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Abstract

We present a design tool for automated synthesis of em-
bedded systems on distributed COTS-based platforms. Our
synthesis tool consists of (1) a graphical user interface for
input of software layouts, which maps tasks to resources
and (2) a constraints solving engine, which allocates local
resources to tasks, all with the goal of meeting speci�ed
performance criteria. Our tool di�ers from previous work in
that it allows (a) use of stochastic (rather than worst-case)
models of resource usage and (b) resource sharing among
components. Our approach uses analytical approximate so-
lutions for quick estimates of the desired performance mea-
sures. These estimates permit an e�cient search of the pos-
sible design space. Once candidate designs are determined,
they are validated through a simulation model. We demon-
strate the e�ciency and robustness of this tool on a synthetic
aperture radar benchmark.

1 Introduction

Real-time embedded systems are characterized by their end-
to-end real-time constraints, throughput requirements, as
well as the characteristics of external inputs and functional
components. In this paper, we focus on design of embed-
ded systems that are dominated by throughput and latency
requirements, e.g., digital signal processing systems, rather
than control-type embedded systems where reactive behav-
ior is dominant. Within the class of such embedded sys-
tems, we assume the following in our design synthesis. The
system's processing requirements are speci�ed as data-ow
graphs with producer-consumer relationships. Furthermore,
high throughput requirements, typical of such systems, (e.g.,
on the order of 109 FLOPS to 1012 FLOPS, or more), neces-
sitate the use of multiple processing units. Consequently, we
consider distributed designs, where the use of COTS (Com-
mercial O�-The Shelf) processors and software tasks results
in cost-e�ective systems. Resource sharing through multi-
tasking is desirable not only due to cost considerations but
also due to the resulting exibility that allows system re-
con�guration, for instance, after hardware failures. Thus,
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low-cost NOWs (networks of workstations) are good candi-
dates for building such real-time embedded systems. Lastly,
we note that satisfaction of end-to-end latency constraints is
of great importance, for at least a sub-class of these systems.

Traditional real-time system design approaches are rigid
and tend to under-utilize system resources while often re-
sulting in costly systems. They assume no data loss is al-
lowed, i.e., the design must ensure that input samples are
processed at least at the speci�ed input sample rate. Conse-
quently, traditional designs are built using dedicated and of-
ten special hardware and software components under worst-
case execution time assumptions. Hence a resource is fully
dedicated to one speci�c function.

In such a traditional approach, the design problem can be
summarized as follows: (1) placement of tasks on resources,
i.e., aggregation and decomposition of functional compo-
nents to �t resource capacities; (2) estimation of worst-case

execution times, where achievement of tight execution time
bounds is virtually impossible due to hardware e�ects such
as caching; and (3) scheduling of tasks on each processor
to maximize throughput, where the performance of the re-
sulting design is evaluated through simulation or through
measurements of the actual system. The custom task place-
ment approach results in inexible design procedures, where
a slight change in requirements might invalidate the entire
placement. The absence of analytical performance evalua-
tion techniques results in extremely long and ine�cient de-
sign cycles.

In contrast, our approach supports a more exible and
cost-e�ective design via automatic synthesis. The hard-
ware/software interaction is captured through design pa-
rameters. As a result, our design methodology is minimally
platform-dependent and can be used to design a COTS-
based system. The main di�erences between our approach
and traditional design methods are as follows (these are sum-
marized in Figure 1).

First, stochastic (rather than worst-case) resource us-
age is considered, where each task's resource requirements
are expressed statistically, in terms of a discrete Probability
Distribution Function (PDF) to characterize the resource re-
quirements for one execution instance of that task. Second,
resource sharing is allowed among tasks via multi-threading
using proportional resource schedulers. Third, our approach
supports two distinct design requirements: (1) deterministic
throughput guarantees with soft latency guarantees, where
our analytical models are used to estimate average end-to-
end latency; and (2) stochastic throughput guarantee with
�rm latency guarantees, where our analytical models are
used to estimate average end-to-end throughput. Fourth,
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the choice of candidate task placements is left to the de-
signer, and thus the scheduling problem is reduced to �nding
load assignments for tasks.

