
A Scalable Auto-tuning Framework for Compiler Optimization

Ananta Tiwari1, Chun Chen2∗, Jacqueline Chame3,

Mary Hall2 and Jeffrey K. Hollingsworth1

1University of Maryland 2University of Utah

Department of Computer Science School of Computing

College Park, MD 20740 Salt Lake City, UT 84112

{tiwari, hollings}@cs.umd.edu {chunchen, mhall}@cs.utah.edu

3University of Southern California

Information Sciences Institute

Marina del Ray, CA 90292

jchame@isi.edu

Abstract

We describe a scalable and general-purpose frame-
work for auto-tuning compiler-generated code. We
combine Active Harmony’s parallel search backend with
the CHiLL compiler transformation framework to gen-
erate in parallel a set of alternative implementations of
computation kernels and automatically select the one
with the best-performing implementation. The result-
ing system achieves performance of compiler-generated
code comparable to the fully automated version of the
ATLAS library for the tested kernels. Performance for
various kernels is 1.4 to 3.6 times faster than the native
Intel compiler without search. Our search algorithm si-
multaneously evaluates different combinations of com-
piler optimizations and converges to solutions in only
a few tens of search-steps.

1 Introduction

The complexity and diversity of today’s parallel ar-
chitectures overly burdens application programmers in
porting and tuning their code. At the very high end,
processor utilization is notoriously low, and the high
cost of wasting these precious resources motivates ap-
plication programmers to devote significant time and
energy to tuning their codes. This tuning process must
be largely repeated to move from one architecture to

∗This work was done when the author was at USC/ISI.

another, as too often, a code that performs well on one
architecture faces bottlenecks on another. As we are
entering the era of petascale systems, the challenges
facing application programmers in obtaining accept-
able performance on their codes will only grow.

To assist the application programmer in managing
this complexity, much research in the last few years has
been devoted to auto-tuning software that employs em-
pirical techniques to evaluate a set of alternative map-
pings of computation kernels to an architecture and
select the mapping that obtains the best performance.
Auto-tuning software can be grouped into three cate-
gories: (1) self-tuning library generators such as AT-
LAS, PhiPAC and OSKI for linear algebra and FTTW
and SPIRAL for signal processing [21, 3, 20, 9, 22]; (2)
compiler-based auto-tuners that automatically gener-
ate and search a set of alternative implementations of
a computation [7, 24, 11]; and, (3) application-level
auto-tuners that automate empirical search across a
set of parameter values proposed by the application
programmer [8, 16]. What is common across all these
different categories of auto-tuners is the need to search
a range of possible implementations to identify one that
performs comparably to the best-performing solution.
The resulting search space of alternative implementa-
tions can be prohibitively large. Therefore, a key chal-
lenge that faces auto-tuners, especially as we expand
the scope of their capabilities, involves scalable search
among alternative implementations.

As we look to the future, full applications will likely
include a mix of auto-tuning software from the above

 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60 70 80

 0
 5

 10
 15

 20
 25

 30
 35

 1
 2
 3
 4
 5
 6
 7
 8

Runtime

Parameter Interaction (Tiling and Unrolling for MM, N=800)

Tile Size

Unroll Amount

Runtime

Figure 1. Parameter Search Space for Tiling and Unrolling (Figure is easier to see in color).

three categories: automatically-generated libraries,
compiler-generated code and application-level param-
eters exposed to auto-tuning environments. Thus, ap-
plications of the future will demand a cohesive envi-
ronment that can seamlessly combine these different
kinds of auto-tuning software and that employs scal-
able empirical search to manage the cost of the search
process.

In this paper, we take an important step in the
direction of building such an environment. We be-
gin with Active Harmony [8], which permits applica-
tion programmers to express application-level param-
eters, and automates the process of searching among
a set of alternative implementations. We combine
Active Harmony with CHiLL [5], a compiler frame-
work that is designed to support convenient auto-
matic generation of code variants and parameters
from compiler-generated or user-specified transforma-
tion recipes. In combining these two systems, we have
produced a unique and powerful framework for auto-
tuning compiler-generated code that explores a richer
space than compiler-based systems are doing today and
can empower application programmers to develop self-
tuning applications that include compiler transforma-
tions.

A unique feature of our system is a powerful paral-
lel search algorithm which leverages parallel architec-
tures to search across a set of optimization parameter
values. Multiple, sometimes unrelated, points in the
search space are evaluated at each timestep. With this
approach, we both explore multiple parameter inter-
actions at each iteration and also have different nodes
of the parallel system evaluate different configurations
to converge to a solution faster. In support of this

search process, CHiLL provides a convenient high-level
scripting interface to the compiler that simplifies code
generation and varying optimization parameter values.

The remainder of the paper is organized into five
sections. The next section motivates the need for an ef-
fective search algorithm to explore compiler generated
parameter spaces. Section 3 describes our search algo-
rithm, which is followed by a high-level description of
CHiLL in section 4. In section 5, we give an overview
of the tuning workflow in our framework. Section 6
presents an experimental evaluation of our framework.
We discuss related work in section 7. Finally, section
8 will provide concluding remarks and future implica-
tions of this work.

2 Motivation

Today’s complex architecture features and deep
memory hierarchies require applying nontrivial opti-
mization strategies on loop nests to achieve high per-
formance. This is even true for a simple loop nest
like Matrix Multiply. Although naively tiling all three
loops of Matrix Multiply would significantly increase
its performance, the performance is still well below
hand-tuned libraries. Chen et al [7] demonstrate that
automatically-generated optimized code can achieve
performance comparable to hand-tuned libraries by us-
ing a more complex tiling strategy combined with other
optimizations such as data copy and unroll-and-jam.
Combining optimizations, however, is not an easy task
because loop transformation strategies interact with
each other in complex ways.

