
MDL: A Language and Compiler for Dynamic Program Instrumentation1

1. This work is supported in part by Wright Laboratory Avionics Directorate (WLAD), Air Force Material Command, USAF, under grant
F33615-94-1-1525 (ARPA order no. B550), and Department of Energy Grant DE-FG02-93ER25176. Hollingsworth was also supported
by NSF award ASC-9703212. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of WLAD or the U.S. Government.

Abstract
We use a form of dynamic code generation, called dynamic
instrumentation, to collect data about the execution of an
application program. Dynamic instrumentation allows us to
instrument running programs to collect performance and
other types of information. The instrumentation code is
generated incrementally and can be inserted and removed
at any time. Our instrumentation currently runs on the
SPARC, PA-RISC, Power2, Alpha, and x86 architectures.
Specification of what data to collect are written in a spe-
cialized language called the Metric Description Language,
that is part of the Paradyn Parallel Performance Tools. This
language allows platform-independent descriptions of how
to collect performance data. It also provides a concise way
to specify how to constrain performance data to particular
resources such as modules, procedures, nodes, files, or mes-
sage channels (or combinations of these resources). We also
describe the details of how we weave instrumentation into a
running program.

1 Introduction

Dynamic (run-time) code generation is a powerful idiom
that allows a system to adapt to changing functional
demand and workloads. It has been used for extensible
operating system kernels [15], to construct efficient net-
work protocols [14], and for compile-on-demand for inter-
preted languages [3]. We use a form of dynamic code
generation, calleddynamic instrumentation, in the Paradyn
Parallel Performance Tools [7,13] to make run-time deci-
sions about what performance data to collect and when.
Dynamic instrumentation differs from other run-time code
generation schemes in that it periodically modifies a run-
ning program to collect information about its execution.

Instrumentation is the activity of collecting information
about an execution without modifying the intent of the
underlying calculation. Our code generation and modifica-
tion techniques have a variety of uses, but in this paper we
concentrate on their use in program instrumentation. We
describe the MDL language, how to instrument running
programs and analyze binary programs, our code genera-
tion scheme, and some performance measurements. The
techniques described in this paper are part of the Paradyn
tools, that run on Solaris (SPARC and x86), AIX, HP-UX,
DEC Unix, and Windows/NT (x86). To permit using
dynamic instrumentation as a foundation for constructing
other run-time tools, we have developed an API [9] for run-
time code insertion.

We have defined a language, called the Metric Descrip-
tion Language (MDL) to cleanly specify the data to be col-
lected and how to collect it. The MDL is a specialized
language that has two key roles. First, it specifies code to be
inserted into the application program to calculate the value
of performance metrics. This code includes simple control
and data operations, plus the ability to instantiate and con-
trol real and virtual timers. Second, it specifies how the
instrumentation code is inserted into the application pro-
gram. This specification includes the points in the applica-
tion program that are used to place the instrumentation
code.

The technical challenges for this work include support
for a wide class of architectures. We address this issue by
using a standard language and intermediate form, and by
keeping the instrumentation specifications simple. A sec-
ond challenge is to generate efficient instrumentation code.
While we cannot avoid instrumentation overhead, we work
to minimize it. A third challenge is dealing with optimized
code. Unlike many tools, we operate on code generated

Jeffrey K. Hollingsworth*

Oscar Naim+
Barton P. Miller+

Zhichen Xu+
Marcelo J. R. Gonçalves+

Ling Zheng+

hollings@cs.umd.edu {bart,mjrg,naim,zhichen,lzheng}@cs.wisc.edu

*Computer Science Department
University of Maryland

College Park, MD 20742

+Computer Sciences Department
University of Wisconsin

Madison, WI 53706-1685

with the full optimization of current compilers. In some
cases, this forces us to de-optimize small parts of code at
run-time so that we can insert instrumentation. Our current
instrumentation is at procedure granularity (entry, exit,
call), so this complexity is manageable; future versions that
handle basic blocks will require additional development.

Our dynamic code generation is more general than spe-
cialization, but it is not as general as dynamically compiling
a procedural programming language. Since we incremen-
tally generate relatively small pieces of code, we cannot
afford the cost of a full compiler; but simple code templates
based on specialization are too restrictive.

Dynamic instrumentation pushes the spectrum of
instrumentation technology, complementing techniques
such as binary rewriting [2,11,16,19]. Dynamic instrumen-
tation defers the decision about what to instrument until
program execution time. Performance can be evaluated on-
the-fly and changes made to the instrumentation based on
the application program’s execution characteristics. This
allows long-running programs (such as large scientific
codes) and already-running programs (such as database
servers) to be instrumented. Both dynamic instrumentation
and rewriting have the advantage of not requiring access to
the source code. Binary rewriting is a static process that
works best when advanced knowledge about what to collect
is available and remains fixed for the program’s execution.

1.1 Instrumentation for Performance Debugging

Performance debugging of parallel programs requires a
detailed understanding of the program’s execution and its
interaction with the hardware on which it is executing.
Given the wide range of hardware, operating systems, pro-
gramming languages, libraries, and primitives for parallel-
ism, it is difficult to build performance measurement tools
that can provide all the required detailed information for all
hardware platforms. A key problem facing tool builders is
how to create tools that are flexible enough to be useful on a
variety of platforms, yet provide sufficient detail to assist
the programmer.