The design process includes evaluation of and compari-
son among several software layouts, or threads-to-resource
mappings, on several hardware platforms. The end-to-end
constraint satisfaction of the resulting designs is automat-
ically veri�ed through the use of stochastic analysis tech-
niques which estimate the feasibility of a potential design.
Candidate feasible solutions are then validated through de-
tailed simulations. Backup designs are included as a provi-
sion for hardware failures.

This paper presents a general outline of our embedded
distributed systems design methodology, and focuses on the
CAD tool which implements this methodology. A good
design methodology and the corresponding synthesis tool
should be: (1) scalable to large systems; (2) exible, such
that small changes in design requirements do not necessi-
tate complete re-design of the entire system; (3) platform-
independent, where the properties of the underlying hard-
ware are parameterized in the design; and (4) fast and rea-
sonably accuratewhen evaluating feasibility of candidate de-
signs | this suggests the use of analytical techniques to help
prune possible designs to a few \good" candidates. We be-
lieve our tool exhibits all these features, and in the rest of the
paper we explain how our tool works via a running example
of designing a synthetic aperture radar system.

2 Related Work

In our previous work, we proposed a semi-automatic end-
to-end design scheme for hard real-time uniprocessor sys-
tems [7, 8]. We relaxed the precondition that service in-
tervals and deadline parameters are always known before
design time. Rather we derived each task's constraints |
service interval, o�set, and deadline | automatically from
the system's end-to-end delay requirements. Our scheme
was extended in the design of hard real-time distributed sys-
tems [18], where the authors partitioned end-to-end delay
requirements statically via heuristics, to compute the local
delay bounds.

Although our run-time system model assumes a soft real-
time model from the viewpoint of end-to-end behavior, we
rely on traditional hard real-time uniprocessor scheduling
theory at each resource [3, 9, 15, 16]. Much of such schedul-
ing theory work predicts load thresholds under which tasks,
running on the same resource, are guaranteed to meet their
deadlines. These load thresholds are used in our tool as up-
per limits on the amount of resource sharing allowed among
tasks on a particular resource (see Section 3 for details).

For the analytic latency estimations, used by the con-
straints solving engine (see Figure 3), we rely on a form
of proportional resource sharing. Time Division Multiplex-
ing (TDM) may be the simplest form of proportional re-
source sharing. Even though TDM is not as fair as other
recently proposed proportional resource share service disci-
plines, such as the \Virtual Clock Method" [21], \Fair-Share
Queuing" [4], \Generalized Processor Sharing(GPS)" [1, 17],
and \Rate Controlled Static Priority Queuing" (or RCSP)
[20], it guarantees a minimum amount of a resource to a
task, within a service interval. Also TDM-based schedulers
and drivers are fairly easy to implement, using credit/debit
token-bucket schemes. Using the more recent proportional
resource share techniques may reduce end-to-end latency,
but at the cost of additional complexity of the analysis (and
possibly implementation).

Our work on distributed real-time system design [12, 13,
14] provides the theoretical basis for our design tool. In
[14, 13] we present a technique for designing distributed
systems with statistical real-time performance constraints,
under di�erent software layouts as well as di�erent perfor-
mance metrics.

Throughout this paper, we use the RASSP SAR bench-
mark as a running example for our design scheme. (Due
to lack of space, we omit full details of case study of the
SAR benchmark using our design approach; they are given
in [12].) The RASSP SAR (Synthetic Aperture Radar) was
posed as a \challenge" signal-processing problem for COTS-
based development. In the realm of advanced radars, the
SAR's throughput is quite modest | 1:1 GFLOPS for pro-
cessing three polarizations, at the highest input pulse fre-
quency. However, SAR is a good candidate to illustrate the
features of our tool since its computation ow is well de-
�ned, and it has a real-time end-to-end latency limit of 3
seconds. Moreover, its computational needs can be scaled
by changing resolution and throughput parameters. The
major phases of the RASP SAR are:

� Video to Baseband I/Q Conversion stage: A pulse's
samples are converted and �ltered from video format
to in-phase and quadrature(IQ) bands, represented in-
ternally by complex numbers.