Different loop optimizations usually have different

goals, and when combined they might have unexpected
(and sometimes undesirable) effects on each other.
Even optimizations with similar goals but targeting dif-
ferent resources, such as unroll-and-jam plus scalar re-
placement targeting data reuse in registers, and loop
tiling plus data copy for reuse in caches, must be care-
fully combined. Unroll-and-jam generally has more im-
pact on performance than tiling for caches, since reuse
in registers reduces the number of loads and stores. In
addition, in architectures with SIMD units, unroll-and-
jam can be used to expose SIMD parallelism. The un-
roll factors must be tuned so that reuse and SIMD are
exploited without causing register spilling or instruc-
tion cache misses. On the other hand, tiling plus data
copying for reuse in caches changes the iteration or-
der and data layout, and may affect reuse in registers
and SIMD parallelism. When combining unroll-and-
jam and tiling, both unroll and tile sizes must be tuned
so that performance gains are complementary. Figure
1 illustrates these complex interactions by showing the
performance of square matrix (of size 800× 800) mul-
tiplication as a function of tiling and unrolling factors.
Tiling factors range from 2 to 80 and unrolling factors
from 2 to 32. We see a corridor of best performing
combinations along the x-y diagonal where tiling and
unrolling factors are equal, and smaller corridors when
tile factors are multiples of unroll factors. The best
performing code variant used a tiling factor of 24 and
unrolling factor of 24 and achieves a performance of
845 MFLOPS.

Empirical optimization can compensate for the lack
of precise analytical models by performing a system-
atic search over a collection of automatically generated
code variants. Each variant exposes a set of parameters
that controls the application of different transforma-
tion strategies. Parameter configurations for variants
serve as points in the search space and the objective
function values1 associated with the points are gath-
ered by actually running the variants on the target ar-
chitecture. The success of empirical search is largely
driven by how well the chosen search algorithm nav-
igates the search space. The search space shown in
Figure 1 is not smooth and contains multiple minimas
and maximas. The best and the worst configurations
are a factor of six different.

Active Harmony, an automated performance tun-
ing infrastructure supporting both online and offline

1The objective function values associated with points in the
search space can be any desired metric of performance (for ex-
ample - time per timestep, MFLOPS, cache utilization etc.).

Algorithm 1 : PRO for Compiler Optimization

1: Start with initial simplex with vertices {v0
0 , · · · , vn

0 } and
evaluate f(vj

0), j = 0, · · · , n in parallel.
2: k = 0
3: while Stopping Criteria Not Valid do

4: Reorder simplex vertices, so that f(v0
k) ≤ · · · ≤ f(vn

k)
5: Compute n reflection pts r

j

k = Π
`

2v0
k − v

j

k

´

, and

function values f(rj

k), j = 1, · · · , n in parallel.
{Reflection step}

6: l = arg minj f(rj

k) {Most Promising Point}
7: if f(rl

k) < f(v0
k) then

8: Compute n expansion pts e
j

k = Π
`

3v0
k − v

j

k

´

, and

function values f(ej

k), j = 1, · · · , n in parallel.
{Expansion checking step}

9: if f(el
k) < f(rl

k) then {Accept Expansion}
10: v

j

k+1 = e
j

k j = 1, · · · , n

11: else {Send HALT signal to all processes and accept
reflection}

12: v
j

k+1 = r
j

k j = 1, · · · , n

13: end if

14: else {Accept shrink}
15: Compute Π

`

v
j

k+1 = 0.5v0
k + 0.5v

j

k

´

, and

f(vj

k+1) j = 1, · · · , n in parallel. {Shrink
step}

16: end if

17: k = k+1
18: end while

tuning for scientific applications2, provides a selection
of search algorithms designed specifically to deal with
search spaces where the explicit definition of the ob-
jective function is not available. Finding a good set of
loop transformation parameters is a good example of
the type of search that the Harmony system is designed
to address.

In the next section, we describe our parameter
tuning algorithm for compiler generated parameter
spaces.

3 Parameter Tuning Algorithm

As previously shown, the loop transformation pa-
rameters interact with each other in complex ways.
The search algorithm used to explore the parameter
spaces of compiler-optimized computations must take
into account such interactions and be able to tune the
parameters simultaneously. The simultaneous tuning,
however, leads to added dimensions in the search space.
For our purposes, we use a modified version of the
Parallel Rank Ordering (PRO) algorithm proposed by

2Online tuning refers to adapting performance related param-
eters during runtime. Offline tuning refers to tuning for param-
eters that can be selected at compile/launch time but remain
fixed throughout the execution.

Tabatabaee et al [19]. Although the original PRO algo-
rithm can effectively deal with high-dimensional search
spaces with unknown objective functions, there are two
main differences between the type of search PRO was
designed for and the type of search we want to con-
duct. First, PRO was designed for online tuning of
SPMD-based parallel applications while our approach
needs an offline search. Secondly, Tabatabaee et al only
looked at (hyper) rectangular search spaces instead of
the more general parameter space used in our com-
piler optimization. In addition, we modified the initial
simplex construction method to better suit our goal of
using all available parallelism. We describe each mod-
ification in detail later in this section. We will refer to
the modified algorithm as PRO-C (PRO for Compiler
Optimization).

The parameter tuning algorithm is given in Algo-
rithm 1. For a function of N variables, PRO-C main-
tains a set of kN points forming the vertices of a sim-
plex in an N -dimensional space. Each simplex trans-
formation step3 (lines 5, 8 and 15) of the algorithm gen-
erates up to kN −1 new vertices by reflecting, expand-
ing, or shrinking the simplex around the best vertex.
After each transformation step, the objective function
value, f , associated with each of the newly generated
points are calculated in parallel. The reflection step
is considered successful if at least one of the kN − 1
new points has a better f than the best point in the
simplex. If the reflection step is not successful, the
simplex is shrunk around the best point. A successful
reflection step is followed by expansion check step (line
9). If the expansion check step is successful, the ex-
panded simplex is accepted. Otherwise, the reflected
simplex is accepted and the search moves on to the
next iteration. A graphical illustration for reflection,
expansion and shrink steps are shown in Figure 2 for a
2-dimensional search space and a 4-point simplex. In
the remainder of this section, we describe the modifi-
cations that we made to the original PRO algorithm
to make it suitable for searching compiler generated
parameter spaces.

