the HotSpot VM.

Memory Accesses Non-Local Accesses Allocation

Type
Number of
Allocations Count Percentage Count Percentage

thread local buffer (tlab) 85,351 11,490,677 34.5 9,632,456 83.8
object 9 1 0.0 0 0.0
array 18 159 0.0 3 1.9
large array 1 224 0.0 0 0.0
permanent object 34,907 220,596 0.7 179,899 81.6
permanent array 9,516 15,593 0.0 11,433 73.3
scavenge survivor move 7,376,785 435,170 1.3 354,129 81.4
scavenge old move 602,940 1,849,777 5.6 1,732,677 93.7
compact move 1,932,844 14,628,184 43.9 12,107,329 82.8
active table 1 17,113 0.1 13,259 77.5
code cache 1 3,511,678 10.5 2,821,164 80.3
stack 27 125,564 0.4 102,154 81.4
memory chunks 249 35,644 0.1 18,970 53.2
jni handles 86 65,938 0.2 65,673 99.6

Table 2 Detailed measurement results for memory behavior of SPECjbb2000 with 12 warehouses.

 5

Table 2 presents detailed results of our experiments. In
the second column, it gives the number of allocation re-
cords gathered from each type of heap allocation. The
third and fourth columns give the number of memory ac-
cesses associated with the heap allocations for the corre-
sponding allocation type and the percentage of the associ-
ated transactions among all transactions. The fifth column
gives the number of non-local accesses, and the sixth col-
umn presents the percentage of non-local memory ac-
cesses for each allocation type. Table 3 presents the results
for associated transactions presented in Table 2 for each
heap segment in Java heap.

Table 2 shows that the majority of allocation records
we recorded were due to garbage collection of surviving
objects. It also shows that there are only a few heap alloca-
tions for internal data structures used by the virtual ma-
chine itself whereas there are moderate numbers of thread-
local and permanent allocations.

More importantly, Table 2 shows that accesses to heap
allocated objects are mainly due to the Thread Local Allo-
cation Buffers (TLAB) allocated from the eden space of
the Java heap and the surviving objects moved into old
generation during garbage collection. TLABs are the
thread-local storage used by the threads for object alloca-
tions in the young generation. Table 2 and 3 show that
around 12% of accesses are associated with the internal
structures and permanent allocations by the virtual ma-
chine and 10% of these accesses are due to the code cache
used for interpreter and Java method codes. That is, even
though HotSpot VM contributes to the memory behavior
of the SPECjbb2000, its contribution is not significant.

Memory
Accesses Java Heap

Region
Count % of All

Accesses

%
Non-
Local

Accesses

Young Gen. 11,926,231 35.8 83.7
Eden Space 11,389,586 34.2 83.8

Survivor Space 536,645 1.6 82.7
Old Gen. 16,477,990 49.5 84.0
Permanent Gen. 236,189 0.7 81.0
Internal Structures 3,755,937 11.3 80.4

Table 3 Memory activity per Java heap region.

Overall, Table 2 and 3 show that Java server applica-
tions are good candidates for memory locality optimiza-
tions due to the high percentage of non-local memory ac-
cesses. Table 2 and 3 also show that the memory behavior
of SPECjbb2000 is mostly defined by the heap allocations
and memory accesses it requested and the memory behav-
ior of Java virtual machine is not significant since only a
small percentage of memory accesses are due to the inter-
nal data structures used by the virtual machine. Thus, lo-
cality optimization techniques that focus on optimizing the

memory behavior of an application rather than the mem-
ory behavior of the underlying virtual machine hold the
greatest opportunity.

4.3. Estimating Potential Optimization Benefits
To investigate whether page level optimization tech-

niques are too coarse to optimize the memory locality of
Java server applications, it is necessary to investigate po-
tential benefits of possible finer grain optimization tech-
niques. In this section we present an estimation study that
roughly predicts the benefits of possible finer grain opti-
mization techniques. The estimation study is based on the
heap allocations and accesses gathered during our meas-
urement experiments.

In this study, we consider three object level placement
techniques. Static-optimal placement has information
about all accesses to each heap allocation by processors
during the execution and places objects in the memory
pages local to the processors that access them most at allo-
cation time. Prior-knowledge placement has information
about the accesses to each surviving allocation during the
next execution interval and moves allocations to the mem-
ory pages local to the processors accessing them most in
garbage collection intervals. Lastly, object-migration
placement uses object access frequencies by processors
since the start of execution up to the current time. At gar-
bage collection, it migrates heap allocations to memory
local to the processors that access them most.