� Range Compression: Range compression consists of
three steps. First, an equalization �lter (EQ) nor-
malizes the data for range processing. Then a dis-
crete Fourier transform (the RDFT phase) converts
the data to the frequency scale. The result is run
through another �lter (the RCS phase), to compen-
sate for cross-section variations produced by the DFT.

� Corner Turn: The corner turn(CT) is an all-to-all
communication step, and thus a bottleneck in most
adaptive radars. The RCS phase produces 2048 range
coe�cients for each of the 512 pulses in a frame, but
before the pulse compression stage can start it requires
all 512 readings for that range. Hence, the corner-
turn's job is to accumulate the 512x2048 matrix, and
then send the columns to the pulse compression stage.

� Pulse Compression: In this radar, 2 sequential frames
form a processing array of size 2048 � 1024, where
columns correspond to pulses, and rows correspond to
range gates. The actual pulse compression phase con-
sists of three steps: (1) a discrete Fourier transform
(denoted ADFT); (2) a convolution (denotedKM, for
\Kernel Multiplication"); and an inverse Fourier trans-
form (denoted AIDFT, for Inverse Discrete Fourier
Transform).

Although SAR is composed of multiple channels, we present
our examples using a single channel, for ease of illustra-
tion. (An example of a one channel design is depicted in
Figure 2(a)).

Hundreds of books have been written on radar systems;
however relatively little has been written about deploying
high-performance radars on clusters of general-purpose com-
puters [22, 2, 5, 11]. To our knowledge, no work prior to ours
has been done on using stochastic performance models for
the purpose of system synthesis.1 Finally, a variety of real-
time systems tools are surveyed in [10]; however, most tools

1Note that some results in this area are classi�ed as military secrets
- and hence not published.
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Aspect Traditional Approach Our Approach

Multi-Threading Not Used Available

Resource Sharing Not Allowed Allowed

Modeling of Deterministic Stochastic

Resource Usage Worst-Case Exec. Time Discrete PDF

Performance Simulation or Analytical Approximations
Estimation Build and Measure validated via Simulation

Local Resource Trial and Error Using Automatic using
Tuning Measurement or Analytical Techniques

Simulation validated via Simulation

Hardware Assumed Special Purpose COTS

Fault-Tolerance
Method Hardware Redundancy Software Redundancy

using Excess Capacity
Recovery Hardware Replacement Task Relocation
Performance Model Live or Die Gradual Degradation

Figure 1: Di�erences between Traditional and Our Approach
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Figure 2: A layout of one channel of the SAR benchnark (a), and recon�guration for failure of \R3" (b).

tend to be for veri�cation and analysis rather than design
synthesis. Existing software synthesis tools [19] tend to be
for control-type reactive systems. A prototyping and simu-
lation environment for real-time systems is described in [6].

3 Tool Description

The architecture of our tool, illustrated in Figure 3, consists
of the following components: \Interactive Graph Editor",
\Constraints Parser", \Load Threshold Estimator", \Sim-
ulator", and \Slack Distributor". The \Interactive Graph
Editor" is used by the designer to specify (a) software lay-
outs, i.e., to input thread-to-resource mapping information,
and (b) PDFs of task execution times. The \Constraints
Parser" interprets the constraints �le which speci�es design
and system constraints.

The \Load Threshold Estimator" analyzes designs to
estimate satisfaction of end-to-end design constraints and
tunes local resources until these constraints are satis�ed (or
it is determined that this is infeasible). The theories be-
hind the \Load Threshold Estimator" is presented in detail
in [13]. The \Simulator" is used to validate candidate de-
signs produced by the \Load Threshold Estimator".