Performance debugging consists of two steps: data col-
lection and data presentation. In this paper, we focus on
making the collection of new types of data easier. We
present a language called MDL for describing parallel pro-
gram performance metrics. MDL permits compiler, library,
and even application programmers to customize a perfor-
mance measurement tool to gather the desired data. Rather
than continually adding hard-wired data collection and
analysis techniques to a tool, it is preferable to build a per-
formance tool that is extensible and permits the easy addi-
tion of new types of data. We had several goals for our
metric description language:

Portability. Portability of a performance tool requires that

the tool run on a variety of platforms,and that the in-
strumentation specifications be portable between plat-
forms. For example, if a library writer describes a
performance metric for a library, that description
should be usable on any system that can run the library.
To achieve this portability, data collection must be de-
scribed at a higher level of abstraction than machine in-
structions. However, while it is important to have
portable metrics, some types of data may not be relevant
on particular platforms. Consequently, a metric descrip-
tion language needs to permit platform specific metrics.

Decoupling metrics from program components. Although
metrics for the entire computation can be useful, gener-
ally it is necessary to gather data at a finer granularity.
For example, it is possible to report I/O waiting time for
an entire program, by file name, or by procedure. De-
pending on the situation, any of these might be useful,
or even a combination of them. Describing individual
metrics for all the different ways to isolate the data is
not practical. If there aren metrics, andm orthogonal
ways to constrain those metrics, then there aren2m dif-
ferent combinations! Writing custom definitions for
each metric and program component combination is im-
practical for more than a few metrics and program com-
ponents. We decouple the description of a metric from
how to constrain it to different program components. As
a result, it is sufficient to describem constraints andn
metrics (m+n).

The rest of this paper describes the language and its
implementation. Section 2 describes the MDL language.
Section 3 describes how we obtain structural information
from the binary executable. Section 4 describes how we
insert and remove the code from a running program. Both
Section 3 and Section 4 discuss issues relating to instru-
menting optimized code. Section 5 describes our dynamic
instrumentation and code generation.

2 Metric Description Language (MDL)

MDL is a special purpose language for writing instrumenta-
tion requests. Instrumentation requests are written in terms
of performance metrics. A performance metric is a time-
varying function that characterizes some part of a pro-
gram’s behavior (such as percent CPU usage or message
bytes per second). Specifications written in MDL describe
the basic instrumentation to calculate a performance metric
and additional specifications for how to constrain the metric
to different program components. An MDL metric descrip-
tion represents a potentially enormous number of variations
of possible performance measurements to gather. However,
only those metric combinations that have been requested
will execute.

An MDL description can be thought of as a two-part

program. The first part describes where to insert the pro-
gram instrumentation code (thewhere specification); the
second specifies the code that will be inserted into the
application (thewhat specification). When, during execu-
tion, a request is made to instrument the application pro-
gram, the where specification is interpreted to compute the
places in the application to instrument. The what specifica-
tion is then translated into machine code and combined
with the where-specification and information about the con-
trol structure of the application program. The machine code
is then inserted into the running program. Figure 1 shows
the overall flow of information during MDL evaluation

Below, we introduce our model of program instrumen-
tation and describe the MDL language. At the end of the
section, we present a short example that shows how an
MDL metric description is combined with a request to gen-
erate instrumentation.

2.1 Introduction to MDL

Previously, we developed a simple, well-defined set of
operations that can be used as building blocks to compute
metrics for the desired program components [7]. To collect
data, we insert software instrumentation into the program.
By keeping the instrumentation operations simple, we can
optimize their performance for each platform. Recording
performance information about the application program is
accomplished bypoints, primitives, andpredicates. Points
are well-defined locations in the application's code where
instrumentation can be inserted. Currently, the available
points are procedure entry, procedure exit, and individual

call statements. In the future, points will be extended to
include basic blocks and individual statements. Primitives
are simple operations that change the value of a counter or a
timer. Predicates are Boolean expressions that can be asso-
ciated with primitives to determine if the associated primi-
tive gets executed. By inserting predicates and primitives at
the correct points in a program, a wide variety of metrics
can be computed.

MDL differs from most languages in that part of the
program specification executes when a request to insert
instrumentation is received, and part of it executes inside
the application process to measure its performance. To clar-
ify the two parts of the language, consider this example:

foreach i in $procedures
append preInsn i.entry

(* proc_calls++; *)

The first line contains a loop that (implicitly) declares a
variable to iterate through the list of procedures defined in
the list variable$procedures .2 The second line contains
two keywords,append and preInsn (described below)
that indicate where the instrumentation code should be
inserted. The second line also defines the point where the
instrumentation should be inserted. In this example, we are
inserting the instrumentation at the beginning of the entry to
the procedure defined by the variablei . The instrumenta-
tion code to insert is bracketed by the tokens(* and*) .
The code inserted will increment a variableproc_calls .
The result of this code snippet is that every time a proce-
dure is called in the application program, the counter vari-
ableproc_calls is incremented by one.

When instrumenting a point, controlling whether the
instrumentation happens before or after the code is desir-
able, as is controlling the order of snippet execution if mul-
tiple snippets are inserted at a single point. MDL includes
two parameters for controlling the placement of instrumen-
tation code. We can control whether instrumentation is exe-
cuted before or after the instruction corresponding to the
instrumentation point. This is especially useful for points
that are procedure calls, since it permits instrumentation to
be inserted either immediately before the call, or immedi-
ately after it returns. The two possible values for this modi-
fier arepreInsn andpostInsn . We can also control the
order of instrumentation code snippets if more that one
snippet is inserted at a given point. When a new snippet is
to be added to a point, it can either be added as the first
snippet for that point (prepend) or the last (append).
Order is important since snippet execution can change the
value of instrumentation variables.