In this estimation study, we measured the potential re-
duction in the number of non-local memory accesses for
each placement technique using heap allocation records
and memory accesses we gathered using our measurement
tool. Figure 2 presents the percentage of non-local mem-
ory accesses in the original execution of SPECjbb2000 as
well as using each placement technique.

0

20

40

60

80

Young Generation Old Generation
Java Heap Region

%
 N

on
-L

oc
al

 A
cc

es
se

s Original
Static-Optimal
Prior-Knowledge
Object-Migration

Figure 2 Potential reduction in non-local memory ac-
cesses for object level optimization techniques.

Figure 2 shows that heap allocations in the young gen-
eration would significantly benefit from both static-
optimal and prior-knowledge placement. It also shows that
object-migration would not be effective in reducing the
number of non-local memory accesses in young genera-
tion. Figure 2 also shows that the heap allocations in the

 6

old generation would also benefit from static-optimal and
prior-knowledge placements. Unlike heap allocations in
the young generation, allocations in the old generation
however would benefit from object migrations.

Figure 2 shows that the prior-knowledge placement is
more effective in the old generation compared to other
placement techniques. It also shows that the static-optimal
placement alone yields a significant reduction in non-local
accesses in the old generation. This indicates
SPECjbb2000 has some dynamically changing memory
behavior in the old generation. More importantly, Figure 2
shows that dynamic object migration responds to this
changing behavior quite well and yields a significant re-
duction in the number of non-local memory accesses in
the old generation.

In Figure 2, the significant reduction in the number of
non-local memory accesses in the young generation for the
static-optimal placement indicates that heap allocations in
the young generation are mostly accessed by single proc-
essors. Thus, we further investigated heap allocations in
the young generation. We found that 94% of all accesses
to the heap allocations in the young generation are re-
quested by the same processor that requested the alloca-
tion. This can be explained with the fact that each thread
allocates its TLABs from young generation in which the
thread allocates its objects. Moreover, since the mortality
rate for the objects in TLABs are high, most of the ac-
cesses to those allocations are most likely to be from the
same thread. Thus, if thread local buffers were placed lo-
cal to the processor thread is running on, a substantial
memory access locality would be possible.

The thread local allocation buffers were initially cre-
ated as a way to reduce synchronization overhead for mul-
tithreaded applications on UMA multiprocessor systems.
Extending them to improve memory access locality on
NUMA multiprocessor systems is described in Section 5.

Using the fact that 94% of all observed accesses to the
heap allocations in the young generation are requested by
the same processors that allocated them, we calculated the
potential reduction in the number of non-local memory
accesses for a hybrid optimization technique. The hybrid
optimization technique places heap allocations local to the
processors that requested them in the young generation
and uses dynamic object migration in old generation. We
have found that such hybrid technique would reduce the
number of non-local memory accesses by 73%.

5. NUMA-Aware Java Heap Layouts
To optimize memory access locality of Java server ap-

plications, we propose the use of two different Java heap
configurations. The first one, NUMA-Eden, uses a
NUMA-aware young generation and the original old gen-
eration of the HotSpot VM we used. The second one,
NUMA-Eden+Old, uses both NUMA-aware young gen-
eration and NUMA-aware old generation.

The NUMA-Eden configuration focuses on optimizing
the locality of the accesses to the objects in the young
generation where as the NUMA-Eden+Old configuration
focuses on optimizing the locality of the accesses to the
objects in young and old generations. The NUMA-
Eden+Old is more likely to be more effective than the
NUMA-Eden since it targets all memory accesses in the
application. However, it requires gathering object access
frequencies by processors at runtime.

5.1. NUMA-Aware Young Generation
To optimize the locality of memory accesses to the ob-

jects in the young generation, we propose to divide eden
space in the young generation into segments where each
locality group of processors is assigned a segment. We do
not change the layout of survivor spaces due to the fact
that memory accesses to the survivor spaces throughout
the execution of Java sever applications is insignificant
compared to memory accesses to eden space. In addition,
we divide the eden space to equal sized segments. Figure 3
shows the layout for the young generation.