The \Slack Distributor" distributes the resource slack
available in the resulting design, either to increase through-
put or to provide backup designs in the event of hardware
failure. More speci�cally, when a resource fails, we achieve
fault-tolerance by using the \Slack Distributor" to redis-
tribute tasks assigned to the faulty resource to other re-
sources in the system. Given the new mapping, if su�cient
resource slack is available to \absorb" the tasks from the
failed component, then the system still satis�es the original
design constraints. Otherwise, the recon�gured thread-to-
resource mappings are passed to the \Load Threshold Esti-
mator" which determines a new, possibly degraded design.

Lastly, the arrows in Figure 3 depict ow of control and
data. The solid lines denote forward ow while the dashed
lines denote back-tracking, which occurs when a candidate
solution is determined not to satisfy the design constraints.

3.1 Tool Inputs/Outputs

The tool inputs include \Software Layout", \Thread to Re-
source Mapping Information", \Design Constraints", \Sys-
tem Constraints", \Design Factors", \Per-Component Pa-
rameters" (such as PDFs of execution times). As outputs,
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Figure 3: The structure of the Tool

the tool produces \Estimated Throughput", \Load Share"
of each task, \Service Interval" of each channel. Since all
inputs are parameterized, from the user's point of view, de-
sign changes are as easy as editing a text �le or modify-
ing/redrawing ow graphs using the graphical user inter-
face.

Design constraints include real-time and performance con-
straints. Real-time constraints de�ne an upper bound on the
amount of time it should take a computation to ow through
a channel which we term delay constraints of a channel2 .
For instance refer to MD[Y1|X1] in Figure 4. Performance
constraints also include throughput or output rate.

Figure 4: A constraints �le for the input to the tool

System constraints include a set of resources, where a
given resource corresponds to either a CPU or a network
link. Associated with each resource i is a maximum allow-
able capacity, �Max

i , which corresponds to the maximum
load that resource can multiplex e�ectively3 . The parame-
ter �Max

i is typically a function of the resource's scheduling
policy (as in the case of a workstation) or its switching and
arbitration policies (as in the case of a LAN). In the exam-
ples in this paper, we set �Max

i of all resources to 0:95 for
ease of illustration.

2Recall that we allow speci�cation of either (a) soft real-time con-
straints, in which case this corresponds to no dropping of data or (b)
hard real-time constraints, in which case this corresponds to allowing
dropping of data (see Section 1.

3In the constraints �le depicted in Figure 4, �Max

i
is replaced with

Rho[i] due to the limitations of the text editor.

Design factors are parameters that a system designer can
specify for performance or for ease of design and implemen-
tation considerations. For instance, inputs can be aggre-
gated or partitioned for better performance. In the case
of the SAR benchmark, data is divided into frames, which
consist of 512 pulses. To exploit spatial and temporal par-
allelism, a SAR frame is usually divided into smaller sub-
frames for processing. The number of sub-frames per frame
a�ects the possible degree of spatial parallelism. Thus, a
designer can specify input characteristics in terms of sub-
frames.

3.1.1 Resource Mapping Information

The assignment of tasks to resources, and the ow of in-
formation between resources is expressed using ow graphs.
Figure 5(a) shows the overall view of a layout drawn by our
tool. Rectangles denote CPUs and network connections,
and arrows denote data ow between CPUs and network
connections. Figure 5(b) shows the view when we magnify
the CPU denoted by \R2" in Figure 5(a). In this view, tasks
are shown as circles, and small ellipses are used to represent
connections to other resources. There are 4 tasks in \R2".
For example, task Teq1 1 has input from resource \N1", and
sends its output to resource \N2".

3.1.2 Per-Component parameters

To synthesize the overall design, the tool requires informa-
tion about the runtime behavior of each task. This infor-
mation is supplied to the tool via a discrete PDF, which
characterizes the time needed for one execution instance of
a task on a resource. These PDFs can either be supplied by
the designer based on the expected performance, or can be
measured from actual executions of tasks. By using pro�le-
based measurements, our tool captures the stochastic varia-
tions in task execution times due to hardware features such
as caches and operating system features such as device in-
terrupts.