In addition to calls to the basic primitives, instrumenta-

2. $procedures is a predefined variable that lists all procedures
in the application program.

Figure 1: MDL Flow of Control
Dashed-line boxes are generated by Paradyn

MDL
Program

Paradyn
MDL Parse

Paradyn
Structural
Analysis

Application
Binary

(a.out or.exe)

Instrumentation
Machine

Code Paradyn
Instrumentation

Manager

Application
Control

Information

Paradyn
Code

Parsed MDL
What to

User Input:
Metrics &

Focus

Parsed MDL

Instrument

Where to
Instrument

 Generator

tion code blocks also can contain conditional expressions,
calls to subroutines in the application, and references to
variables in the application program. The following exam-
ple uses an application variable (timeSteps) to start a
timer after the 300th time step of the application.

(* if (readSymbol("timeSteps")==300) {
startProcessTimer(x);

} *)

Program instrumentation generally needs to be inserted
into specific procedures in an application or library. For
example, to compute metrics about a message passing
library requires instrumentation to be inserted into the mes-
sage passing functions. Often, the same instrumentation
needs to be inserted in several procedures (if a library has
several entry points). To make this operation easier, MDL
includes a way to create lists of procedures. For example, a
simple list declaration might be:

list pvm_msg_func is procedure {
flavor pvm;
items { "pvm_send", "pvm_recv" };

}

The first line defines the name of the list,pvm_msg_func ,
and the type of the list,procedure . The second line indi-
cates that the list applies to PVM programs. The third line
enumerates the procedures in this list. When the list is used
during MDL evaluation, the listed procedures are looked up
in the application program and any that are not present in
the program are removed from the list.

2.2 Constraints

A key feature of MDL is its ability to constrain a metric
description to different program components. Program
components are identified using a hierarchical naming sys-
tem. Each program component (e.g., procedure, file, pro-
cess, etc.) has a unique name. Collections of program
components are grouped together in resource hierarchies.
For example, procedures are grouped together into mod-
ules, and modules are grouped together into a resource
called Code. Therefore the procedurefunc1 , located in file
test.c , would be named/Code/test.c/func1 .

To gather performance data about a specific program
component, the metric description language provides con-
straint clauses. Constraint clauses create Boolean variables
that are true when a specific program component is active.
For example, a constraint on a module would be true when-
ever a procedure in that module is the currently executing
procedure. The following is an example of a simple con-

straint clause that is true when a selected module is active.

constraint module /Code is counter {
foreach func in $constraint[1].funcs {

append preInsn func.entry
 (* module = 1; *)
prepend preInsn func.return
 (* module = 0; *)

}
}

The first part of a constraint clause describes the constraint
name,module , and the resource hierarchy the constraint
clause applies to (/Code). Within a constraint clause, the
variable $constraint is bound to the name of the
resource that has been selected. In this case if the metric
user requested a metric restricted to a specific module, the
resource named might be/Code/foo.c , and the
$constraint[1] variable would be bound tofoo.c .3

Associated with the module described by
$constraint[1] is an attribute (funcs) whose value is a
list of the procedures defined in that module. The constraint
shown in the above code fragment creates a Boolean vari-
able that is true when a selected module is active.

The power of constraints is that they can be combined.
For example, a module constraint could be combined with a
message type (tag) constraint to restrict a metric to only
those messages of a specific type that were sent or received
by a single module. By combining constraints it is possible
for metric users to request detailed metrics about applica-
tion programs. Since each constraint corresponds to a Bool-
ean variable, constraints are combined using an “and”
operation.

2.3 A Complete MDL Definition

A complete metric definition contains a description of the
code to insert and to compute the un-constrained metric
(i.e., a metric computed for the entire application); it also a
list of attributes about the metric, and a list of constraints
that can be applied to the metric. Figure 2 shows a complete
metric description. The first section of the definition
includes information that is used to display the metric such
as its name, and the units (operations per second). The
aggregateOperator describes how the metric can be
combined from different processes or threads to compute a
single value for all threads of execution. Most metrics are
combined using a sum operation, but minimum and maxi-
mum operators are also provided. Theflavor field lists the
different programming models where the metric is valid.
Since not all metrics apply to all possible configurations
this provides control over which metrics can be requested.
The second part of the metric description lists constraints

3. The subscripts for resource names start at zero with the most
specific (trailing component) of a name.

that can be applied to this metric. Since not all constraints
may be appropriate to all metrics, only those that apply to
the metric being defined are listed. The final section of the
metric definition is thebase clause that describes the
instrumentation code necessary to compute the value of the
metric for the entire program. In the example shown, the
base metric increments a counter every time a function in
the listpvm_msg_func is called.

list pvm_msg_func is procedure {
flavor pvm;
items { "pvm_send", "pvm_recv" };

}

constraint procedure /Code is counter {
append preInsn $constraint[0].entry

 (* procedure = 1; *)
prepend preInsn $constraint[0].return

 (* procedure = 0; *)
}

}

metric msgs {
name "Messages";
units opsPerSecond;
aggregateOperator sum;
flavor { pvm };

// Constraints that can be applied
constraint module;
constraint procedure;
constraint msgTag;

// the base computation of the metric.
base is counter {
 foreach func in pvm_msg_func

append preInsn func.entry constrained
(* msgs++; *)

}
}

Figure 2: A Complete Metric Description
Metric “msgs” counts messages sent by PVM message passing

routines (listed inpvm_msg_func).