To allocate objects in the young generation in the pro-
posed layout, the virtual machine needs to identify the
processor that the requestor thread runs on, and place the
object in the segment of the corresponding locality group
of the processor. If application threads are bound to exe-
cute on fixed processors in the cc-NUMA server or affin-
ity scheduling is used in the underlying OS, virtual ma-
chines can easily identify the processor an application
thread runs through OS provided system calls.

Su
rv

iv
or

 S
pa

ce

Ed
en

 fo
r

G
ro

up
 1

Ed
en

 fo
r

G
ro

up
 2

……….

Ed
en

 fo
r

G
ro

up
 N

Su
rv

iv
or

 S
pa

ce

Figure 3 The NUMA-aware young generation layout.

When there is not enough space for object allocations
in the young generation, the java virtual machine triggers
minor garbage collection. For our NUMA-aware allocator,
the java virtual machine may trigger minor collections in
several ways; one approach is to trigger minor garbage
collection when there is not enough space in a segment for
object allocation. However, such an approach may trigger
minor collections more often compared to original heap
due to fragmentation caused by dividing the region into
locality based segments. Alternatively, the virtual machine
may fall back to its original behavior and allocate the ob-
jects from segments that have enough space, thus eliminat-
ing additional minor collections. Since minor collection
algorithms are engineered to be fast, we believe additional
minor collections will not have a significant impact on the
execution performance of Java server applications. Thus,
in this paper, when a segment does not have enough space

 7

for object allocations, we trigger minor garbage collection.
Moreover, we collect all segments, even if they are not
full, in parallel to eliminate future synchronization due to
minor collection requests by other segments.

A NUMA-aware young generation may also have addi-
tional benefits. If garbage collection threads are bound to
execute on processor groups and each collector thread col-
lects the dead objects in the eden space associated with the
same locality group that the thread is bound to execute, the
memory access locality of garbage collection threads can
be optimized. Since the garbage collection threads are
known to suffer cold cache misses, such optimization can
improve the performance of garbage collection threads.

5.2. NUMA-Aware Old Generation
Our experiments described in Section 4 show that al-

most 50% of all memory accesses are accesses to the ob-
jects in the old generation. Moreover, they also show that
84% of accesses to the objects in the old generation are
non-local memory accesses. Thus, for fine grain memory
locality optimization techniques to be effective for Java
server applications, they should also optimize memory ac-
cess locality for the objects in the old generation. More-
over, to optimize the memory access locality for the ob-
jects in the old generation, the fine grain optimization
techniques should try to keep the objects local to the proc-
essors accessing them most during the lifetimes of objects.
We refer to the location of an object as the preferred loca-
tion if the object is placed in a memory page that is local
to the processor accessing it most. To be able to identify
the processors accessing the objects most, we use the ad-
dress transaction samples taken form hardware perform-
ance counters as described in Section 4.

When an object is promoted to the old generation, it
stays in the old generation during the rest of its lifetime. If
the object survives another full collection after being pro-
moted to the old generation, its address may change due to
the copying collector. More importantly, the object may be
accessed by different processors during the distinct inter-
vals of its lifetime. Thus, for a fine grain optimization
technique to be effective, it should for each old generation
object identify the preferred location of the object and
place the object to its preferred location during garbage
collection.

To optimize the locality of memory accesses to the ob-
jects in the old generation, we propose a dynamic object
migration scheme. In this scheme, when an object is pro-
moted to old generation during minor garbage collection,
the preferred location of the object is identified and the
object is placed in its preferred location. During full gar-
bage collection, the preferred location of each object in the
old generation is identified and the object is placed at its
preferred location. Moreover, to match the dynamically
changing behavior of the application, after a fixed number
of minor garbage collections, the preferred locations of the

objects in the old generation are re-computed and objects
are migrated as needed.

After the preferred location of an object is identified,
the virtual machine needs a means to place the object in its
preferred location. Thus, similar to NUMA-aware young
generation, we propose to divide old generation into seg-
ments where each locality group of processors is assigned
a segment (Figure 4)2.

O
ld

 S
pa

ce

G
ro

up
 1

… … … .

O
ld

 S
pa

ce

G
ro

up
 2

O
ld

 S
pa

ce

G
ro

up
 N

Figure 4 The NUMA-aware old generation layout.

