
EMPS: An Environment for Memory Performance Studies

Jeffrey K. Hollingsworth Allan Snavely Simone Sbaraglia, K Ekanadham
University of Maryland San Diego Super Computing Center IBM T.J. Watson Research Center

hollings@cs.umd.edu allans@sdsc.edu {sbaragli, eknath }@us.ibm.com

Abstract

This paper describes an overview of Environment
for Memory Performance Studies (EMPS). EMPS is a
framework to allow different data gathering and simula-
tion tools to be composed together to predict the per-
formance of parallel programs on a variety of current
and future High End Computing (HEC) systems. The
framework seeks to combine the automated nature of
direct execution simulation with the predictive capabili-
ties of performance modeling.

1. Introduction
The first-order goal of High End Computing (HEC)

systems is to provide enhanced time-to-solution for im-
portant scientific applications. By leveraging Moore’s
Law for the regular increase in processor speeds, recent
evolution has resulted in systems comprised of large
numbers of processors together capable of delivering
peak floating-point rates in the 100s of Teraflops range.
At the same time, technological limitations and eco-
nomic factors have caused the latency between proces-
sors and memories, as counted in processor cycles, to
steadily increase. In an attempt to ameliorate these in-
creasing latencies, memory hierarchies are getting
deeper—more levels of cache. In a parallel trend, in-
creased density of memory technology, as well as more
sophisticated busses and interconnects are being lever-
aged in memory hierarchies that are becoming wider—
memory subsystems are growing both in size and in the
number of processors that share them. As the complex-
ity of the data storage and data movement facilities of
machines increases there is a growing tension between
writing applications that have good communication per-
formance versus writing applications that have good
memory system performance.

Tuning the application for good performance in one
of these dimensions can be challenging, while finding
the performance sweet spot between the two can be
daunting. Likewise, it is not clear that architectural
choices, for example whether to spend more money and
effort to make the interconnect faster versus making the
memory subsystem bigger or faster, can be made today
with confidence since the application performance im-
pacts these choices. In light of the difficulty and impor-
tance of understanding such tradeoffs, this project is
focused on fundamental research, as well as innovative

development, in techniques for improving understanding
of the performance implications of deep and wide mem-
ory hierarchies. We are developing an integrated
framework to permit performance modeling of tradeoffs
such as the above.

1.1 Importance of performance modeling
The performance of an application is a function of

(at least) the implementation, the target architecture, the
compiler, the runtime system, the O/S, and the effect of
contention for shared resources. A performance model
is a calculable expression explaining and quantifying
why an application performs as it does on a machine.

A useful performance model is parameterized to al-
low for “what-if” investigations. As an example of a
“what-if” investigation, if a memory performance model
has architecture parameters one can then use it to predict
how cache hit-rates would change due to larger or more
associative cache. On the other hand, if a memory per-
formance model has application parameters, one can use
it to predict how cache hit-rates would change if a dif-
ferent cache-blocking factor were used in the applica-
tion. Performance models have historically been used to
improve architecture design, inform procurement, and
guide application tuning.

Unfortunately, the process of producing perform-
ance models has historically been very laborious and
requires large amounts of time and expertise. These
challenges have limited the number of HEC applications
that have been thoroughly performance modeled. Users
of unstudied applications and workloads (the majority),
have been somewhat disenfranchised with respect to
their ability to influence future architectures, to identify
the best machine for their application, and to carry out
guided tuning. In recent times it has been observed, due
to the difficulty of developing performance models for
new applications, as well as the increasing complexity
of new systems, that computers have become better at
predicting and explaining natural phenomena (such as
the weather) than at predicting and explaining the per-
formance of themselves or other computers!

2. Background
We have been working to make performance mod-

eling automated or at least semi-automated. Tools for
automated performance model extraction can relieve
model developers of much of the time-consuming work,
and even some of the expertise needed to produce pa-

rameterized performance models of applications. The
ideal tool set would allow a user to follow a recipe by
taking some measurements of an application, supplying
some information about a target machine (real or hypo-
thetical) and then conducting a rapid simulation to re-
veal factors affecting performance. Such a systematic
approach enables wider ranging studies of larger appli-
cations and more workloads with a resulting increase in
understanding of the computational demands of applica-
tions. We have been developing techniques to efficiently
store detailed memory traces, tools for extracting appli-
cation signatures that are machine-independent summa-
ries of the computational demands of applications, and
convolution methods that are time-tractable computa-
tions mapping the one to other in order to yield per-
formance predictions [2]. Along the way, substantial
evidence has been gathered showing that, due to trends
cited above, the interaction of an application with a ma-
chine’s memory subsystem is often one of the dominant
factors explaining its performance. Unfortunately, for
reasons described next, this is also often one of the
hardest and most time-consuming portions of a model to
construct, even when using an automated or semi-
automated process. Therefore there is a critical need for
research and development in this area.