During application execution, a user (or higher level
software) can request that a metric defined in MDL be
enabled for a specific combination of program resources.
For example, if the user requested that themsgs metric be
enabled for the procedure/Code/myprog.c/foo , the
code shown in Figure 3 would be inserted into the program.
To satisfy this request, four instrumentation code snippets
are inserted. The first two are inserted into the procedure
foo . The one at the entry point tofoo sets a counter to 1
when foo is called, and the instrumentation at the end of
foo clears the counter whenfoo returns. These two snip-
pets are inserted by the evaluating the constraint clause. The
third and fourth code snippets are inserted into the message
passing routinespvm_send and pvm_recv . These two

statements conditionally increment a variable that counts
the number of messages sent or received. The last two snip-
pets are inserted by evaluating the base clause for msgs for
each of the procedures defined in the listpvm_msg_func .
Had the metric been requested for the entire program (i.e.,
un-constrained), snippets withoutif statements would be
inserted at the entry topvm_send andpvm_recv .

2.4 Capabilities and Limitations of MDL

MDL has a simple type system consisting of two base types
that can be used in instrumentation code and four types
used to define where instrumentation code should be
inserted. The instrumentation code types, counter and timer,
can be used in instrumentation code as integer variables and
to record the time between events respectively. The four
types used to define where instrumentation can be inserted
are: procedure, module, list, and iterator. Procedure is an
aggregate type that describes a subroutine and contains
fields for the entry point, return statements(s), and subrou-
tines called. Modules are collections of procedures. List is
an aggregate type that represents a collection of variables of
the same type. Lists may be accessed sequentially using
iterators or randomly using array subscript notation (square
brackets).

MDL can be used to describe many types of metrics.
However, since the instrumentation code lacks a looping
construct, the language is not Turing complete. We choose
not to include a looping construct since it would make it
impossible to predict the execution time of the instrumenta-
tion code. With MDL it is currently possible, given the exe-
cution time of called application subroutines, to develop a
fairly accurate model of the cost to execute each instrumen-
tation snippet to be inserted. In Paradyn, we use this cost
information to control the amount of instrumentation
inserted into the program [6]. For the metrics we have writ-
ten to date, we have not found the absence of a looping
statement a limitation to expressing any metrics we have
wanted to create. As we gain more experience with MDL,

Figure 3: Instrumentation Generated for msgs metric
constrained to the foo function.

foo()
{

}

pvm_send(...)

{ ... }

pvm_recv(...)

fooFlg = 0;

fooFlg = 1;

{ ... }

if (fooFlg) msgs++;

if (fooFlg) msgs++;

we will evaluate whether the absence of a looping construct
unduly limits the type of metrics that can be created

3 Structural Analysis: Parsing the Binary File

Paradyn performs a simple form of structural analysis
to identify instrumentation points in the application pro-
gram. The result of this analysis is a list of the instrumenta-
tion points for each function, annotated with the address of
the point, the original instruction at the point, and addi-
tional instructions that can be replaced when the point is
instrumented. Other useful information about functions is
also obtained during the analysis of the executable. We can
determine if a function is a leaf function, and if the function
creates a new stack frame. This information can be useful
later, when we do a stack trace for inserting or deleting
instrumentation as described in Section 4.

Paradyn finds the points by analyzing the executable
file(s) of the application. Our goal is to be able to handle an
arbitrary executable file, gathering information from both
the symbol table and by scanning the binary image. When
we identify a point, we also determine how instrumentation
could be inserted at that point. Our analysis uses many of
the techniques used in binary rewriting [11].

An executable file is processed in several steps. In the
first step we process the symbol table to get the size and
address of the code and data segments. The result of this
step is a platform-independent representation of the execut-
able file consisting of pointers to the code and text segment
(in the memory mapped executable file), and a list of sym-
bols (functions and data objects) annotated with name,
type, starting address, size, and (in some cases) the module
to which each symbol belongs. An important piece of infor-
mation, not directly available on all platforms, is the size of
each function. The size is needed when we look for instru-
mentation points. If the size is not in the symbol table, we
infer the size by locating the starting address of the next
function or data object. This inference step is needed even
on platforms that supposedly provide the size directly, since
we have found that many functions do not have the correct
size in the symbol table. On the AIX/Power2 platform, we
determine the end of a function by scanning for the signa-
ture of a trace-back record that follows each procedure in
the extended COFF file format. On some platforms (Solaris
and HP-UX), we read symbolic debugging information to
find the module (source file) of the functions, since this
information cannot be derived from the standard symbol
table.

Once we have the list of functions, the second step is to
find the instrumentation points for each function. The
instrumentation points currently provided are function entry
and exit points, and call sites. The entry point for each func-
tion is defined as the starting address obtained from the

symbol table. The basic method for finding the other instru-
mentation points is to sequentially scan the code of each
function, beginning from the entry point, searching for
instruction sequences that implement calls or exit. This step
is platform dependent. Scanning the instructions is trivial in
most RISC platforms, as all instructions are of the same
size; we perform a simple matching. On the x86, where
instructions have different sizes, we decode each instruction
to determine its length before processing it, so that we can
find the start of the next instruction.