5.3. Experimental Setup
To evaluate the effectiveness of fine grained optimiza-

tion techniques based on the proposed heap layouts, we
evaluated our approach using a hybrid execution simula-
tor. To drive our simulation, we generated a representative
workload from an actual run of the Java server applica-
tion3.

A workload generated for an actual run must be repre-
sentative of the memory behavior of the actual run. In Sec-
tion 4.1, we described how we gather a representative
trace of heap allocations and accesses to those allocations
to measure the memory access locality of Java server ap-
plications. To generate a representative workload for an
actual run, we use the sampled traces generated by our
measurement tool and extrapolate to full workload. A
workload is a sequence of object allocation and access re-
quests by processors in the same order they were re-
quested during the actual run of the application.

For each trace entry for a surviving object, we first
identify the trace entry that is the source of the object. If
the source of the surviving object is a TLAB allocation,
we insert a separate allocation request into the workload
following the request for the TLAB. We manipulate
TLABs and objects allocated in them separately for easy
tracking of live objects for garbage collection.

For each trace entry that accesses an allocation, we first
identify the trace entry for the heap allocation that is being
accessed. If the heap allocation is of type other than
TLAB, we identify the corresponding allocation request in
the workload. Moreover, if the heap allocation corre-
sponds to a surviving object that has survived multiple
garbage collections, we map the object back to the source
where the object is allocated. After identifying the alloca-
tion request, we insert an access request for it into the
workload.

2 The VM needs to adaptively size the heap segment for each group.
3 We chose to implement heap management algorithms as separate pro-
grams due to the code size and complexity of the JVM implementation as
well as to allow controlled experiments not possible in a live system.

 8

For each request inserted in to the workload, the infor-
mation required for the execution of the request is also ex-
tracted from the trace entry it corresponds to. For all re-
quests, we also extract the locality group that will execute
the action from the trace entry the action is inserted for.

We implemented a separate program, Workload Execu-
tion Machine (WEM), to consume the generated workload
trace and issue the memory allocations and accesses to the
machine. The WEM takes both a workload and a heap
configuration as input and runs the workload using the
heap configuration given. At termination, WEM reports
the total time spent to run the workload and the total time
spent for garbage collection in addition to the number of
local and non-local accesses to the heap objects.

5.4. Experimental Results
We conducted experiments using the Workload Execu-

tion Machine by running the workload generated from an
actual run of the SPECjbb2000 for 12 warehouses on the
HotSpot Server VM.

To investigate the impact of higher memory pressures
on the effectiveness of the proposed heap configurations,
we scaled the sampled set of objects accesses by 16 and 32
times4. We chose two different scaling rates to investigate
the impact of memory pressure increase on the effective-
ness of the proposed heap configurations.

In each workload we generated, accesses to 42% of the
object allocations did not exist in the samples taken. We
believe these objects were short-lived, thus accesses to
them were under sampled. Since we initialize all objects
we allocate, similar to the HotSpot VM, we guarantee
these objects are touched once.

We ran each workload we generated under three heap
configurations, Original, NUMA-Eden and NUMA-
Eden+Old. For NUMA-Eden+Old configuration, we trig-
gered dynamic object migration after every 3 minor col-
lections. We chose to trigger object migration after every 3
minor collections for a slower rate of object migrations
since our earlier work on page migration has shown that
slower rate of migrations are more beneficial[6].

The number of garbage collections triggered for the
Original, NUMA-Eden, and NUMA-Eden+Old is 10, 13
and 13 respectively, of which 2 are full collections. The
full garbage collections are forced garbage collections re-
quested by the SPECjbb2000 rather than full collections
triggered due to lack of heap space. The NUMA-aware
heap configurations trigger more minor garbage collec-
tions compared to the original heap configuration since in
these configurations, a minor collection is executed when
a segment for a locality group in the young generation is
full, even if the others still have available space.

4 Replicating the full workload of the original program requires scaling
the sampled set by a factor of 70. We chose lower rates due to large
memory and disk space requirements of scaled workload.