3.1 Parallelizing Expansion Check Step

Recall that each simplex transformation step gen-
erates up to kN − 1 new vertices. The time required
to complete the parallel evaluation of these new ver-
tices is the time taken by the worst performing vertex.
The decision to introduce the expansion-check step in

3Each simplex transformation is considered to be a search-

step within one search iteration. One iteration of the search
algorithm consists of all the simplex transformations that happen
between successive reflection steps.

Figure 2. Simplex Transformation steps.

PRO was motivated by the observation that there are
some expansion points with very poor performance.
For online tuning of SPMD-based parallel applications,
such configurations slow down not only the search but
also the execution of the application itself. To avoid
these time consuming instances, before evaluating all
expansion points, PRO first calculates the expansion
point performance of only the most promising case4 at
the expense of parallelism. If the expansion checking
step is successful, the algorithm performs expansion
of other points in the simplex. Assuming we have kN

nodes available, each iteration of PRO, therefore, takes
at most three search steps (reflection, expansion check
and expansion).

In an offline parallel search, however, processors par-
ticipating in the search are independent, which allows
us to take full advantage of the underlying parallelism
while still avoiding expansion points with poor per-
formance. To that end, PRO-C evaluates all expan-
sion points and the decision to accept or reject the
expanded simplex is based on the performance of the
most promising case. If the performance reported by
the most promising case is worse than that of the best
point in the reflected simplex, our system sends a sig-
nal to all the other processors to stop the evaluation of
their candidate configurations and accepts the reflected
simplex. The expansion of the simplex is accepted if
the performance of the most promising case is better
than the best vertex in the reflected simplex. With
this modification, we not only reduce the number of
steps within one iteration of the search algorithm to at

4Most promising point is the point in the original simplex
whose reflection around the best point returns a better function
value.

most two (reflection-expansion and reflection-shrink)
but also increase parallelism.

3.2 Projection Operator for Arbitrary
Space

Offline tuning of loop transformation parameters is
a constrained optimization problem. Therefore in each
step we have to make sure that the computed points
are admissible, i.e. they satisfy the constraints. The
projection operator, function Π(·) (used in the pseudo-
code), takes care of this problem by mapping points
that are not admissible to admissible points. PRO
uses a simple method that independently maps the
computed value of the parameter to its lower or up-
per limit, whichever is closer. This method works well
for hyper-rectangular search spaces, but not when we
have an arbitrarily shaped space defined by (possibly
non-linear) constraints on parameter values. Our pro-
jection operator accommodates such arbitrarily shaped
spaces by projecting an inadmissible point to its near-
est admissible neighbor. We define distance between
two points using L1 distance, which is the sum of the
absolute differences of their coordinates. The nearest
neighbor of an inadmissible point (calculated in terms
of L1) will thus be a legal point with the least amount
of change (in terms of parameter values) summed over
all dimensions.

Computing the least L1 distance unfortunately in-
volves finding the nearest neighbors in a high dimen-
sional space, which is a computationally intensive task.
After experimenting with multiple nearest-neighbor al-
gorithms, we adopted the Approximate Nearest Neigh-
bor5 (ANN) [2] algorithm for two reasons. First, for
approximate neighbors, ANN has linear space require-
ments and logarithmic time complexity on the number
of points in the search space. Second, an efficient im-
plementation of the ANN library is available [15]. The
library supports a variety of metrics to define distance
between two points, including L1 distance metric. We
set ε = 0.5, which, for L1 distance, means error of
at most one along at most one dimension is tolerated,
which is a fairly small price to pay for logarithmic query
time.

3.3 Simplex Construction and Size

The initial simplex, with size kN , needs to be non-
degenerate so that it can span the whole parameter

5Given any ε > 0, a (1 + ε)-nearest neighbor of q is a point
p′ ∈ S s.t.

dist(p,q)
dist(p′,q)

≤ 1 + ε

space; therefore, kN must be at least N + 1, where N

is the number of tunable parameters. For a discrete
parameter space, PRO’s simplex construction method
can generate only up to 2N points. In PRO-C, we
extend the method to generate points for any kN ≥
N + 1. To exploit all available parallelism, kN can be
set to the number of resources/processors available.

Unlike PRO’s strategy of starting the search at the
center of the search-space (which is hard to ascertain
in a high-dimensional constrained space), we randomly
select kN points at the start of the algorithm. The
first iteration of the algorithm evaluates these random
configurations. The initial simplex is constructed by
randomly sampling points at distance d (L1 distance)
from the best performing point. The set of search di-
rections/vectors (from the initial best point to the sam-
pled points) generated in this fashion is guaranteed to
be a linearly independent set, which is important be-
cause this property gives us kN unique parameter in-
teractions.

In section 4, we describe CHiLL - our loop transfor-
mation and code generation framework.