In many cases, we can find function exit points and call
sites by looking for return and call instructions. Any jumps
that leave a function are also defined as exit points. Indirect
jumps are more difficult to analyze, since we do not know
the target at analysis time, and therefore do not know if an
indirect jump is leaving a function. The basic approach is to
assume that indirect jumps do not leave a function, except
that in some cases we can use heuristics to find the target of
the indirect jump. For example, SPARC code uses an idiom
where the target of a jump is loaded into a register, and then
an indirect jump through that register is used:

sethi HI(addr), reg
or LOW(addr), reg, reg
jump reg

This code sequence is frequently used for jumps where the
distance between the target and the jump instruction is
greater than the value that fits in the immediate field of the
jump instruction. If we find this instruction sequence in the
code and the target is outside the function, then the jump
will be defined as an exit point. In cases where this is not
possible, we can insert code to dynamically check the jump
destination address.

In addition to finding instrumentation points, the analy-
sis of the executable also finds additional instructions,
either before or after a point, that can be used when instru-
menting the point. These additional instructions are needed
in cases where we replace several instructions to insert a
jump at that point (several instructions are needed to build
jumps with a distant destination). We check that there are
no jumps into the middle of these instruction sequences, so
we can collect the targets of all direct jumps as we scan the
instructions looking for instrumentation points.

Several compilers put data in the code segment in a
way that can make it difficult to distinguish between data
and instructions when we scan the executable file. The most
common data that is mixed with code is a jump table for
switch statements. We use heuristics that find and skip jump
tables, and are effective on the code generated by the GNU,
Sun, and Microsoft Visual compilers. For example, many
indirect jumps are of the form:

jmp dword ptr[reg*4+addr]

where reg is a general register, andaddr an immediate

value that gives the base address of the jump table. Depend-
ing on the base address, we can tell if the jump table is
within the code segment or not. Although we do not know
the size of the table, we can infer it by looking at the
addresses in the table. As long as we find an address that is
within the current function, we assume that it is part of the
jump table.

4 Inserting and Deleting Instrumentation

A major challenge of dynamic (run time) instrumentation,
that is not encountered in binary rewriting, is interacting
with the execution state of the application program. To
instrument a program at run time, we generate instrumenta-
tion code fragments and place them in dynamically allo-
cated patch areas calledtrampolines. Once code is
generated and placed in the trampolines, it must be tied into
the application program. The Instrumentation Manager is
responsible for the insertion of instrumentation into and
deletion from the application process. The complete details
for trampolines are described in Section 5.

Each block of generated instrumentation code must be
tied to an instrumentation point in the application pro-
cesses. To insert this code, we stop the application process
and install the code and data (counters and timers) into the
application address space using operating system facilities
(for UNIX systems, ptrace or the /proc file system). After
the code is generated for the trampolines, the original
instruction(s) at the point are relocated to the trampoline.
The original instruction(s) at the instrumentation point are
then modified to jump to the base trampoline. When the
instrumentation is disabled, we first remove the branch into
it from the trampoline, and them reclaim its memory when
the code is no longer active.

4.1 Instrumentation Insertion

Inserting instrumentation requires creating the trampolines
(described in Section 5.1) and modifying the original
instructions in the instrumentation point to jump to the base
trampoline. If there is some instrumentation already at that
instrumentation point, we use the existing trampoline.

When instrumentation is inserted at a point, the origi-
nal instruction at the point must be changed to a jump to the
trampoline. Sometimes, the instruction at the point can be
replaced with a single jump instruction. However, in gen-
eral we may have to replace multiple instructions at the
point, either because the size of the instruction at the point
is smaller than the size of a jump instruction, or because we
need several instructions for a jump. First, we must make
sure that there are no jumps into some location in the mid-
dle of the sequence of instructions being modified. We han-
dle this case by checking that no direct jump in the
application jumps into the middle of an instruction

sequence that we want to modify. If there is any jump into
the middle of an instruction sequence, we cannot modify
that sequence. If we can not, there are several alternatives:
insert a trap instruction (which requires the modification of
only one instruction, and always can be safely inserted);
copy the larger instruction sequence (including the jump) to
the trampoline, padding the code to make room for instru-
mentation code and modifying the jump; or reject the
instrumentation request for that point.

Checking the targets of all direct jumps is not enough,
however, since there may be indirect jumps where the target
cannot be determined until execution time. In those cases
we use heuristics to find the targets of indirect jumps stati-
cally, and this works well for all of the code that we have
encountered from the GNU and commercial compilers. As
we increase the abilities of our structure analysis to include
full control and data dependences, this becomes less of an
issue. The general solution to this problem is to instrument
those indirect jumps that cannot be analyzed and check the
target at run-time, taking some special action if we find that
the target is in the middle of a modified instruction
sequence, but we have not implemented this solution yet as
we currently have no demand for it.

Sometimes we want to instrument functions that are
too small to insert jumps to a base trampoline at the entry
and exit points. This often happens with C library functions
such as read and write. In this case, we relocate the entire
function to a different location, near the base trampoline,
and use short jumps, which in most platforms require the
modification of only one instruction. The original function
is then replaced with a jump to the relocated function.