3. EMPS
We are developing Environment for Memory Per-

formance Studies (EMPS). It contains components im-
plementing different functionality, which can interact to
assist the task of memory performance analysis. EMPS
is an extensible environment, one can conceive that each
functionality may have many different implementations,
which is indicated by showing multiple instances for
each box in Figure 1. In the subsequent sections we de-
scribe how the various components interact. In the fu-
ture, the investigators and other researchers and vendors
should be able to come up with new designs of boxes
with the same functionalities or new boxes with other
functionalities that may be added to the environment.
The environment presents many choices for designers of
applications and architectures, to experiment with vari-
ous techniques and analyze the resulting performance. A
designer can choose a path through selected boxes from
Figure 1 and drive them to examine the results at the
end. Thus, EMPS provides a highly flexible and exten-
sible environment for researchers and vendors to pro-
vide different tools and users to experiment with differ-
ent combinations of tools suitable for their pursuit.

In order for the EMPS environment to be flexible
and extensible, the interfaces (or the API) between the

Performance
Tools

(Dyninst)
(Sigma)

(MetaSim)

Simulator
(Sigma)

(MetaSim)

Program Models
(MetaSim Convolver)

Instrumenter
(Dyninst)
(Sigma)

Instrumenter
(Dyninst)
(Sigma)

Trace
Generator

(sigma)
(MetaSim)

Static
Analysis
(MetaSim)

Application
Signature

Architecture
Parameters

Simulator
(Sigma)

(MetaSim)

Program Models
(MetaSim Convolver)

Communication
& Memory

Trace

Application

Trace
Generator

(Sigma)
(MetaSim)

Static Info
API

Static
Analysis
(Dyninst)

(MetaSim)

Instrumentation
API

Trace Format
API

Architecture Info
API

Si
m

ul
at

or
 O

ut
pu

t
AP

I

M
od

el
 O

ut
pu

t
AP

I

Performance
Tools

(Dyninst)
(Sigma)

(MetaSim)

Performance
Tools

(Dyninst)
(Sigma)

(MetaSim)

Simulator
(Sigma)

(MetaSim)

Program Models
(MetaSim Convolver)

Instrumenter
(Dyninst)
(Sigma)

Instrumenter
(Dyninst)
(Sigma)

Instrumenter
(Dyninst)
(Sigma)

Instrumenter
(Dyninst)
(Sigma)

Trace
Generator

(sigma)
(MetaSim)

Static
Analysis
(MetaSim)

Application
Signature

Architecture
Parameters

Simulator
(Sigma)

(MetaSim)

Program Models
(MetaSim Convolver)

Communication
& Memory

Trace

Application

Trace
Generator

(Sigma)
(MetaSim)

Static Info
API

Static
Analysis
(Dyninst)

(MetaSim)

Instrumentation
API

Trace Format
API

Architecture Info
API

Si
m

ul
at

or
 O

ut
pu

t
AP

I

M
od

el
 O

ut
pu

t
AP

I

Performance
Tools

(Dyninst)
(Sigma)

(MetaSim)
Figure 1: Instantiation of EMPS with current implementations.

components must be well-defined and adhered to, so
that coupling of different components happens in a
smooth manner. Towards this goal, we are working to
define the APIs shown in Figure 1. Vendors should be
able to supply their implementations without revealing
proprietary details. Users must be able to couple the
components without need to understand the internal
details of the components. We next describe some of the
existing techniques that are being adapted to create
EMPS.

3.1 Dyninst
To address practical difficulties for gathering appli-

cation traces, Dyninst API [5], a portable interface for
acquiring performance data, has been developed. Dyn-
inst allows for dynamic instrumentation, de-
instrumentation, re-instrumentation of a running pro-
gram to obtain performance counter information, and
additional information including memory addresses
generated. Dyninst permits starting a long-running HEC
application normally, letting it run for a time, and then
attaching instrumentation instructions to its program
memory (the program now slows down due to instru-
mentation overhead) to observe and sample its perform-
ance behavior, then detach. When instrumentation is
disabled, the program returns to normal behavior and
speed. This process can be repeated at regular or dy-
namically determined intervals.