4 CHiLL: A Framework for Composing

High-Level Loop Transformations

Automatic tuning requires a compiler to be able to
generate different codes rapidly during the search by
adjusting parameter values, without costly compiler
reanalysis. It also demands that the compiler have
a clean interface to a separate parameter search en-
gine. CHiLL [5, 6], a polyhedral loop transformation
and code generation framework, provides such capabil-
ity for composing high-level loop transformations with
a script interface to describe the transformations and
search space to the search engine. Polyhedral represen-
tation of loops facilitates compilers to compose com-
plex loop transformations in a mathematically rigor-
ous way to ensure code correctness. However, existing
polyhedral frameworks are often too limited in sup-
porting a wide array of loop transformations (for both
perfect and imperfect loop nests) required to achieve
high-performance on today’s computer architectures.
CHiLL employs new design features such as iteration
space alignment and auxiliary loops to greatly expand
the capability of polyhedral framework. Further, its
high-level script interface allows compilers or applica-
tion programmers to use a common interface to de-
scribe parameterized code transformations to be ap-
plied to a computation, whose parameters can be in-
stantiated by an external search engine to find the best-
performing implementation. We now briefly describe
CHiLL’s new features.

DO I=2, N
s1 SUM(I)=0

DO J=1, I-1

s2 SUM(I)=SUM(I)+A(J,I)*B(J)
s3 B(I)=B(I)-SUM(I)

(a) Original code

IS1 : {[i, j] | 2 ≤ i ≤ N ∧ j = 1}
IS2 : {[i, j] | 1 ≤ j < i ≤ N}
IS3 : {[i, j] | 2 ≤ i ≤ N ∧ j = i − 1}

(b) Aligned iteration spaces

s3

s1

s2

f low(0,+)
f low(0,0)
output (0 ,+)
output(0,0)

f low(0,+)
f low(0,0)

f low(0,+)
f low(0,0)

f low(+,1)

output (0 ,+)
f low(0,+)
ant i (0 ,+)

(c) Dependence graph

ts1
: {[∗, i, ∗, j, ∗] → [0, i, 0, j, 0]}

ts2
: {[∗, i, ∗, j, ∗] → [0, i, 1, j, 0]}

ts3
: {[∗, i, ∗, j, ∗] → [0, i, 2, j, 0]}

(d) Transformation relations to
generate the original loop nest in (a)

Figure 3. Representing Loop Nests and Transformations.

4.1 Polyhedral Representation

In a polyhedral representation, a loop nest is repre-
sented by the collection of iteration spaces of the state-
ments inside the loop nest. Each statement has its
own iteration space, derived from its enclosing loops
respectively. Thus for imperfect loop nests the num-
ber of dimensions of the iteration spaces of individual
statements derived initially may be different. Addi-
tional iteration space alignment brings each statement
to be represented in a same unified iteration space. To
generate imperfectly nested transformed loops, auxil-
iary loops are added to determine lexicographical order
among loops at each loop level. We will discuss both
concepts in detail below.

Iteration space alignment can be thought as a gen-
eralization of code sinking and loop fusion. For an
imperfect loop nests such as in Figure 3(a), CHiLL ex-
tracts the iteration space for each statement as in Fig-
ure 3(b). Note that in CHiLL’s representation every
statement in the loop nest has the same number of di-
mensions in its iteration space. Although s1 and s3 are
only surrounded by one loop I, their iteration spaces
are still 2-dimensional; more precisely, each represents
a line aligned in a 2-dimensional iteration space. Once
the iteration spaces of all statements are aligned in the
same iteration space, CHiLL can transform perfect and
imperfect loop nests in a systematic way and the legal-
ity of a transformation can be determined in the same
way as perfect loop nests, i.e., from data dependences
(e.g. 3(c)) prior to the transformation. The complete
algorithm for iteration space alignment can be found
in [5].

Auxiliary loops are introduced to allow a system-

atic code generation strategy for both perfect and im-
perfect loop nests. If the aligned iteration spaces only
include dimensions for each loop level, there would be
no information available as to the relationship or re-
quired execution order among statements or how loops
and statements would be organized at a specific loop
level. To keep a simple and robust polyhedral scanning
strategy for code generation, an auxiliary loop is asso-
ciated with each loop level in the original nest. Each
auxiliary loop carries the execution order of statements
and loops at its associated level. An additional auxil-
iary loop is associated with the statements within the
deepest level of the iteration space, and carries the ex-
ecution order of these statements. By setting differ-
ent constant integer values for these auxiliary loops,
CHiLL establishes the lexicographical order of loops at
each loop level as well as the lexicographical order of
statements in the innermost loop. So for an n-deep
loop nest, we have (2n + 1)-dimension iteration spaces
as [c1, l1, c2, l2, . . . , cn, ln, cn+1], where ci’s are auxiliary
loops. Each loop transformation from an n-deep loop
nest to a new m-deep loop nest is represented as a set
of relations:

t : {[c1, l1, . . . , cn, ln, cn+1] → [c′1, l′1, . . . , c′m, l′m, c′m+1]| · · · }.

Figure 3(d) shows the transformation relations to gen-
erate the original loop nest, with the initial auxiliary
loop values unknown yet. Since only constant values
are allowed in auxiliary loops, no loops are generated
in the final transformed code.

4.2 Code Transformations - Recipes

CHiLL takes as input the original code and a loop
transformation recipe (a CHiLL script) describing how

to optimize the code. Each line of the script describes a
transformation to be applied on an existing loop repre-
sentation. For illustration purposes, we list some most
common high-level loop transformations below. As a
general rule, each loop transformation affects a set of
statements within the specified loop.

permute([stmt],order): the loop order of stmt is per-
muted to the new order, which is represented by a se-
quence of integers identifying the loops. If permute
does not have a stmt parameter, it indicates that the
loop order of all statements should be permuted.

tile(stmt,loop,size,[outer-loop]): Tile loop at level loop
of stmt with the tile controlling loop at loop level outer-
loop (default value 1), with tile size size.

unroll(stmt,loop,size): Unroll stmt ’s loop at level loop
by unroll factor size. For all unrolled statements, the
inner loop bodies below loop level loop are jammed
together.

datacopy(stmt,loop,array,[index]): For the specified
array in stmt, a temporary array copy construction is
introduced for all array accesses touched within loop
level loop. The index (default value 0) specifies which
subscript in array corresponds to the new temporary
array’s first index (assuming Fortran array layout).
The array accesses in stmt are replaced by appropriate
temporary array accesses.

split(stmt,loop,condition): Split stmt ’s loop level loop
into multiple loops according to condition. The orig-
inal stmt ’s iteration space will satisfy condition. The
iteration space satisfying the complement of conditions
will be split into new statements.

nonsingular(matrix): Transform the perfect loop nest
according to nonsingular matrix. This includes both
unimodular and nonunimodular transformations.