Another problem with modifying multiple instructions
is that the program might be executing that particular
instruction sequence at the moment we stop it to insert
instrumentation. If we simply resume the program after
modifying that instruction sequence, it will begin executing
in the middle of the new code, which would cause unpre-
dictable results. A simple solution is to modify the applica-
tion’s PC so that the code resumes in the relocated
instructions in the trampoline (instead of in their original
location). We can also insert a breakpoint (trap) at the end
of the sequence and run the program and wait until it
reaches the breakpoint.

4.2 Instrumentation Deletion

When a delete request is made, we prevent future activa-
tions of the instrumentation by modifying the jump to the
trampoline to bypass it. The memory block that contains the
deleted code can also be freed, but first we must make sure
that the code is not active. Requests to delete instrumenta-
tion code are collected and handled in a batch to amortize
the fixed overhead involved in deletion. The queued deletes

are processed when the list exceeds a predefined length or
when the total free space drops below a specified threshold.

To delete instrumentation, we first stop the application
process and examine the PC and call stack. We check the
PC and current stack frames to make sure that the instru-
mentation code is not currently being executed. If it is cur-
rently being executed, we defer the deletion, placing the
deletion request back on the list and this deletion is
attempted when deletion is next triggered.

When we delete the instrumentation code, we must
also delete the data (counters and timers) used by that code.
Since this data is shared by multiple instrumentation points,
we use a reference count for each counter/timer to control
deallocation.

We also handle fragmentation of the instrumentation
heap by compacting the heap and updating all branch desti-
nations and data addresses. The compaction algorithm is
run when a request cannot be satisfied from the free list.

4.3 Dealing with Compiler Optimizations

A major challenge for run-time tools is coping with com-
piler optimizations. Users are interested in improving the
performance of their applications, and must be able to mea-
sure their programs with compiler optimizations enabled.
Many optimizations will not affect our ability to instrument
code and obtain meaningful performance results, but cer-
tain optimizations could lead our instrumentation to pro-
duce incorrect results. Although we do not have a general
method for dealing with compiler optimizations, we can
handle specific optimizations in such a way that we can get
meaningful results. One of these techniques is to undo com-
piler optimizations that fuse multiple instrumentation
points together when an instrumentation request for a fused
point is made.

Some compilers use atail-call optimization for func-
tions that make a procedure call as its last operation. The
optimized function will not return to its caller; instead it
gives its return address to the called function, which then
returns directly to the caller. On the SPARC platform, the
tail-call optimization is usually implemented by having the
instruction in the delay slot of the call instruction modify
the register where the return address of the call is written.
For example:

call f
restore

This kind of optimization can make it difficult to col-
lect correct performance data. If we treat the call as a nor-
mal call site, we miss the exit point of the function. An
alternative is to treat the tail call as an exit point, but then
we could miss the time spent in the called function. Our
approach to this problem is to undo the tail-call optimiza-
tion so to gather accurate performance data. Whenever we

instrument such a point, instead of relocating the instruc-
tions, we generate new code in the trampoline that emulates
the original code, but without the optimized tail-call. For
the code fragment above, we generate the following code:

restore
st %o7,[%fp+0x44]
call f
nop
retl
ld [%fp+0x44],%o7

This de-optimization is used most commonly when instru-
menting C library functions (such as “read”).

5 Compiling and Code Generation for MDL

Compiling and generating code for MDL takes place at two
points in time (see Figure 1). The first stage occurs when
Paradyn (“MDL Parse”) processes its configuration file
containing the basic metric definitions; these definitions are
compiled into parse trees. The second, and more interesting
stage (“Code Generator”), occurs when a request is made to
instrument the running program. Machine code is then gen-
erated to satisfy the request. Code generation is an incre-
mental process, with each new request for instrumentation
generating a new fragment of code in the application pro-
gram.

In this section, we first present the basic structure of
the instrumentation code. We then describe the code gener-
ation for the instrumentation primitives and predicates.
Next, we describe optimizations we use at various points in
the code generation. All of the features described in this
section are available on all supported architectures: Sun
SPARC, HP PA-RISC, IBM Power2, DEC Alpha, and Intel
Pentium architectures, accommodating the idiosyncrasies
of the various architectures.

5.1 Trampolines: Tying It Together

The first step for inserting code into an application is to
allocate space for the dynamically generated code. Code
generation is done incrementally, as each new request for
instrumentation is made. At a given point in the application
program, instrumentation code can be inserted or deleted.
We use small code fragments, called trampolines, as the
mechanism to tie this all together. Associated with each
active instrumentation point is abase-trampoline, and each
block of instrumentation code is placed in its ownmini-
trampoline. The base trampoline contains the relocated
original instructions from the instrumentation point in the
application program, instructions to save and restore regis-
ters, slots where jumps to mini-trampolines can be inserted,
and a jump to return to the application code. The mini-tram-
polines contain instrumentation code followed by a jump. If
there are multiple instrumentation requests for a point, the

mini-trampolines are chained together (much as is done in
Synthesis [12]), with the last trampoline in the list jumping
back to the base trampoline. To trigger the instrumentation
code, instructions are inserted at the point in the application
code to jump to the base trampoline (see Section 4.1). The
cost of the instrumentation at a particular instrumentation
point is updated in the base trampoline (for both pre-instru-
mentation and post-instrumentation). In this way, Paradyn
can keep track of how much perturbation has been intro-
duced into the application. Figure 4 shows the structure of
base and mini-trampolines.