Figure 6(a) shows the tool window through which a de-
signer can bind a PDF to a task. The PDF can be syn-
thesized from normal, exponential, or Erlang distributions
with minimum and maximum range values, or for pro�le
based data, a text �le describing an arbitrary discrete PDF
can be used. With the \NumStep" parameter shown in Fig-
ure 6(a), a designer can set the granularity of a discrete time
PDF. For example, in Figure 6 the PDF of task Tkm1(1) is
synthesized from the exponential distribution with a mean
of 23 ms, which ranges from 20 ms to 35 ms. The PDF is
discretized into 15 discrete intervals. Figure 6(b) shows the
PDF of task Tkm1(1) synthesized from user-given parameters
for the task in the Figure 6(a).

3.2 Run-Time System Model

In order to solve for the desired output parameters, the tool
requires a few simple properties from the runtime system
that will execute the target application.

First, disjoint subgraphs of the task graph, called chan-

nels, are treated independently while designing the whole
system. We can make this assumption since there are no ex-
plicit data or control dependencies between channels. Each
channel is composed of one or more task chains. A task
chain is a feed-forward pipeline of tasks, where each task
has only one predecessor, and one successor. In Figure 2(a),
a single channel's ow graph with 4 chains is shown.
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(a) Top level view of the example design (b) Detailed view of `R2'

Figure 5: A layout using Graphical User Interface of the tool

Second, we assume either unlimited bu�er space or one
slot of bu�er space available between a pair of communicat-
ing tasks. The bu�ering policy is speci�ed as an input to
the tool. Unlimited bu�er models imply that there should
be no data loss in the middle of the channel, while one slot
bu�er space models imply that only the most recent input
is used for processing.

Third, all tasks in a channel (l) are considered to be
scheduled in a quasi-cyclic fashion, using time-division mul-
tiplexing for resource sharing, over Il-sized intervals. That
is, load-shares of all tasks in the channel are guaranteed
for Il-sized interval on all constituent resources. A task �'s
runtime behavior can be described as follows:

(1) Within every Il-sized interval, a task � can use up to
u of its resource's capacity. This is policed by assigning �
an execution-time budget E = bu � Ilc; that is, E is an up-
per bound on the amount of resource time provided within
each Il-sized interval, truncated to discrete units. (We as-
sume that the system cannot keep track of arbitrarily �ne

granularities of time.) � is actually given as
E

Il
proportion

of a resource, which we call e�ective load of � at the service
interval Il.

(2) A particular execution instance of � may require mul-
tiple intervals to complete, with E of its running time ex-
pended in each interval.

(3) A new instance of � will be started within an interval
if no previous instance of � is still running, and there is a
fresh input at the start of the interval.

A proportional resource scheduler guarantees a minimum
load share of a task, and helps isolate one task's demand
for the resource from another. Therefore, even when multi-
ple tasks share a resource, their execution time distribution
can be independently adjusted with added context switching
overhead as the only shared e�ect.

3.3 Load Threshold Estimator

The heart of the automated synthesis tool presented in this
paper is the Load Threshold Estimator. This component of
the tool assigns scheduler parameters to each task to sat-

isfy the end-to-end constraints supplied by the user. This
process needs to solve three inter-related sub-problems:

1. Target Throughput Settings. Given a set of chan-
nels and load allocations, determine the minimum tar-
get throughput for the channel.

2. Load Assignments. Given a set of channels, and
target throughput, assign a share of each CPU and
network segment for each tasks so that all constraints
are met.

3. Interval Assignments. Given a load-assignment to
the tasks in the channel, and the target throughput,
compute an optimal interval for the channel, such that
the e�ective latency is minimized.

Since each channel may be serviced at di�erent interval
sizes, interval-assignment is strictly an \intra-channel" is-
sue. However, tasks in di�erent channels but on the same
resource compete for shared resources, and thus load share is
an \inter-channel" problem. We now describe each of these
sub-problems in more detail.