In the next section, we describe how CHiLL and Ac-
tive Harmony frameworks interact with each other to
generate a set of alternative implementations of com-
putation kernels and automatically search and select
the one with the best-performing implementation.

5 Overall System Workflow

Figure 4 shows the overall workflow of our sys-
tem. In the proposed framework, code transformation
recipes and parameter specifications (i.e. parameter
domain and constraints) can be either generated by
the compiler automatically or by the users tuning their
application code. With this flexibility, our approach
can support both fully automated compiler optimiza-
tions and user-directed tuning. For our experiments,

Figure 4. Overall System Workflow Diagram.

we translate loop transformation sequences from the al-
gorithms presented by Chen et al [7] to CHiLL scripts.
Specifications for unbound parameters in the scripts
are derived using simple heuristics based on architec-
tural parameters (e.g., consider cache capacity to gen-
erate constraints for tile-sizes). We elaborate more on
parameter specification in the next section. If a user,
with domain knowledge, wants more control over what
part of the parameter space to focus on, he/she can
provide additional constraints to fine-tune the search
space. Using the parameter specifications, we normal-
ize the domain of each parameter onto our internal in-
teger based coordinate system. This step is necessary
to ensure that the differences in the range of values
parameters can take in different dimensions do not un-
duly influence the L1 distance metric.

Parameters that appear in one or more constraints
are considered to be interdependent and are evaluated
as sets. For example, tile-size parameters for multi-
ple loops may appear in one or more cache capacity
constraints. A simple constraint solver is then used
to enumerate points for each of these sets. Projection
of an inadmissible point to a valid point in the search
space is done (by the projection server) separately for
different groups of parameters.

At each search step, Active Harmony’s search-kernel
requests CHiLL’s code-generator to generate code vari-
ants with given sets of parameters for loop transforma-
tions. The CHiLL generated code variants are then
compiled and run in parallel on the target architecture
by the optimization driver. Measured performance val-
ues are consumed by the search-kernel to make simplex
transformation decisions.

Table 1. Kernels used for experiments
Kernel Naive Transformation Constraints

Code Recipe

MM

DO K = 1, N

DO J = 1, N
DO I = 1, N

C[I,J] = C[I,J]+A[I,K]*B[K,J]

permute([3,1,2])
tile(0,2,TJ)

tile(0,2,TI)
tile(0,5,TK)
datacopy(0,3,2,1)

datacopy(0,4,3)
unroll(0,4,UI)

unroll(0,5,UJ)

TK × TI ≤ 1

2

“

sizeL2

2

”

TK × TJ ≤ 1

2

“

sizeL1

2

”

UI × UJ ≤ sizeR

TI, TJ, TK ∈ [0, 2, 4, . . . , 512]
UI, UJ ∈ [1, 2, . . . , 16]

TRSM

DO J = 1, N
DO K = 1, N

DO I = K + 1,N
B(I,J) = B(I,J) - B(K,J)*A(I,K)

permute([1,3,2])
tile(0,3,TK)

split(0,2,L3>=L1+TK)
tile(0,3,TI,2)

tile(0,3,TJ,2)
datacopy(0,3,2)
datacopy(0,4,3,1)

unroll(0,4,UJ1)
unroll(0,5,UI1)

datacopy(1,2,3,1)
unroll(1,2,UJ2)
unroll(1,3,UI2)

TK × TK ≤ 1

2

“

sizeL2

2

”

TK × TJ ≤ 1

2

“

sizeL1

2

”

TK × TI ≤ 1

2

“

sizeL2

2

”

UI1 × UJ1 ≤ sizeR

UI2 × UJ2 ≤ sizeR

TI, TJ, TK ∈ [0, 2, 4, . . . , 512]
UI1, UJ1, UI2, UJ2 ∈ [1, 2, . . . , 16]

Jacobi

DO K = 2, N-1

DO J = 2, N-1
DO I = 2, N-1

A(I,J,K) = C*(B(I-1,J,K)+B(I+1,J,K)+
B(I,J-1,K)+B(I,J+1,K)+
B(I,J,K-1)+B(I,J,K+1))

original()

tile(0, 3, TI)
tile(0, 3, TJ)

tile(0, 3, TK)
unroll(0,5,UJ)

TI, TJ, TK ∈ [0, 2, 4, . . . , 512]
UJ ∈ [1, 2, . . . , 16]

6 Experimental Results

In this section, we present an experimental evalua-
tion of our framework. First, we use a Matrix Multi-
plication kernel to explore the effectiveness of PRO-C
on the search space for loop transformation parame-
ters. We study how the size of the initial simplex (and
hence the degree of parallelism) affects the convergence
and performance of the search algorithm. In the second
part, we use our framework to optimize two additional
computational kernels - Triangular Solver (TRSM) and
Jacobi. The use of linear algebra kernels - Matrix Mul-
tiplication and Triangular Solver - was motivated by
our goal to compare the effectiveness of our framework
to well tuned codes. The results for the Jacobi ker-
nel show that our underlying polyhedral framework is
a general-purpose loop transformation tool, which can
handle arbitrary code beyond the linear algebra do-
main. In addition, MM, TRSM and Jacobi all exhibit
complex parameter interactions (discussed in section 2)
for today’s computer architectures. For all the kernels,
we provide the original code, the transformation recipe
and the constraints on unbound parameters in Table 1.