Figure 4: Application Code, Base and Mini-Trampolines

For the base trampoline, we need to reserve space to
hold the relocated instructions from the application. Nor-
mally, we relocate two or three instructions (two for acall

and its delay slot and some times one additionalsave

before thecall), but we might need to relocate extra
instructions. For example, on the SPARC if there is a func-
tion that returns a structure, then the instruction after the
delay slot has the size of the structure and it has to be relo-
cated too. Onenop is added when relocating a jump
instruction, since we currently do not try to fill delay slots
in relocated instructions.

The mini-trampoline in Figure 5 illustrates an example
of an increment primitive (similar to what would be gener-
ated at the entry tofoo in Figure 3): it loads the value of the
counter, increments the value of the counter, stores the
value of the counter and then jumps back to either the base
trampoline or to the next mini-trampoline.

When we relocate a jump or branch instruction to the
base trampoline, we need to modify that jump, since in

most architectures the range of jump instructions is limited.
We may have to generate multiple instructions to emulate
the original jump, since the destination can be further away
than the displacement of the original jump instruction.

For the x86 architecture there is an additional differ-
ence in the base trampoline. Since instruction length is vari-
able, we may need to relocate up to five instructions, the
instruction at the point, plus additional instructions before
or after the point. These extra instructions are moved to
make sufficient space for the jump to the base trampoline.
Additional instructions that are taken from before the
instrumentation point are relocated to the beginning of the
base trampoline, and additional instructions from after the
point are relocated to the end of the base trampoline, just
before the return to the application code. This permits us to
include a jump instruction in the relocated sequence:

L1:
...
je L1
leave
ret

The ret instruction is an instrumentation point, and
since the instruction is only one byte, we need to relocate
additional instructions. Theje instruction can be relocated
as long as there is no jump to theleave or ret instruc-
tions. Since theje L1 is relocated to the beginning of the
base trampoline, no instrumentation will be executed if the
jump is taken:

Base trampoline:
je L1
leave
<pre point instrumentation>
ret
<post instrumentation> (not reached)
<return to user code>

Instrumentation of a function return point is handled in
a special way on the Power platform. Because it can be dif-
ficult to determine precisely the exact return points, we use

Func foo:

Relocated
Instruction(s)

Trampoline
Base

Save Regs

Restore Regs

Trampoline
Mini

Save Regs

Restore Regs

Pre instrument.

Post instrument.

Instrumentation

Program
Application

(e.g. StartTimer)

Update cost

Update cost
Primitive

// Instrumentation code (incr primitive)
// Load counter
minitramp: sethi %hi(0x61800),%l0
minitramp+4: ld [%l0+0x3e0],%l0
// Increment counter
minitramp+8: inc %l0
// Store counter
minitramp+12: sethi %hi(0x61800),%l1
minitramp+16: st %l0, [%l1+0x3e0]
// Branch to either base trampoline or next
// mini-trampoline
minitramp+20: b,a basetramp+44
minitramp+24: nop

Figure 5: Mini-trampoline (SPARC architecture)

the following approach. We insert instrumentation at the
entry point to replace the value of the link register, which
contains the return address, with the address of the base-
trampoline for the return point. The original return address
is saved on the stack so that it can be restored later. When
the function returns, it will jump to the base-trampoline,
which executes the instrumentation code, retrieves the real
return address from the stack, and jumps to that location.

5.2 Optimizations

There are several places where optimizations are made to
our dynamic code generation. Optimization in our environ-
ment has several unique aspects because we are interacting
with both existing application code and with previously
inserted instrumentation code. To avoid repeated address
computation, we perform common sub-expression elimina-
tion. To avoid long streams of redundant instrumentation
when collecting data on many instances of a resource, we
employ a simple form of vectorization.

A simple optimization is eliminating common sub-
expressions. This type of operation is particularly effective,
since we frequently have multiple references to computed
addresses. During code generation, we use the standard
techniques of generating the code once for such an expres-
sion and keep the result (if possible) in a register until the
last occurrence of the sub-expression.

Collecting performance data for many instances of the
same resource can generate repetitious and expensive
instrumentation. For example, this situation can occur when
profiling many memory blocks. In each case, there could be
hundreds or thousands of instances of each resource. Since
each instrumentation request is generated separately, we
need to detect independent requests and vectorize them.
Without vectorization, the generated code might look like:

if (<other constraint>)
if (arg[1] == instance1)

counter1++;
if (<other constraint>)

if (arg[1] == instance2)
 counter2++;

. . .
if (<other constraint>)

if (arg[1] == instanceN)
counterN++;

The firstif statement represents a constraint not related to
the vectorization (such as constraining to a particular proce-
dure). The secondif statement in each group is the target
of the vectorization optimization. Note that this optimiza-
tion is similar to that used in a “switch” statement. The
arg[1] term specifies the resource instance; in this exam-
ple, it means that the instance is identified by parameter 1 of
the function in which this instrumentation was inserted. The
number of instructions inserted is linearly proportional to

the number of resource instances. With this amount of
instrumentation, the perturbation could be intolerable.