Target Throughput Settings. To �nd a load assign-
ment for a target throughput range, our tool starts at the
lowest allowable throughput. If a feasible solution is not
found at the lowest target throughput, the design is deemed
infeasible4 . When a feasible load allocation is found, the
target throughput is increased. At the new target through-
put, the same load assignment procedure is repeated. This
procedure repeats until either a feasible load allocation is
found at the highest target throughput or when no feasible
solution is found at a particular throughput level.

Load Assignments. Load-assignment works by iteratively
re�ning the load vectors of channels, until a feasible solution
is found. The entire algorithm terminates when the latency
for all channels meet their performance requirements | or
when it is discovered that no solution is possible.

4Since our search procedure does no backtrack, some heavily con-
strained problems may be declared infeasible when there might exist
a feasible solution.

91



(a) (b)

Figure 6: (a) PDF binding window (b) Synthesized discrete time PDF.

Load-assignment is task-based, i.e., it is driven by as-
signing additional load to the task estimated to need it the
most using heuristics. After additional load is given to the
selected task, the channel's new interval-size and latency are
determined; if it meets its maximum latency requirements
at the highest target throughput, it can be removed from
further consideration.

Interval Assignment. Several non-linear constraints com-
plicate the problem of interval-assignment: First, the true,
usable load for a task � with service interval Il is given by
bu � Ilc=Il, due to the fact that the system cannot multi-
plex load at arbitrarily �ne granularities of time. Second,
in our latency analysis, we assume that a task �nishes only
at the end of the service interval, which errs on the side of
conservatism. Third, the utilization factor of task �, may
vary with the service interval.

End-to-End Latency Estimation. An integral part of
our \Load Threshold Estimator" is approximation of end-
to-end latency at a given candidate load and service interval
parameters. Since the search space of load threshold esti-
mation is huge, fast analytical approximations are necessary.
Here we outline the basic technique. Although the details of
the analysis technique vary as system models change (e.g.,
in�nite vs. single slot bu�er models), the role of analytic
solutions remains the same. A detailed description of our
latency analysis estimation method for both in�nite bu�er
and a single slot bu�er can be found in [12, 14]. We go about
constructing the analytical solution in a compositional (al-
beit approximate) manner, using the following techniques:

Decomposition into Chains: We �rst decompose a chan-
nel into its constituent chains, by simply traversing the ow-
graph between all fork/join points. In analyzing each chain,
we abstract it as being independent of all others. For in-
stance, the graph in Figure 2(a) can be decomposed into 4
chains.

Per-Chain Analysis: For each chain, we generate an ap-
proximate latency distribution in a compositional manner,
by processing each task locally, and using the results for its
successors. A simple embedded Markov chain analysis is

used to estimate the waiting time of data in the bu�er. In
this fashion, we generate an approximate latency distribu-
tion for each chain from the head task to the tail task of the
chain.

Synchronization Analysis: At a synchronization point,
partial results from separate chains are combined. For ex-
ample, in our SAR example, a frame is composed from sub-
frames. The latency of a whole frame is estimated from
those of joining chains while setting the per-frame latency
distribution to reect that of the largest chain feeding into
the synchronization point.

The end-to-end latency of a frame is estimated from the
head chain(s) of a channel to the tail chain(s) of the chan-
nel. The latency distribution of an input frame to a chain
is approximated from the latency distribution(s) of an out-
put frame of its predecessor chain(s) using Synchronization
Analysis. The latency distribution of a frame at the tail
chain(s) is(are) the end-to-end latency distribution(s).

3.4 Validation through Simulation.

Since our latency analysis uses some key simplifying approx-
imations, we validate the resulting solution via a simulation
system that is an integral part of our tool. In particular,
there may be many data-dependent correlations between
the response-times, and they are ignored when computing
the approximate solution. However, the simulation model
keeps track of all data owing throughout the channels, as
well as the \true" states they induce on their participating
tasks. Also, the simulation clock advances at every opera-
tion (rather than at the end of intervals); hence, if a task
ends in the middle of an interval, it gets placed in the succes-
sor's input bu�er at that time. Finally, the simulation model
schedules resources using a modi�ed deadline-monotonic dis-
patcher (where a deadline is considered to be the end of an
interval), so more urgent tasks will get to run earlier than
the analytical method assumes.