The experiments were performed on a 64-node Linux
cluster. Each node is equipped with dual Intel Xeon
2.66 GHz (SSE2) processors. L1-cache and L2-cache
sizes are 128 KB and 4096 KB respectively. We com-
pare the performance of our code versions with those
of the native compiler (ifort 10.0.026, compiled with
-O3 -xN). When compiling our transformed code, we

turn off the native compiler’s loop transformations to
prevent them from interfering with our optimizations.
For Matrix Multiplication and Triangular Solver, we
present the performance of ATLAS (version 3.8) self-
tuning libraries. In addition to a near exhaustive sam-
pling of the search space, ATLAS uses carefully hand-
tuned BLAS routines contributed by expert program-
mers. To make a meaningful comparison, we provide
the performance of the search-only version of ATLAS
- code generated by the ATLAS Code Generator via
pure empirical search. The search-only version was
generated by disabling the use of architectural defaults
and turning off the use of hand-coded BLAS routines.
For all our experiments, unroll factors and tile sizes are
constrained by the storage capacity of their associated
memory hierarchy levels. In addition, for tile sizes, we
use a simple heuristic which tries to fit references with
temporal reuse into half of the cache, leaving the other
half for references with spatial or no reuse.

6.1 Performance of PRO-C

In this section, we use Matrix Multiplication (MM)
to demonstrate the effectiveness of parallel search. The
optimization strategy reflected in the transformation
recipe in Table 1 exploits the reuse of C(I, J) in reg-
isters, and the reuse of A(I, K) and B(K, J) in caches
(A and B have the same amount of temporal reuse,
carried by different loops). The transformation recipe
applies tiling to B in the L1 cache and A in the L2

0 10 20 30 40 50

1.4

1.6

1.8

2

2.2

Search Steps

S
pe

ed
up

 o
ve

r
th

e
N

at
iv

e
C

om
pi

le
r

Effects of Simplex Size on the Convergence of the Search Algorithm

2N Simplex (10 Nodes)
4N Simplex (20 Nodes)
8N Simplex (40 Nodes)
12N Simplex (60 Nodes)

Figure 5. Effects of Different Degree of Paral-
lelism on the Convergence of PRO-C.

cache. Data copying is applied to avoid conflict misses.
In addition, to expose SSE optimization opportunities
to the Intel compiler, the copying of A transposes the
data into the temporary array. The values for the five
unbound parameters TI , TJ , TK, UI and UJ are de-
termined by the search algorithm.

To study the effect of simplex size, we considered
four alternative simplex sizes - 2N (10 Nodes), 4N (20
Nodes), 8N (40 Nodes) and 12N (60 Nodes), where N

is the number of unbound parameters (N = 5 for this
experiment). Each simplex was constructed around the
same initial point, which was randomly selected from
the search space at the beginning of the experiment.
The search algorithm was run for a square matrix of
size 800 × 800. The results for this experiment are
summarized in Table 2.

Figure 5 shows the performance of the best point
in the simplex across search steps. Search conducted
with 12N and 8N simplices clearly use fewer search
steps than the search conducted with smaller simplices.
Recall from our discussion in section 2 and from Fig-
ure 1 that loop transformation parameter space is not
smooth and contains multiple local minimas and max-
imas. The existence of long stretches of consecutive
search steps with minimal or no performance improve-
ment (marked by arrows in Figure 5) in 2N and 4N

cases show that more search steps are required to get
out of local minimas for smaller simplices. At the same
time, by effectively harnessing the underlying paral-
lelism, 8N and 12N simplices evaluate more unique
parameter configurations (see Table 2) and get out of

500 1000 1500 2000 2500 30000

5

10

15
Performance Distribution

MFLOPS Greater Than

P
er

ce
nt

ag
e

of
 th

e
T

ot
al

 S
am

pl
es

1.7% of 100K Samples

Figure 6. Performance Distribution for ran-
domly chosen MM Configurations

Table 2. MM Results - Alternate Simplex Sizes

2N 4N 8N 12N

Number of Function Evals. 276 571 750 961
Number of Search Steps 49 32 22 18
Speedup over Native 2.30 2.33 2.32 2.33

local minimas at a faster rate.

Results summarized in Table 2 also show that as
the simplex size increases, the number of search steps
decreases, thereby confirming the effectiveness of in-
creased parallelism. Using a 12N initial simplex, the
search converges to a solution 2.7 times faster than us-
ing 2N initial simplex.

The next question regarding the effectiveness of our
framework relates to the quality of the search result. To
answer this question, we selected 100,000 uniformly dis-
tributed samples from the search space, which has over
70 million total points, and evaluated the performance
associated with all the samples. The performance dis-
tribution is shown is Figure 6. Approximately 1.7%
of the total samples report performance greater than 3
GFLOPS. The best performance (3.22 GFLOPS) was
associated with the configuration TI = 160, TJ = 6,
TK = 162, UI = 1 and UJ = 6. For the same
problem size, our code delivers 3.17 GFLOPS. The re-
sult demonstrates PRO-C’s effectiveness on compiler-
generated search spaces.

Finally, figure 7 shows the performance of the code
variant produced by a 12N simplex across a range of

500 1000 1500 2000 2500 3000 35001

1.5

2

2.5

3

3.5

4

4.5

Matrix Size(N)

G
F

LO
P

S
Matrix Multiplication Results

Ifort
ATLAS search−only
Harmony−CHiLL
ATLAS Full

Figure 7. Results for MM Kernel

problem sizes along with the performance of native
compiler, ATLAS’ search-only and full version. Our
code version performs, on average, 2.36 times faster
than the native compiler. The performance is 1.66
times faster than the search-only version of ATLAS.
Our code variant also performs within 20% of ATLAS’
full version (with processor-specific hand coded assem-
bly).