We plan to develop methods leveraging this tech-
nology to gain sufficient coverage of an application, and
sample enough information about factors affecting its
performance, to obtain usefully accurate application
signatures enabling accurate performance models with-
out slowing down the application too much. Section 3.4
provides some preliminary results on this effort. Also,
there is an opportunity to ameliorate the Heisenberg
effect by both perturbing the program less than would be
the case by full tracing, and by being able to iteratively
compare performance between instrumentation events to
that expected from data gathered during instrumentation
events, thus to infer the perturbation due to instrumenta-
tion.

In [34] we showed early evidence that this approach
could be useful for applications performance modeling.
We also uncovered many important open research ques-
tions with respect to the perturbation due to instrumenta-
tion, the effects and accuracy of sampling, and the
tradeoff between sampling interval and resulting signa-
ture fidelity.

3.2 Sigma
We have also been working to develop Sigma [11],

a software infrastructure to guide memory analysis.
Sigma was developed at IBM Research to meet internal
and customer demands for tools to assist in reasoning

about the performance implications of ever more com-
plex memory subsystems. The main goals of Sigma are:
1) provide feedback to programmers to identify bottle-
necks, problems, and inefficiencies in a program due to
mapping of data structures into the memory hierarchy,
2) provide suggestions for performance improvements,
3) predict performance on current and hypothetical sys-
tems, and 4) provide feedback on design of new archi-
tectures. As opposed to traditional control-centric per-
formance tools, Sigma has also a data-centric frame-
work, providing an environment to help users to identify
data structures and code segments that are causing poor
program performance, without requiring re-execution of
the application under analysis.

The Sigma environment consists of a pre-execution
tool that locates and instruments all instructions that
refer to memory locations, a runtime data collection
framework that performs a highly efficient lossless
compression of the stream of memory addresses gener-
ated by the binary instrumentation, and a family of
simulation and analysis tools that process the com-
pressed memory reference trace to provide programmers
with tuning information. The simulation and analysis
tools include a TLB simulator, a data cache simulator, a
data prefetcher simulator, and a query mechanism that
allows users to obtain performance metrics and memory
usage statistics.

This comprehensive simulation environment has
special emphasis on techniques for modeling memory
hierarchies and is accessible and customizable via APIs.
In order to simulate advanced features of emerging
shared-memory architectures, We are enhancing
Sigma’s capabilities to model event-ordering, false-
sharing and cache-to-cache transfers. Also, we are work-
ing to use Dyninst based trace sampling to improve the
time required to obtain a memory trace of large HEC
applications.

3.3 MetaSim
In order to be able to automatically extract models

of an application’s memory behavior and to map that to
an arbitrary memory hierarchy, MetaSim Tracer and
MetaSim Convolver [33] have been developed. The
MetaSim tracer is a tool built on top of Dyninst API. It
extracts performance information including memory
access patterns from each basic block of an instru-
mented program during a tracing run and saves a (small)
file summarizing that information. The MetaSim Con-
volver is a tool that takes as input a MetaSim trace file
and combines it with a machine profile that includes
information about a target machine’s memory hierarchy
(gathered, for machines that exist with the PMaC MAPS
benchmark [33], or generated synthetically or by simu-
lation for machines on the drawing board). By combin-
ing these two inputs the convolver generates a perform-

ance prediction. It thus functions as a statistical simula-
tor, combining statistics from applications and ma-
chines; it is much faster than cycle-accurate simulators;
but it is still potentially quite accurate. In [7 , 33, 34] we
showed substantial evidence that this approach can use-
fully predict the performance of a range of applications
across dimensions of input, processor count, and target
machines including for strong and weak scaling. We
also uncovered many important research questions with
respect to the machine independence of memory access
patterns, tradeoffs between signature compactness and
fidelity, performance similarity of signatures (do signa-
tures that look almost the same perform almost the
same?), as well as needed technological advances
needed to allow modeling of innovative memory tech-
nologies such as PIM (Processor in Memory) that are
beyond just incremental changes to today’s memory
hierarchies.