On the other hand, the simulator does inherit some other
simpli�cations used in our analytical model. For example,
inputs are assumed to be read at the start of an interval.
As in the analysis, OS overhead is not considered, but is
instead captured by the PDF's of each task.
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3.5 Slack Distribution

Slack can be used either for fault-tolerance or to increase
the performance of existing tasks. In this section, we focus
on slack distribution for fault-tolerance.

Fault-tolerance is achieved by (1) distributing resource
slack to the tasks which are relocated due to resource fail-
ures (2) adjusting load allocation of the tasks which are in
the same channel as the relocated tasks. When a resource
has slack larger than the sum of the load thresholds of the
tasks relocated to it (or when the system would not be over-
loaded even after activating those relocated tasks), all tasks
are given their load thresholds. If this occurs on all system
resources, the system's performance is not a�ected by the
failure, however the system-wide slack is reduced. Other-
wise, slack distribution may not be su�cient to sustain the
pre-failure level of performance. In this case, increasing the
load of other tasks in the same channel may improve the
performance of the channel. To contain the e�ect of a fault
to a�ected channels only, we de�ne the following rules for
adjusting the load of other tasks:
rule 1: To isolate the fault's e�ect to the channels a�ected,
loads associated with channels una�ected by the fault are
not changed. This is necessary to prevent the e�ect of the
fault from propagating to other channels.
rule 2: In a resource overloaded due to relocated tasks, the
loads of those tasks which are in the channel(s) a�ected by
the fault, are reduced. This spreads the e�ect of the fault
evenly throughout the a�ected channels. In the implemen-
tation, we �rst increase the slack of the overloaded resource
by taking away the load share allocated to the tasks that are
not relocated but are in the channel(s) a�ected by the fault.
Next, we distribute the slack proportionally to each task's
load threshold such that the resource is not overloaded.
rule 3: When there is slack in the resources where tasks
in an a�ected channel reside but they are not involved in
the rule 2, the slack is distributed to the tasks to improve
the overall throughput and latency of the a�ected channels.
This process is the same as the \Constraint Satisfaction"
process.

4 A Case Study : SAR

In this section, we present more complete details about our
running example of the SAR benchmark. In particular, we
present the speci�c constraints used, and report on the re-
sulting design for both normal operation and operation un-
der hardware failure. For the input of SAR benchmark de-
sign illustrated in Figure 2(a), we used synthesized PDFs
for tasks, and de�ned 95% as the maximum resource share
available. Figure 7 shows the synthesized PDFs used for the
SAR benchmark example. The average execution time is
computed assuming we have CPUs of 70 MFLOPS on the
average, and network links of 120MB/sec on the average.
For the oating point operation count of each task, we re-
lied on the calculation presented in [2]. Figure 8 shows the
resulting load allocations produced by our tool for each task
in our example design. We found a set of feasible load al-
locations at 556 Hz input frequency. A service interval of
25 ms is suggested by the tool for these load allocations. It
took 45 minutes to �nd this solution on 350 MHz Pentium II
PC running Linux. To validate the design result, we ran the
corresponding simulation with the load allocations and the
service interval supplied by the analytic model. In Figure 8,
Li(A) denotes the latency estimated analytically, and Li(S)
denotes the latency measured in the simulation model.

A. Synthesized Solutions for Channels.

Ii Li(A) Li(S) uiq uN1 ueq uN2 ur�t uN3 uct
25 2:65 2:9047 0:372 0:090 0:159 0:090 0:591 0:090 0:163

uN4 ua�t uN5 ukm uN6 uaidft uN7

0:121 0:924 0:121 0:201 0:121 0:924 0:171

B. Resource Capacity Used by System.

�R1 �R2 �R3 �R4 �R5 �R6 �R7 �R8 �R9

0:743 0:720 0:591 0:591 0:326 0:924 0:924 0:924 0:924

�N1 �N2 �N3 �N4 �N5 �N6 �N7

0:181 0:181 0:181 0:243 0:243 0:243 0:342

Figure 8: Synthesized Solution of the design.

