
EMPS: An Environment for Memory Performance Studies 
 

Jeffrey K. Hollingsworth Allan Snavely Simone Sbaraglia, K Ekanadham 
University of Maryland San Diego Super Computing Center IBM T.J. Watson Research Center 

hollings@cs.umd.edu allans@sdsc.edu {sbaragli, eknath }@us.ibm.com 
 

 
Abstract 

This paper describes an overview of Environment 
for Memory Performance Studies (EMPS).  EMPS is a 
framework to allow different data gathering and simula-
tion tools to be composed together to predict the per-
formance of parallel programs on a variety of current 
and future High End Computing (HEC) systems.  The 
framework seeks to combine the automated nature of 
direct execution simulation with the predictive capabili-
ties of performance modeling. 

 

1. Introduction 
The first-order goal of High End Computing (HEC) 

systems is to provide enhanced time-to-solution for im-
portant scientific applications. By leveraging Moore’s 
Law for the regular increase in processor speeds, recent 
evolution has resulted in systems comprised of large 
numbers of processors together capable of delivering 
peak floating-point rates in the 100s of Teraflops range. 
At the same time, technological limitations and eco-
nomic factors have caused the latency between proces-
sors and memories, as counted in processor cycles, to 
steadily increase. In an attempt to ameliorate these in-
creasing latencies, memory hierarchies are getting 
deeper—more levels of cache. In a parallel trend, in-
creased density of memory technology, as well as more 
sophisticated busses and interconnects are being lever-
aged in memory hierarchies that are becoming wider—
memory subsystems are growing both in size and in the 
number of processors that share them. As the complex-
ity of the data storage and data movement facilities of 
machines increases there is a growing tension between 
writing applications that have good communication per-
formance versus writing applications that have good 
memory system performance.  

Tuning the application for good performance in one 
of these dimensions can be challenging, while finding 
the performance sweet spot between the two can be 
daunting. Likewise, it is not clear that architectural 
choices, for example whether to spend more money and 
effort to make the interconnect faster versus making the 
memory subsystem bigger or faster, can be made today 
with confidence since the application performance im-
pacts these choices. In light of the difficulty and impor-
tance of understanding such tradeoffs, this project is 
focused on fundamental research, as well as innovative 

development, in techniques for improving understanding 
of the performance implications of deep and wide mem-
ory hierarchies. We are developing an integrated 
framework to permit performance modeling of tradeoffs 
such as the above. 

1.1 Importance of performance modeling 
The performance of an application is a function of 

(at least) the implementation, the target architecture, the 
compiler, the runtime system, the O/S, and the effect of 
contention for shared resources.  A performance model 
is a calculable expression explaining and quantifying 
why an application performs as it does on a machine. 

A useful performance model is parameterized to al-
low for “what-if” investigations. As an example of a 
“what-if” investigation, if a memory performance model 
has architecture parameters one can then use it to predict 
how cache hit-rates would change due to larger or more 
associative cache. On the other hand, if a memory per-
formance model has application parameters, one can use 
it to predict how cache hit-rates would change if a dif-
ferent cache-blocking factor were used in the applica-
tion. Performance models have historically been used to 
improve architecture design, inform procurement, and 
guide application tuning.  

Unfortunately, the process of producing perform-
ance models has historically been very laborious and 
requires large amounts of time and expertise. These 
challenges have limited the number of HEC applications 
that have been thoroughly performance modeled. Users 
of unstudied applications and workloads (the majority), 
have been somewhat disenfranchised with respect to 
their ability to influence future architectures, to identify 
the best machine for their application, and to carry out 
guided tuning. In recent times it has been observed, due 
to the difficulty of developing performance models for 
new applications, as well as the increasing complexity 
of new systems, that computers have become better at 
predicting and explaining natural phenomena (such as 
the weather) than at predicting and explaining the per-
formance of themselves or other computers! 