5.4.1. Reduction in Non-Local Memory Accesses
We conducted a series of experiments where we ran the

generated workloads. In these experiments we changed the
underlying heap configuration and measured the percent-
age of the non-local memory accesses to the heap objects.
Figure 5 presents the percentage of the non-local accesses
to the objects allocated in young and old generations for
each heap configuration compared to all accesses to the
objects in each generation. It also presents the percentage
of the non-local accesses to all objects compared to all ac-
cesses. In addition, Table 4 gives the percent reduction in
the number of non-local objects accesses for the NUMA-
aware heap configurations with respect to the original
heap configuration.

0

20

40

60

80

16 32 16 32 16 32

Original NUMA-Eden NUMA-Eden+Old

P
er

ce
nt

ag
e

of
 N

on
Lo

ca
l A

cc
es

se
s Young Old Young+Old

Figure 5 Non-local accesses by heap configuration.

Scale

Factor
Heap

Configuration
Young
Gen.

Old
Gen.

All
Gen.

NUMA-Eden 57.6 % 0.3 % 28.1 % 16
NUMA-Eden+Old 55.3 % 27.5 % 41.0 %
NUMA-Eden 50.9 % 1.2 % 27.3 % 32
NUMA-Eden+Old 48.0 % 30.2 % 39.5 %

Table 4 Reduction in non-local memory accesses for
each heap configuration.

Figure 5 shows that the percentage of non-local object
accesses for the original heap configuration is over 80%
for all workloads. Moreover, it also shows that our
NUMA-Eden heap configuration was able to reduce the
number of non-local object accesses by around 28% com-
pared to the original heap configuration whereas the
NUMA-Eden+Old configuration reduced the number of
non-local object accesses by 39-41% for the workloads.
Figure 5 also shows that unlike the NUMA-Eden configu-
ration, using a NUMA-Eden+Old configuration reduces
the number of non-local object accesses in the old genera-
tion. This is due to the fact that NUMA-Eden uses the
original old generation where as NUMA-Eden+Old uses
NUMA-aware old generation with object migration.

Figure 5 shows that even though NUMA-Eden and
NUMA-Eden+Old use the same layout for the young gen-
eration, there is a slight difference in the percentage of

 9

non-local memory accesses in the young generation for
these configurations. This is due to the differences in ac-
tual page placements in the survivor spaces where we do
not use a NUMA-aware layout.

Figure 5 and Table 4 show that NUMA-aware heap
configurations are effective in reducing the total number
of non-local objects accesses. They also show that using
both NUMA-aware young and old generation is more ef-
fective in reducing the number of non-local object ac-
cesses for each workload compared to using only NUMA-
aware young generation. Table 4 also shows that using
both NUMA-aware young and old generations reduced the
number of non-local object accesses in the workloads by
about 40%.

5.4.2. Execution Times
For each experiment, we also measured the total time

spent to execute each workload. Figure 6 presents the nor-
malized workload execution time for each heap configura-
tion with respect to the workload execution time for origi-
nal heap configuration. Figure 6 also presents the normal-
ized time spent for garbage collection. The bottom seg-
ment of each bar is just the execution time spent to run
each workload whereas top segment of each bar is for the
garbage collection time.

Figure 6 shows that the garbage collection times for
NUMA-Eden and original heap configurations are compa-
rable even though NUMA-Eden triggers more minor gar-
bage collections. This is due to the fact that minor garbage
collection is fairly cheap since it both is executed by mul-
tiple GC threads in parallel and does not copy many ob-
jects due to the high mortality rate of young objects.

Figure 6 also shows that for each workload, both
NUMA-Eden and NUMA-Eden+Old configurations out-
perform the original heap configuration in terms of work-
load execution time. While the NUMA-Eden reduces the
workload execution times by up to 27%, the NUMA-
Eden+Old reduces the workload execution times by up to
40%. Moreover, it also shows that using both NUMA-
aware young and old generation is even more effective
compared to using only NUMA-aware young generation.

More importantly, Figure 6 shows that as the workload
size increases, the effectiveness of the NUMA-aware heap
configurations increases. It shows that NUMA-aware heap
configurations were able to reduce the workload execution
time for the workload that is generated by scaling the
original workload 16 times by around 20% compared to
original heap configuration, whereas the reduction in the
workload execution time by up to 40% for the workload
generated by a higher scaling rate of 32. Thus, Figure 6
shows that NUMA-aware heap configurations are effec-
tive in the presence of higher memory pressure.