For the example design of Figure 2(a) and the corre-
sponding load allocations of Figure 8, Figure 9 depicts the
latencies estimated through analysis as well as measured by
simulation at di�erent service intervals. From the graphs in
Figure 9, we note that analysis crosses between pessimistic
estimation to optimistic estimation. The main source of the
over estimation comes from the high utilization factors of
the tasks in the chain. The utilization of a task may vary
with its service interval size due to the error caused by dis-
cretization of time. We conjecture that this is why service-
interval graphs possess some spikes. In the experiments we
ran, however, more than 85% of the analytical estimations
were within 10% of the simulated results.

Lastly, we illustrate how our tool addresses component
failure. Suppose that resource \R3" fails in the design of
Figure 2(a), and furthermore that according to the \Recon-
�guration Information" the tasks from \R3" are migrated to
\R4". While recon�guring the design due to this failure, it is
determined that resource \R4" does not have su�cient slack
(0:359) to accommodate the load threshold (0:591) of the re-
located task RDFT1(1). Hence, by load adjustment rule 2,
we \steal" some load from RDFT1(2), and thus reach our
threshold limit of 0:95, i.e., the peak allowed capacity. At
this point both tasks are given half of the load | however,
under these conditions no service interval can be found that
satis�es latency constraints at the 556 Hz input frequency.
We then use rule 3 and increase the loads of other tasks to
help compensate for delays created due to failure at \R4".
The result is a design with a somewhat degraded perfor-
mance, using a sampling frequency of 506 Hz | no longer
the peak frequency, but still falling within the SAR guide-
lines. Figure 2(b) depicts the results of this recon�guration,
while Figure 10 depicts the corresponding estimated latency
as a function of interval size.

5 Conclusions

We presented a semi-automated design synthesis tool that
calibrates local resources and service intervals to achieve
speci�ed performance requirements as well as fault-tolerance.
We illustrated our methodology on a design example of a
SAR benchmark. In summary, our tool can be used to de-
sign embedded systems with: (1) end-to-end real-time delay
constraints; (2) throughput constraints expressed either as
input or output rates; and (3) task speci�cations expressed
as ow graphs consisting of a set of pipelines connected with
synchronization points. The target platform for designs gen-
erated by our tool is COTS-based systems running conven-
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CPU Tasks Derived From E[t] (ms) Var[t] [Min,Max] (ms) NumSteps
I/Q Normal 59 100 [50,83] 33
EQ Normal 11 16 [9,24] 15

RDFT Exponential 103 [87 ,140] 53
CT Exponential 14 [12,30] 18

ADFT Exponential 187 [160,210] 50
KM Exponential 23 [20,35] 15

AIDFT Exponential 187 [160,210] 50
Network Tasks Derived From E[t] (ms) Var[t] [Min,Max] (ms) NumSteps
Net[I/Q ! EQ] Normal 6 25 [4,20] 16

Net[EQ ! A DFT] Normal 6 25 [4,20] 16
Net[RDFT ! CT] Normal 6 25 [4,20] 16
Net[CT ! ADFT] Normal 13 49 [8,40] 32
Net[ADFT ! KM] Normal 13 49 [8,40] 32
Net[KM ! AIDFT] Normal 13 49 [8,40] 32
Net[AIDFT ! Y1] Normal 13 49 [8,40] 32

Figure 7: Synthesized PDF of each task for processing a subframe
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Figure 9: Average latency (a) and its standard deviation (b) at di�erent service intervals.

tional operating systems. Our hardware/software co-design
approach parameterizes the behavior of software and hard-
ware combinations, and makes the design procedure plat-
form independent. We are currently implementing a scaled
version of the SAR benchmark on a network of PCs running
stock Linux.
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