2. Background 
We have been working to make performance mod-

eling automated or at least semi-automated. Tools for 
automated performance model extraction can relieve 
model developers of much of the time-consuming work, 
and even some of the expertise needed to produce pa-



 

 

rameterized performance models of applications. The 
ideal tool set would allow a user to follow a recipe by 
taking some measurements of an application, supplying 
some information about a target machine (real or hypo-
thetical) and then conducting a rapid simulation to re-
veal factors affecting performance. Such a systematic 
approach enables wider ranging studies of larger appli-
cations and more workloads with a resulting increase in 
understanding of the computational demands of applica-
tions. We have been developing techniques to efficiently 
store detailed memory traces, tools for extracting appli-
cation signatures that are machine-independent summa-
ries of the computational demands of applications, and 
convolution methods that are time-tractable computa-
tions mapping the one to other in order to yield per-
formance predictions [2]. Along the way, substantial 
evidence has been gathered showing that, due to trends 
cited above, the interaction of an application with a ma-
chine’s memory subsystem is often one of the dominant 
factors explaining its performance. Unfortunately, for 
reasons described next, this is also often one of the 
hardest and most time-consuming portions of a model to 
construct, even when using an automated or semi-
automated process. Therefore there is a critical need for 
research and development in this area.  

3. EMPS 
We are developing Environment for Memory Per-

formance Studies (EMPS). It contains components im-
plementing different functionality, which can interact to 
assist the task of memory performance analysis. EMPS 
is an extensible environment, one can conceive that each 
functionality may have many different implementations, 
which is indicated by showing multiple instances for 
each box in Figure 1. In the subsequent sections we de-
scribe how the various components interact. In the fu-
ture, the investigators and other researchers and vendors 
should be able to come up with new designs of boxes 
with the same functionalities or new boxes with other 
functionalities that may be added to the environment. 
The environment presents many choices for designers of 
applications and architectures, to experiment with vari-
ous techniques and analyze the resulting performance. A 
designer can choose a path through selected boxes from 
Figure 1 and drive them to examine the results at the 
end. Thus, EMPS provides a highly flexible and exten-
sible environment for researchers and vendors to pro-
vide different tools and users to experiment with differ-
ent combinations of tools suitable for their pursuit. 

In order for the EMPS environment to be flexible 
and extensible, the interfaces (or the API) between the 
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Figure 1: Instantiation of EMPS with current implementations. 



 

 

components must be well-defined and adhered to, so 
that coupling of different components happens in a 
smooth manner. Towards this goal, we are working to 
define the APIs shown in Figure 1. Vendors should be 
able to supply their implementations without revealing 
proprietary details. Users must be able to couple the 
components without need to understand the internal 
details of the components. We next describe some of the 
existing techniques that are being adapted to create 
EMPS. 

3.1 Dyninst 
To address practical difficulties for gathering appli-

cation traces, Dyninst API [5], a portable interface for 
acquiring performance data, has been developed. Dyn-
inst allows for dynamic instrumentation, de-
instrumentation, re-instrumentation of a running pro-
gram to obtain performance counter information, and 
additional information including memory addresses 
generated. Dyninst permits starting a long-running HEC 
application normally, letting it run for a time, and then 
attaching instrumentation instructions to its program 
memory (the program now slows down due to instru-
mentation overhead) to observe and sample its perform-
ance behavior, then detach. When instrumentation is 
disabled, the program returns to normal behavior and 
speed. This process can be repeated at regular or dy-
namically determined intervals.  

We plan to develop methods leveraging this tech-
nology to gain sufficient coverage of an application, and 
sample enough information about factors affecting its 
performance, to obtain usefully accurate application 
signatures enabling accurate performance models with-
out slowing down the application too much. Section 3.4 
provides some preliminary results on this effort. Also, 
there is an opportunity to ameliorate the Heisenberg 
effect by both perturbing the program less than would be 
the case by full tracing, and by being able to iteratively 
compare performance between instrumentation events to 
that expected from data gathered during instrumentation 
events, thus to infer the perturbation due to instrumenta-
tion.   

In [34] we showed early evidence that this approach 
could be useful for applications performance modeling. 
We also uncovered many important open research ques-
tions with respect to the perturbation due to instrumenta-
tion, the effects and accuracy of sampling, and the 
tradeoff between sampling interval and resulting signa-
ture fidelity.  