Overall, our experiments show that NUMA-aware heap
configurations are effective in reducing the number of
non–local memory accesses and workload execution times

for Java server workloads. Our approach was able to re-
duce the number of non-local memory accesses in
SPECjbb2000 workloads by up to 41%, and also resulted
in 40% reduction in workload execution time.

Normalized Workload Execution Time

0.0

0.2

0.4

0.6

0.8

1.0

16 32 16 32 16 32

Original NUMA-Eden NUMA-Eden+Old

Execution Time GC Time

Figure 6 Normalized workload execution time for each
scaling factor and heap configuration.

6. Related Work
Most of the prior research on optimizing the locality on

cc-NUMA architectures has been in the area of page mi-
gration and replication. Unlike our work in this paper,
prior research has focused on optimizing the memory ac-
cess locality of scientific applications using coarse grain
optimization techniques. Chandra et al.[13] investigated
the effects of different OS scheduling and page migration
policies for cc-NUMA systems using Stanford DASH
multiprocessors. Verghese[4] studied the operating system
support for page migration and replication in cc-NUMA
multiprocessors. Noordergraaf and Pas[3] also evaluated
page migration and replication using a simple HPC appli-
cation on the he Sun WildFire servers. More recently, Bull
and Johnson[14] studied the interactions between data dis-
tribution, migration and replication for the OpenMP appli-
cations. More similar to our work is Wilson and Agli-
etti[5] who used dynamic page placements to improve the
locality for TPC-C on cc-NUMA servers.

Karlsson et al.[15] presented memory system behavior
of the application servers in ECperf and SPECjbb2000
benchmarks running on commercial cc-NUMA multiproc-
essor servers and found that a large fraction of the working
data sets is shared among processors. Marden et al.[16]
studied the memory system behavior of the server applica-
tions in the Java versions of SPECweb99 benchmark and
reported that the cache miss rate becomes worse for the
Java implementation when the size of the cache is in-
creased. Unlike these papers, our work focuses on per-
thread memory behavior of server applications, and opti-
mizes the locality of memory accesses in these applica-
tions.

Shuf et al.[7] presented a Java allocation-time object
placement technique that co-locates heap objects based on
the notion prolific types. Calder et al.[17] presented a
compiler-directed technique for cache conscious data

 10

placement for pointer-intensive applications. Chilimbi et
al.[18-20] described several techniques for improving
cache locality of pointer-intensive applications.

Berger et al.[21] introduced the Hoard memory alloca-
tor for multithreaded applications to avoid false sharing by
using per-processor heaps. Steensgaard[22] and Domani et
al.[23] investigated the benefits of using thread-local
heaps to improve garbage collection performance in Java
applications. Unlike these papers, our techniques work on
objects shared among threads and use dynamic analysis of
object access frequencies during program execution.

7. Conclusions
In this paper, we introduced new NUMA-aware Java

heap layouts and dynamic object migration to optimize the
memory access locality of Java server applications run-
ning on cc-NUMA servers and investigated the impact of
these layouts on the memory performance of
SPECjbb2000. We evaluated the effectiveness of our
techniques using workloads we generated from actual runs
of SPECjbb2000.

Our proposed Java NUMA-aware heap layouts always
reduced the total number of non-local object accesses in
SPECjbb2000 compared to the original Java heap layout
used by the HotSpot VM by up to 41%. Moreover, our
proposed NUMA-aware heap layouts reduced the execu-
tion time of Java workloads generated from actual runs of
SPECjbb2000 by up to 40% compared to original layout
in the virtual machine.

We have shown that using both the NUMA-aware
young and old generations combined with dynamic object
migration is more effective in optimizing the memory per-
formance of SPECjbb2000 compared to using only the
NUMA-aware young generation. Lastly, we have shown
that as the memory pressure increases in the Java server
applications, our proposed NUMA-aware heap configura-
tions are more effective in improving the memory per-
formance of Java server applications. We believe the use
of NUMA-aware heap layouts will be even more effective
in improving the performance of Java server applications
running on larger cc-NUMA servers where difference in
access times between local and non-local memory ac-
cesses is larger.

Acknowledgements
This work was supported in part by NSF awards EIA-

0080206, and DOE Grants DE-FG02-93ER25176, DE-
FG02-01ER25510 and DE-CFC02-01ER254489.