3.4 Trace Sampling
Another technique we have been investigating is the

idea of trace sampling to reduce the volume of memory
traces being generated. For many scientific applications
it is important to understand the memory system in great
detail, yet an analysis for a relatively few timesteps
might be sufficient to understand the overall applica-
tion’s performance. In [7] we showed early evidence
that the performance characteristics of several scientific
applications could be determined by 10% or even 1%
sampling of all dynamic memory references. We have
been working to develop several techniques that will
allow traces to be gathered for representative sub-
intervals of a program’s execution.

To allow trace sampling, we will use the Dyninst
system to enable and disable trace collection. Using
Dyninst it is possible to temporarily remove instrumen-
tation from a program. We plan to eventually make this
technique more flexible by adding extensions to Dyninst
to allow disabling instrumentation on a per-function
basis (currently instrumentation can only be enabled or
disabled globally). To provide some indication of the
data that was missed by disabling trace sampling, we
will leave a small amount of instrumentation enabled to
record such things as the number of timesteps that were
omitted from the trace.

Using Dyninst provides the mechanism for control-
ling trace generation. However, a critical question is
what policy will be used to decide when to turn trace
sampling on and off. Since timesteps are a natural unit
for work for many scientific programs, we use them as
an initial granularity of trace sampling. Although its
possible to identify timestep boundaries by looking at
the program alone, we currently have the application
programmer indicate either the name of a function that
is invoked for each timestep, or alternatively a file and

line number where the timestep starts. With this infor-
mation, we can insert instrumentation at that point in the
program to record the timestep boundaries.

4. Multi-processor Memory Hierarchies
One of the most difficult problems in developing

new parallel applications, particularly ones that use ir-
regular meshes or adaptive mesh refinement (AMR), is
to define an efficient domain decomposition;; the devel-
oper has to map the logical structure into the parallel
system topology. The parallelization has to deal with the
determination of sub-domains and their mapping to the
processors. Currently, the main techniques for domain
decomposition are based on distributing these sub-
domains such that the computation load is uniform and
the communication requirements during the parallel
computation are reduced. However, a distribution that
generates low communication requirements will not
necessarily have an efficient utilization of the memory
subsystem. Hence, it is important for programmers to
model and understand the dynamic relationship between
data access patterns and communication that will occur
during the execution of a program, but there are no
mechanisms that allow one to evaluate how different
data partitioning will behave with regards to communi-
cation and utilization of the memory subsystem.

The goal of this research thrust is to enable “what
if” investigations by varying parameters of machines
and/or applications. A particular focus is to be able to
model how demands of the interconnect, and demands
of the memory subsystem, vary as the data decomposi-
tion and problem size changes. This will enable tradeoff
analysis of, for example, using more processors to move
each processor’s working set up in the memory hierar-
chy, or fewer processors to reduce communications
overhead and will allow users to find the sweet spot for
this tradeoff. It will also enable architectural design
guided by demands of applications by, for example,
indicating whether communications technology or
memory subsystem technology is the bottleneck for a set
of modeled codes.

We are developing techniques for including multi-
processor effects in machine profiles. Today systems are
built with single chips that contain multiple processors
and multiple levels of caches around them. Since com-
munication delays play an increasingly dominant role in
the design, multiple paths are employed to transfer in-
formation between the caches and processors. This leads
to a new set of problems in the study and analysis of
memory hierarchies. Some of the specific issues we will
address: Data placement, Event-Ordering, and False-
Sharing.

4.1 Data Placement
We will carry out research to develop performance

measurement, analysis, and modeling infrastructure for
the understanding of the interaction between communi-
cation intensity and pressure on the memory subsystem,
such that one could evaluate the performance of a pro-
gram for different domain decompositions. Our simula-
tors will be extended to support parallel architectures,
(both distributed memory and shared memory systems),
and their most common program paradigms (MPI and
OpenMP, respectively). In addition, we will capture
communication related data, which will require research
to extend the trace compression mechanisms, as well as
the trace representation. By capturing data references
associated with parallel execution, the simulator can
predict the behavior of the program when elements are
redistributed. Hence one will be able to compare and
contrast the performance for different distributions, and
highlight how new access behavior is influenced by re-
distribution.