3.2 Sigma 
We have also been working to develop Sigma [11], 

a software infrastructure to guide memory analysis. 
Sigma was developed at IBM Research to meet internal 
and customer demands for tools to assist in reasoning 

about the performance implications of ever more com-
plex memory subsystems. The main goals of Sigma are: 
1) provide feedback to programmers to identify bottle-
necks, problems, and inefficiencies in a program due to 
mapping of data structures into the memory hierarchy, 
2) provide suggestions for performance improvements, 
3) predict performance on current and hypothetical sys-
tems, and 4) provide feedback on design of new archi-
tectures. As opposed to traditional control-centric per-
formance tools, Sigma has also a data-centric frame-
work, providing an environment to help users to identify 
data structures and code segments that are causing poor 
program performance, without requiring re-execution of 
the application under analysis.  

The Sigma environment consists of a pre-execution 
tool that locates and instruments all instructions that 
refer to memory locations, a runtime data collection 
framework that performs a highly efficient lossless 
compression of the stream of memory addresses gener-
ated by the binary instrumentation, and a family of 
simulation and analysis tools that process the com-
pressed memory reference trace to provide programmers 
with tuning information.  The simulation and analysis 
tools include a TLB simulator, a data cache simulator, a 
data prefetcher simulator, and a query mechanism that 
allows users to obtain performance metrics and memory 
usage statistics.  

This comprehensive simulation environment has 
special emphasis on techniques for modeling memory 
hierarchies and is accessible and customizable via APIs.  
In order to simulate advanced features of emerging 
shared-memory architectures, We are enhancing 
Sigma’s capabilities to model event-ordering, false-
sharing and cache-to-cache transfers. Also, we are work-
ing to use Dyninst based trace sampling to improve the 
time required to obtain a memory trace of large HEC 
applications.  

3.3 MetaSim 
In order to be able to automatically extract models 

of an application’s memory behavior and to map that to 
an arbitrary memory hierarchy, MetaSim Tracer and 
MetaSim Convolver [33] have been developed. The 
MetaSim tracer is a tool built on top of Dyninst API. It 
extracts performance information including memory 
access patterns from each basic block of an instru-
mented program during a tracing run and saves a (small) 
file summarizing that information.  The MetaSim Con-
volver is a tool that takes as input a MetaSim trace file 
and combines it with a machine profile that includes 
information about a target machine’s memory hierarchy 
(gathered, for machines that exist with the PMaC MAPS 
benchmark [33], or generated synthetically or by simu-
lation for machines on the drawing board). By combin-
ing these two inputs the convolver generates a perform-



 

 

ance prediction. It thus functions as a statistical simula-
tor, combining statistics from applications and ma-
chines; it is much faster than cycle-accurate simulators; 
but it is still potentially quite accurate. In [7 , 33, 34] we 
showed substantial evidence that this approach can use-
fully predict the performance of a range of applications 
across dimensions of input, processor count, and target 
machines including for strong and weak scaling. We 
also uncovered many important research questions with 
respect to the machine independence of memory access 
patterns, tradeoffs between signature compactness and 
fidelity, performance similarity of signatures (do signa-
tures that look almost the same perform almost the 
same?), as well as needed technological advances 
needed to allow modeling of innovative memory tech-
nologies such as PIM (Processor in Memory) that are 
beyond just incremental changes to today’s memory 
hierarchies. 

3.4 Trace Sampling 
Another technique we have been investigating is the 

idea of trace sampling to reduce the volume of memory 
traces being generated. For many scientific applications 
it is important to understand the memory system in great 
detail, yet an analysis for a relatively few timesteps 
might be sufficient to understand the overall applica-
tion’s performance. In [7] we showed early evidence 
that the performance characteristics of several scientific 
applications could be determined by 10% or even 1% 
sampling of all dynamic memory references. We have 
been working to develop several techniques that will 
allow traces to be gathered for representative sub-
intervals of a program’s execution. 

To allow trace sampling, we will use the Dyninst 
system to enable and disable trace collection. Using 
Dyninst it is possible to temporarily remove instrumen-
tation from a program. We plan to eventually make this 
technique more flexible by adding extensions to Dyninst 
to allow disabling instrumentation on a per-function 
basis (currently instrumentation can only be enabled or 
disabled globally). To provide some indication of the 
data that was missed by disabling trace sampling, we 
will leave a small amount of instrumentation enabled to 
record such things as the number of timesteps that were 
omitted from the trace. 