References
[1] A. Charlesworth, The Sun Fireplane System Interconnect,
ACM IEEE SC'01, Denver, CO, 2001.
[2] R. P. LaRowe, C. S. Ellis, L. S. Kaplan, The Robustness of
NUMA Memory Management, SOSP, Pacific Grove, CA, 1991.
[3] L. Noordergraaf, R. van der Pas, Performance Experiences on
Sun's WildFire Prototype, ACM IEEE SC'99, Portland, OR.

[4] B. Verghese, S. Devine, A. Gupta, M. Rosenblum, Operating
System Support for Improving Data Locality on CC-NUMA
Compute Servers, ASPLOS, Cambridge, MA, 1996.
[5] K. M. Wilson, B. B. Aglietti, Dynamic Page Placement to
Improve Locality in CC-NUMA Multiprocessors for TPC-C,
ACM IEEE SC'01, Denver, CO, 2001.
[6] M. M. Tikir, J. K. Hollingsworth, Using Hardware Counters
to Automatically Improve Memory Performance, ACM IEEE
SC'04, Pittsburgh, PA, 2004.
[7] Y. Shuf, M. J. Serrano, M. Gupta, J. P. Singh, Characterizing
the Memory Behavior of Java Workloads: A Structured View
and Opportunities for Optimizations, ACM SIGMETRICS,
Cambridge, MA, 2001.
[8] L. Noordergraaf, R. Zak, SMP System Interconnect Instru-
mentation for Performance Analysis, ACM IEEE SC'02, Balti-
more, MD, 2002.
[9] Sun Microsystems, Tuning Garbage Collection with the 1.4.2
JVM, 2003, http://java.sun.com/docs/hotspot/gc1.4.2/.
[10] Standard Performance Evaluation Council, SPECjbb2000
Benchmark, 2000, http://www.spec.org/osg/jbb2000.
[11] Standard Performance Evaluation Council,
SPECjAppServer Development Page, 2000,
http://www.spec.org/osg/jAppServer.
[12] B. R. Buck, J. K. Hollingsworth, An API for Runtime Code
Patching, International Journal of High Performance Computing
Applications, 14(4), 2000, p. 317-329.
[13] R. Chandra, S. Devine, B. Verghese, A. Gupta, M. Rosen-
blum, Scheduling and Page Migration for Multiprocessor Com-
pute Servers, ACM ASPLOS, San Jose, CA, 1994.
[14] J. M. Bull, C. Johnson, Data Distribution, Migration and
Replication on a cc-NUMA Architecture, European Workshop
on OpenMP, Rome, Italy, 2002.
[15] M. Karlsson, K. E. Moore, E. Hagersten, D. A. Wood,
Memory System Behavior of Java-Based Middleware, HPCA,
Anaheim, CA, 2003.
[16] M. Marden, S.-L. Lu, K. Lai, M. Lipasti, Comparison of
Memory System Behavior in Java and Non-Java Commercial
Workloads, Workshop on Computer Architecture Evaluation us-
ing Commercial Workloads, Cambridge, MA, 2002.
[17] B. Calder, C. Krintz, S. John, T. Austin, Cache-Conscious
Data Placement, ACM ASPLOS, San Jose, CA, 1998.
[18] T. M. Chilimbi, B. Davidson, J. R. Larus, Cache-Conscious
Structure Definition, ACM PLDI, Atlanta, GA, 1999.
[19] T. M. Chilimbi, M. D. Hill, J. R. Larus, Cache-Conscious
Structure Layout, ACM PLDI, Atlanta, GA, 1999.
[20] T. M. Chilimbi, J. R. Larus, Using Generational Garbage
Collection to Implement Cache-conscious Data Placement,
ISMM, Vancouver, Canada, 1998.
[21] E. D. Berger, K. S. McKinley, R. D. Blumofe, P. R. Wilson,
Hoard: A Scalable Memory Allocator for Multithreaded Applica-
tions, ACM ASPLOS, Cambridge, MA, 2000.
[22] B. Steensgaard, Thread Specific Heaps for MultiThreaded
Programs, ISMM, Minneapolis, MN, 2000.
[23] T. Domani, G. Goldshtein, E. K. Kolodner, E. Lewis, E.
Petrank, D. Sheinwald, Thread-local Heaps for Java, ISMM,
Berlin, Germany, 2002.