4.2 Event-Ordering
Most of the prior analysis of caches [12] has fo-

cused on uni-processor systems. While there are some
multi-processor performance studies [37], modeling
caches for them will necessarily involve modeling tim-
ing interactions between concurrent executions. For
instance, when two processors share a cache, a cache
model must be driven by a trace of spliced accesses
made by the two processors, where the splicing is de-
termined by the speeds of the two processors. Hence
generating individual traces of memory references made
by each processor is insufficient for this purpose and
capturing the timing interaction between the processors
is much harder as it might require detailed cycle-by-
cycle simulations. For practical performance studies,
one needs to come up with some simple approximation
strategies for studying this problem.

We will instrument parallel programs so that traces
are collected for each stream of instructions that can be
executed potentially concurrently with others. In addi-
tion we will capture the synchronization events executed
by these streams that determine their ordering at these
points. Using this information, one can model various
scenarios for splicing the streams.

4.3 False-Sharing
When two independent streams manipulate data that

happens to be mapped into a single cache line, conven-
tional cache protocols can cause a ping-pong effect,
known as false-sharing. When a processor executing one
stream updates its part of the cache line, the line is
evicted from the cache used by a second processor using
the other part of the cache line and the scenario is re-
versed when the second processor updates the line. For

instance Berger et al [3] report this to be a serious prob-
lem and proposes clever dynamic memory allocation
schemes that alleviate this problem. For statically allo-
cated data structures, one may resort to proper padding
to avoid placement of unrelated items that get mapped to
the same cache line. In order to identify such hot spots,
one needs to have mechanisms that detect false sharing
patterns.

The basic instrumentation will capture concurrent
streams and their corresponding memory traces, our
simulations can then highlight potential false-sharing
instances and relate them to source data structures so
that application designers can be alerted. By providing a
means to predict the cache miss behavior under selected
padding, one can also verify the fixes for the problem.
Our infrastructure will also permit performance predic-
tions under altered memory allocators. That is, we will
predict the cache miss behavior when a different mem-
ory segment is allocated for a dynamically allocated
data structure. Thus, it will be possible to identify when
different schemes would alleviate the false-sharing
problem.

5. Summarizing performance behaviors
We desire compact representations of the resource

demands of applications to specify exactly what an ap-
plication will ask a given machine (existing or hypo-
thetical) to do on its behalf. We call such representations
application signatures. Note that the source code of an
application could be considered a high-level description,
or application signature, of its resource demands. How-
ever, depending on the language it may not be very
compact (Matlab is compact, Fortran is not compact)
while determining the resources demands of the applica-
tion from the source code may not be very easy; in fact
this could require actually compiling the code and run-
ning it (or simulating it if the machine does not exist).
Hence we need cheaper, faster, more flexible ways to
obtain representations suitable for performance model-
ing investigations. A minimal goal is to fold the results
of several compilation, execution, performance data
analysis cycles into a signature so these step do not have
to be repeated each time a new performance question is
asked.

A dynamic instruction trace, including a record of
each memory address accessed, such as can be acquired
with our Dyninst based tools Sigma and MetaSim could
also be considered an (very detailed) application signa-
ture. But it is not compact (address traces alone can run
to Gigabytes for even short running applications) and it
is not machine independent. We described some ap-
proaches to reducing the size of raw traces in the previ-
ous section.

The basic approach to acquiring application signa-
tures is to conduct series of experiments where pro-

grams are traced with the techniques from the previous
section, and the traces are further analyzed by pattern
detection. Recurring sequences of messages and
loads/stores are represented by patterns. Important se-
quences of patterns are detected and expressed as signa-
tures. Infrequent paths through the program are ignored.
Patterns that map to insignificant performance contribu-
tions are dropped. As a very simple example, the per-
formance behavior of CG, the Conjugate Gradient
benchmark from the NAS Parallel Benchmarks, with
source code of more than 1000 lines, can be represented
from a performance standpoint by one random memory
access pattern. This is because 99% of execution is
spent in the following loop:

do k=rowstr(j),rowstr(j+1)-1
 sum = sum + a(k)*p(colidx(k))

 enddo

This loop has two floating-point operations, two stride-1
memory access patterns, and one random memory ac-
cess pattern (the indirect index of p). On almost all of
today’s deep memory hierarchy machines the perform-
ance cost of the random memory access pattern domi-
nates the other patterns and the floating-point work.
Practically, to predict the performance of CG on a ma-
chine all that required is the size of the problem (which
part of the memory hierarchy it fits in) and the rate at
which the machine can do random loads from that level
of the memory. Thus a random memory access pattern
succinctly represents the most important demand that
CG puts on any machine.