Using Dyninst provides the mechanism for control-
ling trace generation. However, a critical question is 
what policy will be used to decide when to turn trace 
sampling on and off.  Since timesteps are a natural unit 
for work for many scientific programs, we use them as 
an initial granularity of trace sampling.  Although its 
possible to identify timestep boundaries by looking at 
the program alone, we currently have the application 
programmer indicate either the name of a function that 
is invoked for each timestep, or alternatively a file and 

line number where the timestep starts. With this infor-
mation, we can insert instrumentation at that point in the 
program to record the timestep boundaries. 

4. Multi-processor Memory Hierarchies 
One of the most difficult problems in developing 

new parallel applications, particularly ones that use ir-
regular meshes or adaptive mesh refinement (AMR), is 
to define an efficient domain decomposition;; the devel-
oper has to map the logical structure into the parallel 
system topology. The parallelization has to deal with the 
determination of sub-domains and their mapping to the 
processors. Currently, the main techniques for domain 
decomposition are based on distributing these sub-
domains such that the computation load is uniform and 
the communication requirements during the parallel 
computation are reduced. However, a distribution that 
generates low communication requirements will not 
necessarily have an efficient utilization of the memory 
subsystem. Hence, it is important for programmers to 
model and understand the dynamic relationship between 
data access patterns and communication that will occur 
during the execution of a program, but there are no 
mechanisms that allow one to evaluate how different 
data partitioning will behave with regards to communi-
cation and utilization of the memory subsystem. 

The goal of this research thrust is to enable “what 
if” investigations by varying parameters of machines 
and/or applications. A particular focus is to be able to 
model how demands of the interconnect, and demands 
of the memory subsystem, vary as the data decomposi-
tion and problem size changes.  This will enable tradeoff 
analysis of, for example, using more processors to move 
each processor’s working set up in the memory hierar-
chy, or fewer processors to reduce communications 
overhead and will allow users to find the sweet spot for 
this tradeoff. It will also enable architectural design 
guided by demands of applications by, for example, 
indicating whether communications technology or 
memory subsystem technology is the bottleneck for a set 
of modeled codes. 

We are developing techniques for including multi-
processor effects in machine profiles. Today systems are 
built with single chips that contain multiple processors 
and multiple levels of caches around them. Since com-
munication delays play an increasingly dominant role in 
the design, multiple paths are employed to transfer in-
formation between the caches and processors. This leads 
to a new set of problems in the study and analysis of 
memory hierarchies. Some of the specific issues we will 
address: Data placement, Event-Ordering, and False-
Sharing. 



 

 

4.1 Data Placement 
We will carry out research to develop performance 

measurement, analysis, and modeling infrastructure for 
the understanding of the interaction between communi-
cation intensity and pressure on the memory subsystem, 
such that one could evaluate the performance of a pro-
gram for different domain decompositions. Our simula-
tors will be extended to support parallel architectures, 
(both distributed memory and shared memory systems), 
and their most common program paradigms (MPI and 
OpenMP, respectively). In addition, we will capture 
communication related data, which will require research 
to extend the trace compression mechanisms, as well as 
the trace representation. By capturing data references 
associated with parallel execution, the simulator can 
predict the behavior of the program when elements are 
redistributed. Hence one will be able to compare and 
contrast the performance for different distributions, and 
highlight how new access behavior is influenced by re-
distribution. 

4.2 Event-Ordering 
Most of the prior analysis of caches [12] has fo-

cused on uni-processor systems. While there are some 
multi-processor performance studies [37], modeling 
caches for them will necessarily involve modeling tim-
ing interactions between concurrent executions. For 
instance, when two processors share a cache, a cache 
model must be driven by a trace of spliced accesses 
made by the two processors, where the splicing is de-
termined by the speeds of the two processors. Hence 
generating individual traces of memory references made 
by each processor is insufficient for this purpose and 
capturing the timing interaction between the processors 
is much harder as it might require detailed cycle-by-
cycle simulations. For practical performance studies, 
one needs to come up with some simple approximation 
strategies for studying this problem. 

We will instrument parallel programs so that traces 
are collected for each stream of instructions that can be 
executed potentially concurrently with others. In addi-
tion we will capture the synchronization events executed 
by these streams that determine their ordering at these 
points. Using this information, one can model various 
scenarios for splicing the streams. 