6.2 Triangular Solver (TRSM)

The optimization strategy for the TRSM kernel is
outlined in its transformation recipe provided in Table
1. Two inner loops are permuted to reuse B(I, J) in
registers, and loops I and J are unrolled. For data
reuse in cache, loop K is tiled first. The splitting con-
dition is based on the decision to separate read ac-
cess B(I, J) from write access B(K, J). After split-
ting, one subloop has non-overlapping read and write
accesses and it is optimized in the same way as matrix
multiplication. The other subloop has only one non-
overlapping read access A(I, K), for which data copy
is applied to reduce cache conflict misses caused by this
array reference.

Unbound parameters in the transformation recipe
TI , TJ , TK, UI1, UJ1, UI2 and UJ2 form a seven
dimensional parameter space. PRO-C used a 60-point
simplex and converged to a solution in 55 steps evalu-
ating 1,579 unique parameter configurations. Figure 8
shows the performance of the code variant along with
the performance of the Native compiler and both AT-
LAS versions. The parameter configuration selected by
PRO-C performs, on average, 3.62 times faster than

500 1000 1500 2000 2500 30000

0.5

1

1.5

2

2.5

3

3.5

4

Matrix Size(N)

G
F

LO
P

S

Triangular Solver Results

Ifort
ATLAS search−only
Harmony−CHiLL
ATLAS Full

Figure 8. Results for TRSM Kernel

0 50 100 150 200 250 300 350 400 450350

400

450

500

550

600

650

700

750

800

Matrix Size(N)

M
F

LO
P

S

Jacobi Results

Ifort
Harmony−CHiLL

Figure 9. Results for Jacobi Kernel

the native Intel compiler. The performance, on av-
erage, is 1.07 times faster than the search-only ver-
sion of ATLAS. However, ATLAS full-version (with
processor-specific hand-tuned assembly) performance
is 1.55 times faster than our code-variant.

6.3 Jacobi

The transformation recipe provided in Table 1 out-
lines the optimization strategy we use for this kernel.
Since only array B has reuse on three dimensions, the
loops are tiled on three dimensions for reuse in L1 or L2
cache. Arrays A and B access data in the loop nest in
the same order as the dimensionality of the iteration

space, thus the original loop order is best for spatial
reuse in cache and TLB. Finally loop J is unrolled for
register reuse. Four unbound parameters in the script
TI , TJ , TK and UI form a four-dimensional parame-
ter space.

PRO-C took 23 steps (870 unique function evalua-
tions) to converge to TI = 0, TJ = 22, TK = 0 and
UJ = 1. The results of TK = 0 and TI = 0 suggest
that no tiling is needed for K and I loops. Tiling only
the J loop produces the best performance. Also no un-
roll is performed. We suspect that the native compiler’s
scalar replacement cannot take advantage of available
register reuse across the I dimension so there is little
benefit of unrolling J . Figure 9 shows the performance
of our code variant. On average, our code variant per-
forms 1.35 times faster than the native Intel compiler.

7 Related Work

There are many research projects working on empir-
ical optimization of linear algebra kernels and domain
specific libraries. ATLAS [21] uses the technique to ge-
neate highly optimized BLAS routines. It uses a near-
exhaustive orthogonal search (search in one dimension
at a time by keeping rest of the parameters fixed). The
OSKI (Optimized Sparse Kernel Interface) [20] library
provides automatically tuned computational kernels for
sparse matrices. FFTW [9] and SPIRAL [22] are do-
main specific libraries. FFTW combines the static
models with empirical search to optimize FFTs. SPI-
RAL generates empirically tuned Digital Signal Pro-
cessing (DSP) libraries. Rather than focussing on one
particular domain, our framework aims at providing a
general-purpose compiler based approach tuning code.

Recently, many research projects on compiler trans-
formation frameworks have focussed on facilitating the
exploration of a large optimization space of possible
compiler transformations and their parameter values.
TLOG [13] is a code generator for parameterized tiled
loops where tile sizes are symbolic parameters. Sym-
bolic tile-size enables static or run-time tile size opti-
mization without repeatedly generating the code and
recompiling it for each tile size. POET [23] is a trans-
formation scripting language embedded in an arbitrary
programming language. It is interpreted by a POET
compiler to apply source-to-source code transforma-
tions. Interactive Compilation Interface (ICI) [10] pro-
vides a flexible and portable interface to internal com-
piler optimizations so that iterative optimization [1]
can be applied at the loop or instruction-level by ad-
justing optimization decisions externally. WRaP-IT
[11] and Petit [12] are both polyhedral loop transfor-
mation framework that supports composition of trans-

formations. They support many high-level loop trans-
formations on perfect loop nests in a single transfor-
mation step and by composing many low-level trans-
formations on each individual loop, they also support
arbitrary loop transformations on imperfect loop nests.
LeTSeE [17] is an iteration optimization tool based on
the polyhedral model. It finds all legal affine scheduling
of a loop nest and explores this space to find the best
scheduling and parameter values. Pluto [4] is an au-
tomatic parallelization and locality optimization tool
also based on the polyhedral model.

There is also some work done in using search tech-
niques to explore compiler generated parameter spaces.
Kisuki et al [14] addresses the problem of selecting
tile sizes and unroll factors simultaneously. Differ-
ent search algorithms are used to search the param-
eter space - Genetic algorithms, Simulated Annealing,
Pyramid search, Window search and Random search.
Qasem et al [18] use a modified version of pattern-based
direct search algorithm to explore the same search
space. Our work considers a much broader range of
loop transformations. Also Kisuki et al. report con-
verging to a solution in hundreds of iterations. By
effectively utilizing the underlying parallel infrastruc-
ture, we converge to solutions in a few tens of itera-
tions.