We are working to extract just the important per-
formance features of codes, and to make these as suc-
cinct and machine independent as possible to enable
efficient modeling. This approach will deal with the
complexities that arise with full applications that spend
a significant amount of time in more than one loop or
function. For example, in many applications, one pattern
does not dominate a given loop and patterns must be
combined and weighted. Also, simple addition might not
be the right combining operator for patterns because the
machine can overlap different types of work (say mem-
ory accesses and communications). Also, our framework
needs to consider the impact of different compiler or
different flags that result in better code (so trace results
are not machine independent).

6. Related Work
Execution-driven simulators [16, 36] were first de-

veloped for MIPS processors. Subsequently, Torrellas
et.al., [35] extended MINT to collect timing characteris-
tics of Intel processors, which was ported to PowerPC
processors (Augment6k) by Giampapa [13]. All these
simulators were concerned with timing characteristics of

program segments. They trapped memory access in-
structions and transferred control to a backend that can
simulate desired memory architecture. Non-memory
access instructions were run on the native processors
and efficient techniques of estimating their timing were
incorporated.

There have been some tools that access hardware
performance counters. For Intel platforms, Vtune[17] is
available. PAPI [4]provides a multi-platform interface to
access hardware counters. However, these approaches
only provide counters of data or sampling among code
regions. In contrast, our work provides detailed informa-
tion about individual memory references, and the actual
memory addresses being accessed.

Other systems have taken advantage of the flexibil-
ity provided by the hardware to add instrumentation of
datacentric caches. ATUM [1] uses the ability to change
the microcode in some processors to collect memory
reference information. The FlashPoint [22] system used
the fact that the Stanford FLASH multiprocessor [19]
implements its coherence protocols in software, allow-
ing instrumentation to be added at this level. Buck and
Hollingsworth [6] proposed using interrupt on overflow
to sample the addresses of data cache misses, but this
approach does not provide the level of detail provided
by EMPS. Also, our work is designed to allow “what-
if” questions that can not be answered by using direct
measurement alone.

Mtool [14] provides information about the amount
of performance lost due to the memory hierarchy, but
only relates this information back to program source
lines, not to data structures. A system with more similar-
ity to the techniques in this proposal is MemSpy [21],
which provides data-oriented information as well as
code-oriented. StormWatch [8] is another system that
allows a user to study memory system interaction. It is
used for visualizing memory system protocols under
Tempest [28], a library that provides software shared
memory and message passing. However, the goal of
StormWatch is to study how to adapt a memory system
protocol to suit the application, rather than how to
change the application to match the memory system.
Because of this, the information provided is also differ-
ent. This information includes what protocol events are
taking place, what code is causing them, and how they
are related.

The SimPoint project [27] provides tools for pick-
ing simulation points so that the performance of a full
program can be extrapolated from some sample-
simulated intervals. Haskins and Skadron [15] devel-
oped fast-forwarding and check pointing to enable in-
cremental simulation of full applications over time.
Lafage and Seznec [20] give methods for automatically
finding where to simulate for reasonably approximate
program verisimilitude. Statistical sampling approaches

are explored by Conte et.al [9]. Statistical simulation
whereby program traces are generated to represent the
behavior of whole programs via much compressed syn-
thetic representation is reported in Nussbaum and Smith
[26]. No one of these systems by themselves provide the
full capabilities of EMPS.

In pioneering modeling work Saavedra [29-31] pro-
posed to model applications as a collection of independ-
ent Abstract Fortran Machine tasks. These simple mod-
els worked well on the simpler processors and shallower
memory-hierarchies of the mid 90’s.

For parallel system predictions Mendes [24, 25] has
proposed to record the explicit communications among
nodes and to build a directed graph based on the trace.
Then sub-graph isomorphism is used to study trace sta-
bility and to transform the trace for different machine
specifications. Simon [32] proposed to use the Concur-
rent Task Graph to model applications.

Crovella and LeBlanc [10] proposed complete, or-
thogonal and meaningful methods to classify all the pos-
sible overheads in parallel computation environments
and to predict the algorithm performance based on over-
head analysis. Xu, Zhang and Sun [38] proposed a semi-
empirical multiprocessor performance prediction
scheme. Their general ideas for performance prediction
from partial measurements of orthogonal properties
have influenced our work.