4.3 False-Sharing 
When two independent streams manipulate data that 

happens to be mapped into a single cache line, conven-
tional cache protocols can cause a ping-pong effect, 
known as false-sharing. When a processor executing one 
stream updates its part of the cache line, the line is 
evicted from the cache used by a second processor using 
the other part of the cache line and the scenario is re-
versed when the second processor updates the line. For 

instance Berger et al [3] report this to be a serious prob-
lem and proposes clever dynamic memory allocation 
schemes that alleviate this problem. For statically allo-
cated data structures, one may resort to proper padding 
to avoid placement of unrelated items that get mapped to 
the same cache line. In order to identify such hot spots, 
one needs to have mechanisms that detect false sharing 
patterns. 

The basic instrumentation will capture concurrent 
streams and their corresponding memory traces, our 
simulations can then highlight potential false-sharing 
instances and relate them to source data structures so 
that application designers can be alerted. By providing a 
means to predict the cache miss behavior under selected 
padding, one can also verify the fixes for the problem. 
Our infrastructure will also permit performance predic-
tions under altered memory allocators. That is, we will 
predict the cache miss behavior when a different mem-
ory segment is allocated for a dynamically allocated 
data structure. Thus, it will be possible to identify when 
different schemes would alleviate the false-sharing 
problem.  

5. Summarizing performance behaviors 
We desire compact representations of the resource 

demands of applications to specify exactly what an ap-
plication will ask a given machine (existing or hypo-
thetical) to do on its behalf. We call such representations 
application signatures. Note that the source code of an 
application could be considered a high-level description, 
or application signature, of its resource demands.  How-
ever, depending on the language it may not be very 
compact (Matlab is compact, Fortran is not compact) 
while determining the resources demands of the applica-
tion from the source code may not be very easy; in fact 
this could require actually compiling the code and run-
ning it (or simulating it if the machine does not exist). 
Hence we need cheaper, faster, more flexible ways to 
obtain representations suitable for performance model-
ing investigations. A minimal goal is to fold the results 
of several compilation, execution, performance data 
analysis cycles into a signature so these step do not have 
to be repeated each time a new performance question is 
asked. 

A dynamic instruction trace, including a record of 
each memory address accessed, such as can be acquired 
with our Dyninst based tools Sigma and MetaSim could 
also be considered an (very detailed) application signa-
ture. But it is not compact (address traces alone can run 
to Gigabytes for even short running applications) and it 
is not machine independent.  We described some ap-
proaches to reducing the size of raw traces in the previ-
ous section. 

The basic approach to acquiring application signa-
tures is to conduct series of experiments where pro-



 

 

grams are traced with the techniques from the previous 
section, and the traces are further analyzed by pattern 
detection. Recurring sequences of messages and 
loads/stores are represented by patterns. Important se-
quences of patterns are detected and expressed as signa-
tures. Infrequent paths through the program are ignored. 
Patterns that map to insignificant performance contribu-
tions are dropped. As a very simple example, the per-
formance behavior of CG, the Conjugate Gradient 
benchmark from the NAS Parallel Benchmarks, with 
source code of more than 1000 lines, can be represented 
from a performance standpoint by one random memory 
access pattern. This is because 99% of execution is 
spent in the following loop: 
 

do k=rowstr(j),rowstr(j+1)-1 
               sum = sum + a(k)*p(colidx(k)) 

       enddo 
 
This loop has two floating-point operations, two stride-1 
memory access patterns, and one random memory ac-
cess pattern (the indirect index of p).  On almost all of 
today’s deep memory hierarchy machines the perform-
ance cost of the random memory access pattern domi-
nates the other patterns and the floating-point work. 
Practically, to predict the performance of CG on a ma-
chine all that required is the size of the problem (which 
part of the memory hierarchy it fits in) and the rate at 
which the machine can do random loads from that level 
of the memory. Thus a random memory access pattern 
succinctly represents the most important demand that 
CG puts on any machine. 

We are working to extract just the important per-
formance features of codes, and to make these as suc-
cinct and machine independent as possible to enable 
efficient modeling. This approach will deal with the 
complexities that arise with full applications that spend 
a significant amount of time in more than one loop or 
function. For example, in many applications, one pattern 
does not dominate a given loop and patterns must be 
combined and weighted. Also, simple addition might not 
be the right combining operator for patterns because the 
machine can overlap different types of work (say mem-
ory accesses and communications). Also, our framework 
needs to consider the impact of different compiler or 
different flags that result in better code (so trace results 
are not machine independent).  