8 Conclusion

In this paper, we integrated the capabilities of Ac-
tive Harmony and CHiLL to create a unique and power-
ful framework that is capable of both fully automated
code transformation and parameter search as well as
user assisted transformation combined with automatic
parameter search. The resulting framework employs
a parallel search technique to simultaneously evalu-
ate different combinations of compiler optimizations.
Our system is demonstrated on three computational
kernels for automatic compilation and tuning in par-
allel to achieve performance that greatly exceeds the
Intel compiler, and is comparable to (and sometimes
exceeds) the near-exhaustive search of the ATLAS li-
brary system.

Our work on this topic is just beginning, in the near
term we plan to explore optimizing larger programs
within our framework. We also plan to combine our
current offline optimization approach with online opti-
mization of application parameters.

Acknowledgements. This work was supported
in part by DOE grants DE-CFC02-01ER25489, DE-
FG02-01ER25510, DE-FC02-06ER25763, DE-FC02-
06ER25765 and DE-FG02-08ER25834, by NSF awards
EIA-0080206 and CSR-0615412, and by a gift from In-

tel Corporation.

References

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke,
G. Fursin, M. F. P. O’Boyle, J. Thomson, M. Tous-
saint, and C. K. I. Williams. Using machine learn-
ing to focus iterative optimization. In Proceedings of
the International Symposium on Code Generation and
Optimization, Mar. 2004.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. J. ACM,
45(6):891–923, 1998.

[3] J. Bilmes, K. Asanović, C.-W. Chin, and J. Dem-
mel. Optimizing matrix multiply using PHiPAC: a
portable, high-performance, ANSI C coding method-
ology. In Proceedings of the 1997 ACM International
Conference on Supercomputing, June 1997.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral pro-
gram optimization system. In ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation (PLDI), June 2008.

[5] C. Chen. Model-Guided Empirical Optimization for
Memory Hierarchy. PhD thesis, University of South-
ern California, 2007.

[6] C. Chen, J. Chame, and M. Hall. CHiLL: A framework
for composing high-level loop transformations. Tech-
nical report, University of Southern California, 2008.

[7] C. Chen, J. Chame, and M. W. Hall. Combining mod-
els and guided empirical search to optimize for multi-
ple levels of the memory hierarchy. In Proceedings of
the International Symposium on Code Generation and
Optimization, Mar. 2005.

[8] I.-H. Chung and J. K. Hollingsworth. Using informa-
tion from prior runs to improve automated tuning sys-
tems. In SC ’04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, page 30, Washington,
DC, USA, 2004. IEEE Computer Society.

[9] M. Frigo. A fast Fourier transform compiler. In
Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, May
1999.

[10] G. Fursin and A. Cohen. Building a practical iter-
ative compiler. In Workshop on Statistical and Ma-
chine Learning Approaches to Architectures and Com-
pilation (SMART’09), Jan. 2007.

[11] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Par-
ello, M. Sigler, and O. Temam. Semi-automatic com-
position of loop transformations for deep parallelism
and memory hierarchies. International Journal of Par-
allel Programming, 34(3):261–317, June 2006.

[12] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeis-
man, and D. Wonnacott. The Omega Library inter-
face guide. Technical Report CS-TR-3445, University
of Maryland at College Park, Mar. 1995.

[13] D. Kim, L. Renganarayanan, D. Rostron, S. Rajopad-
hye, and M. M. Strout. Multi-level tiling: M for
the price of one. In SC ’07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, pages 1–
12, New York, NY, USA, 2007. ACM.

[14] T. Kisuki, P. M. W. Knijnenburg, and M. F. P.
O’Boyle. Combined selection of tile sizes and unroll
factors using iterative compilation. In PACT ’00: Pro-
ceedings of the 2000 International Conference on Par-
allel Architectures and Compilation Techniques, page
237, Washington, DC, USA, 2000. IEEE Computer
Society.

[15] D. M. Mount. http://www.cs.umd.edu/~mount/ANN/.
[last accessed: Feb 09, 2009].

[16] Y. Nelson, B. Bansal, M. Hall, A. Nakano, and K. Ler-
man. Model-guided performance tuning of param-
eter values: A case study with molecular dynam-
ics visualization. Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium
on, pages 1–8, April 2008.

[17] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos.
Iterative optimization in the polyhedral model: Part
II, multidimensional time. In ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation (PLDI’08), pages 90–100, Tucson, Arizona,
June 2008. ACM Press.

[18] A. Qasem, K. Kennedy, and J. Mellor-Crummey.
Automatic tuning of whole applications using direct
search and a performance-based transformation sys-
tem. J. Supercomput., 36(2):183–196, 2006.

[19] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth.
Parallel parameter tuning for applications with perfor-
mance variability. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 57,
Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[20] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski:
A library of automatically tuned sparse matrix ker-
nels. Journal of Physics: Conference Series, 16:521–
530, June 2005.

[21] R. C. Whaley and J. Dongarra. Automatically tuned
linear algebra software. In Proceedings of Supercom-
puting ’98, Nov. 1998.

[22] J. Xiong, J. Johnson, R. Johnson, and D. Padua.
SPL: A language and compiler for DSP algorithms.
In Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, June
2001.

[23] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quin-
lan. Poet: Parameterized optimizations for empirical
tuning. Parallel and Distributed Processing Sympo-
sium, 2007. IPDPS 2007. IEEE International, pages
1–8, March 2007.

[24] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua,
K. Pingali, and P. Stodghill. Is search really necessary
to generate high-performance BLAS? Proceedings of
the IEEE: Special Issue on Program Generation, Op-
timization, and Platform Adaptation, 93(2):358–386,
Feb. 2005.