The performance-modeling group at LANL has de-
veloped highly successful models for predicting applica-
tion and machine performance [18, 23]. However, their
techniques require extensive paper and pencil analysis to
derive models.

7. Conclusions
In this paper we have described our goals and early
work on a system call EMPS that provides a plug and
play simulation environment for studying memory hier-
archies on High End Computing systems.

Acknowledgements
This work was supported in part by NSF awards CNS-
0406336 and CNS-0406312.

References

1. A. Agrawal, R. L. Sites, and M. Horowitz, "ATUM: A

New Technique for Capturing Address Traces Using Mi-
crocode," Proceedings of the 13th Annual International
Symposium on Computer Architecture. June 1986, pp. 119
-127.

2. D. Bailey, "Performance Evaluation Research Cen-
ter,".http://perc.nersc.gov/.

3. E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson, "Hoard: A Scalable Memory Allocator for Multi-
threaded Applications," International Conference on Ar-
chitectural Support for Programming Languages and Op-

erating Systems (ASPLOS-IX). November 2000, pp. 117-
128.

4. S. Browne, J. Dongarra, N. Garner, K. London, and P.
Mucci, "A Scalable Cross-Platform Infrastructure for Ap-
plication Performance Tuning Using Hardware Counters,"
Proc. SC'2000. November 2000, Dallas, TX.

5. B. Buck and J. K. Hollingsworth, "An API for Runtime
Code Patching," Journal of Supercomputing Applications,
14(4), 2000, pp. 317-329.

6. B. Buck and J. K. Hollingsworth, "Using Hardware Per-
formance Counters to Isolate Memory Bottelenecks,"
SC'2000. Nov. 2000, Dallas, TX, IEEE.

7. L. Carrington, A. Snavely, X. Gao, and N. Wolter, "A
Performance Prediction Framework for Scientific Applica-
tions," ICCS Workshop on Performance Modeling and
Analysis (PMA03). June 2003, Melbourne.

8. T. M. Chilimbi, T. Ball, S. G. Eick, and J. R. Larus,
"StormWatch: A Tool for Visualizing Memory System
Protocols," Proceedings of Supercomputing '95. December
1995, San Diego, CA.

9. T. M. Conte, M.A.Hirsch, and K.N.Menezes, "Reducing
state loss for effective trace sampling of superscalar proc-
essors," 1996 International Conference on Computer De-
sign (ICCD). October 1996.

10. M. E. Crovella and T. J. LeBlanc, "Parallel Performance
Prediction Using Lost Cycles," Proceedings of Supercom-
puting '94. Nov. 14-18, 1994, Washington, DC, IEEE
Press, pp. 600-609.

11. L. DeRose, K. Ekanadham, J. K. Hollingsworth, and S.
Sbaraglia, "SIGMA: A Simulator to Guide Memory
Analysis," SC'2002. Nov. 2002, Baltimore.

12. J. Edler and M. Hill, "Dinero-IV Trace-driven Uniproces-
sor Cache Simula-
tor,".http://www.cs.wisc.edu/~markhill/DineroIV.

13. M. Giampapa, Augmint6k: The Augmint multiprocessor
simulation toolkit for IBM PowerPC architecture, IBM In-
ternal Report.

14. A. J. Goldberg and J. L. Hennessy, "Performance Debug-
ging Shared Memory Multiprocessor Programs with
MTOOL," Supercomputing'91. Nov. 18-22, 1991, Albu-
querque, NM, pp. 481-490.

15. J. Haskins and K.Skadron, "Minimal subset evaluation:
Rapid warm-up for simulated hardware state," Interna-
tional Conference on Computer Design. September 2001.

16. S. Herrod, Tango lite: A multiprocessor simulation envi-
ronment”, Stanford University.

17. Intel Corporation, "VTune Performance Analyzer,".http:
//developer.intel.com/software/products/vtune/index.htm.

18. D. J. Kerbyson, A. Hoisie, and H. J. Wasserman, "A Com-
parison Between the Earth Simulator and AlphaServer
Systems using Predictive Application Performance Mod-
els," in Proc. Int. Parallel and Distributed Processing
Symposium (IPDPS). April 2003, Nice.