6. Related Work 
Execution-driven simulators [16, 36] were first de-

veloped for MIPS processors. Subsequently, Torrellas 
et.al., [35] extended MINT to collect timing characteris-
tics of Intel processors, which was ported to PowerPC 
processors (Augment6k) by Giampapa [13]. All these 
simulators were concerned with timing characteristics of 

program segments. They trapped memory access in-
structions and transferred control to a backend that can 
simulate desired memory architecture. Non-memory 
access instructions were run on the native processors 
and efficient techniques of estimating their timing were 
incorporated. 

There have been some tools that access hardware 
performance counters. For Intel platforms, Vtune[17] is 
available. PAPI [4]provides a multi-platform interface to 
access hardware counters. However, these approaches 
only provide counters of data or sampling among code 
regions. In contrast, our work provides detailed informa-
tion about individual memory references, and the actual 
memory addresses being accessed. 

Other systems have taken advantage of the flexibil-
ity provided by the hardware to add instrumentation of 
datacentric caches. ATUM [1] uses the ability to change 
the microcode in some processors to collect memory 
reference information. The FlashPoint [22] system used 
the fact that the Stanford FLASH multiprocessor [19] 
implements its coherence protocols in software, allow-
ing instrumentation to be added at this level. Buck and 
Hollingsworth [6] proposed using interrupt on overflow 
to sample the addresses of data cache misses, but this 
approach does not provide the level of detail provided 
by EMPS.  Also, our work is designed to allow “what-
if” questions that can not be answered by using direct 
measurement alone.  

Mtool [14] provides information about the amount 
of performance lost due to the memory hierarchy, but 
only relates this information back to program source 
lines, not to data structures. A system with more similar-
ity to the techniques in this proposal is MemSpy [21], 
which provides data-oriented information as well as 
code-oriented. StormWatch [8] is another system that 
allows a user to study memory system interaction. It is 
used for visualizing memory system protocols under 
Tempest [28], a library that provides software shared 
memory and message passing. However, the goal of 
StormWatch is to study how to adapt a memory system 
protocol to suit the application, rather than how to 
change the application to match the memory system. 
Because of this, the information provided is also differ-
ent. This information includes what protocol events are 
taking place, what code is causing them, and how they 
are related. 

The SimPoint project [27] provides tools for pick-
ing simulation points so that the performance of a full 
program can be extrapolated from some sample-
simulated intervals. Haskins and Skadron [15] devel-
oped fast-forwarding and check pointing to enable in-
cremental simulation of full applications over time.  
Lafage and Seznec [20] give methods for automatically 
finding where to simulate for reasonably approximate 
program verisimilitude. Statistical sampling approaches 



 

 

are explored by Conte et.al [9]. Statistical simulation 
whereby program traces are generated to represent the 
behavior of whole programs via much compressed syn-
thetic representation is reported in Nussbaum and Smith 
[26]. No one of these systems by themselves provide the 
full capabilities of EMPS. 

In pioneering modeling work Saavedra [29-31] pro-
posed to model applications as a collection of independ-
ent Abstract Fortran Machine tasks.  These simple mod-
els worked well on the simpler processors and shallower 
memory-hierarchies of the mid 90’s.   

For parallel system predictions Mendes [24, 25] has 
proposed to record the explicit communications among 
nodes and to build a directed graph based on the trace. 
Then sub-graph isomorphism is used to study trace sta-
bility and to transform the trace for different machine 
specifications. Simon [32] proposed to use the Concur-
rent Task Graph to model applications.  

Crovella and LeBlanc [10] proposed complete, or-
thogonal and meaningful methods to classify all the pos-
sible overheads in parallel computation environments 
and to predict the algorithm performance based on over-
head analysis. Xu, Zhang and Sun [38] proposed a semi-
empirical multiprocessor performance prediction 
scheme. Their general ideas for performance prediction 
from partial measurements of orthogonal properties 
have influenced our work. 

The performance-modeling group at LANL has de-
veloped highly successful models for predicting applica-
tion and machine performance [18, 23]. However, their 
techniques require extensive paper and pencil analysis to 
derive models. 

7. Conclusions 
In this paper we have described our goals and early 
work on a system call EMPS that provides a plug and 
play simulation environment for studying memory hier-
archies on High End Computing systems. 
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