19. J. Kuskin, et al., "The Stanford FLASH Multiprocessor,"
21st International Symposium on Computer Architecture.
April 1994, Chicago, IL, pp. 302-313.

20. T. Lafage and A.Seznec, Choosing representative slices of
program execution for microarchitecture simulations: a
preliminary application to the data stream, in Workload
Characterization of Emerging Applications. 2000, Kluwer
Academic Publishers.

21. M. Martonosi, A. Gupta, and T. Anderson, "MemSpy:
Analyzing Memory System Bottlenecks in Programs,"
1992 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems. June 1-5, 1992, Newport,
Rhode Island, pp. 1-12.

22. M. Martonosi, D. Ofelt, and M. Heinrich, "Integrating
Performance Monitoring and Communication in Parallel
Computers," ACM SIGMETRICS Conference on Meas-
urement and Modeling of Computer Systems. May 1996,
Philadelphia, PA.

23. M. Mathis, D. J. Kerbyson, and A. Hoisie, "A Perform-
ance Model of non-Deterministic Particle Transport on
Large-Scale Systems," in Proc. of Int. Conf. on Computa-
tional Science (ICCS). June 2003, Melbourne, Australia,
Springer Verlag, vol.part 3, Vol. 2659, pp. 905-915.

24. C. L. Mendes and D. A. Reed, "Integrated Compilation
and Scalability Analysis for Parallel Systems," IEEE
PACT. 1998.

25. C. L. Mendes and D. A. Reed, "Performance Stability and
Prediction," IEEE / USP International Workshop on High
Performance Computing. 1994.

26. S. Nussbaum and J. E.Smith, "Modeling superscalar proc-
essors via statistical simulation," International Conference
on Parallel Architectures and Compilation Techniques.
September 2001.

27. E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sher-
wood, and B. Calder, "Using SimPoint for accurate and ef-
ficient simulation," ACM SIGMETRICS Performance
Evaluation Review, 31(1), 2003.

28. S. K. Reinhardt, J. R. Larus, and D. A. Wood, "Typhoon
and Tempest: User-Level Shared Memory," Proceedings
of the ACM/IEEE International Symposium on Computer
Architecture. April 1994.

29. R. H. Saavedra and A. J. Smith, "Analysis of Benchmark
Characteristics and Benchmark Performance Prediction,"

ACM Transactions on Computer Systems, 14(4), 1996, pp.
344-384.

30. R. H. Saavedra and A. J. Smith, "Measuring Cache and
TLB Performance and Their Effect on Benchmark Run
Times," IEEE Transactions on Computers, 44(10), 1995,
pp. 1223-1235.

31. R. H. Saavedra and A. J. Smith, "Performance Characteri-
zation of Optimizing compilers," IEEE Transactions on
Software Engineering, 21(7), 1995, pp. 615-628.

32. J. Simon and J.-M. Wierun, "Accurate Performance Pre-
diction for Massively Parallel Systems and its Applica-
tions," Euro-Par. 1996, vol.Vol II, pp. pp675-688.

33. A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia,
and A. Purkayastha, "A Framework for Application Per-
formance Modeling and Prediction," SC2002. November
2002, Baltimore.

34. A. Snavely, X. Gao, C. Lee, N. Wolter, J. Labarta, J. Gi-
menez, and P. Jones, "Performance Modeling of HPC Ap-
plications," ParCo. October 2003, Dresden.

35. J. Torrellas, M. Lam, and J. Hennessy, "False Sharing and
Spatial Locality in Multiprocessor Caches," In IEEE
Trans. on Computers, 1994, pp. 651-663.

36. J. Veenstra and R. Fowler, "MINT: A Front End for Effi-
cient Simulation of Shared-Memory Multiprocessors”."
Proceedings of the Second International Workshop on
Modeling, Analysis and Simulation of Computer and Tele-
communication Systems (MASCOTS '94). January--
February 1994, Durham, NC, pp. 201-207.

37. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
"The SPLASH-2 Programs: Characterization and Meth-
odological Considerations," Proceedings of the 22nd An-
nual International Symposium on Computer Architecture.
1995, pp. 24-37.

38. Z. Xu, X. Zhang, and L. S. Semi, "Empirical Multiproces-
sor Performance Predictions," Journal of Parallel and Dis-
tributed Computing, 39, 1996, pp. 14-28.