Instead, we can allocate a vector of counters/timers for
all resource instances, and insert code to index into the
appropriate cells of the vector. The optimized code looks
like:

if (<other constraint>) {
index = f(arg[1],resource);
vector[index]++;

}

In this example,f() is a user-supplied function that maps
from the resource instance to the vector index. This func-
tion also takes as input a description of the resource class
(arg[1] in this case). The number of instructions inserted
is a constant independent of the number of resource
instances. This optimization is especially effective when the
mapping function can produce a dense vector. To further
improve this optimization, we pre-calculate and propagate
all constants at the time of instrumentation.

As an example, we have measured operations (cache
misses) for each memory block (cache line) in arrays in the
application program. We allocate a vector of counters, one
counter associated with each memory block the array. The
resource in this case is the user array, and the information
that we use in the mapping function is the base address and
length. The resource instance specified byarg[1] is the
memory address. Functionf() mapsarg[1] to a cell in
the counter vector based on the array information and the
memory block size. For this example, the unoptimized
instrumentation executesN(X+15) instructions in the mini-
trampoline, whereN is the number of resource instances
andX is the number of instructions for register save/restore
and other constraints. With vectorization, the number of
instructions isX+28. A peephole optimization could further
reduce the number of instruction toX+20. Since memory
objects are numerous, vectorization saves a substantial
amount of time.

6 Performance Measurements

The critical performance cost for our instrumentation is the
time it takes to go from the user code to the trampolines and
back. The cost of the instrumentation code itself (the part
that calculates the metrics) is specific to the semantics of
the metric description, so it is difficult to make general
statements about it. For the counter and timer operations,
we have previously reported these costs [7].

The results in Figures 6 and 7 show the performance of
our code patching system on four different processor archi-
tectures. The overall time shown in the fourth row of
Figure 6 reflects the time required to execute instrumenta-
tion to call an empty procedure at a single point in a pro-
gram. Due to our need to preserve machine state and

squeeze the code into an existing binary image, the times
are somewhat higher than a traditional compiler would gen-
erate for a procedure call.

For most architectures, the largest share of the time is
spent saving and restoring machine state. For example, on
the x86 platform, 70% of the time is spent saving and
restoring machine state. Most of this time is spent preserv-
ing one register,flags. Saving and restoring this one register
required 112ns or 40% of the total instrumentation time. On
the SPARC, we use the register wheel to preserve the local
and parameter registers, but must still preserve the general
and floating point registers to ensure correct behavior. The
save and restore time is significantly shorter on the Power2
architecture, since we only save registers when they are
used by the resulting instrumentation. A more thorough
analysis of the instrumentation code could be used to

decide if we really need to save registers at a specific instru-
mentation point.

The third row of Figure 6 also shows the time required
to execute a null procedure when we have to use a trap
instruction. As expected, since this requires a trap into the
operating system kernel, this time is significantly longer
than simply executing a branch instruction (42us versus
281ns). However for many uses such as data breakpoints,
this approach is much faster than a trap instruction and a
context switch to a separate debugger process.

There are also several other opportunities to improve
the performance of our instrumentation system. First, the
base trampoline is a static code template with place holders
(nop 's) for all possible situations. By customizing the base
trampoline for each situation, we could improve the time of
base trampoline execution for most cases. Likewise, we
could fuse the base and mini-trampolines to reduce the
number of branches by two. This change would improve
run-time performance at the cost of greater complexity in
managing multiple mini-trampolines at a single point.

7 Conclusions

In this paper we have introduced MDL, a language for
dynamic program instrumentation. MDL provides a
machine independent way to describe the instrumentation
to be inserted into an application program. The language
also includes features to de-couple the specification of what
data to collect from how to constrain data collection to par-
ticular program components such as procedures. In addi-
tion, MDL permits customization of data collection to
different parallel programming models by permitting metric
definitions to be tagged for specific programming models.

x86, 200MHz, Pentium-
Pro

SPARC, 110MHz,
microSPARC II

Power, 66MHz, Power2
PA-RISC, 50MHz, HP

9000/715

Call to empty procedure 40ns 87ns 156ns 261ns

+ base trampoline w/jump
(no saves/restores)

67ns (1.7) 209ns (2.4) 226ns (1.4) 633ns (2.4)

+ base trampoline w/trap
(no saves/restores)

42,120ns n/a n/a n/a

+ base trampoline w/jump
(with saves/restores)

264ns (6.6) 504ns (5.8) 365ns (2.3) 1374 (5.3)

+ empty mini-trampoline 281ns (7.0) 556ns (6.4) 465ns (3.0) 1632ns (6.3)

Figure 6: Cost of Triggering Instrumentation.

The 1st line is the cost of a procedure call with no parameters, with no instrumentation in place. The 2nd line adds the jump
to the base trampoline and back, with no register save/restores and no jump to mini-trampolines. The 3rd line uses a trap
instruction instead of a jump to get to the base tramp. The 4th line adds register save/restores (to the jump case). The 5th line
adds to the base tramp the register save/restores and a jump to an empty mini-trampoline. Numbers in parentheses are cost
relative to the empty procedure call.

Figure 7: Cost of Operations Normalized by Clock Speed

The second part of this paper described the mecha-
nisms we used to create a run-time instrumentation com-
piler. Our run-time code instrumentation system differs
from binary editors and run-time code specialization tools
since we need to both generate code at run-timeand weave
it into arbitrary points in a binary image during its execu-
tion. We presented techniques to squeeze instrumentation
into tight code sequences, including moving code and
selective de-optimization of compiler generated code. We
also reported ways to insert and delete code from a running
program, and optimization techniques for run-time code
generation.

We allow instrumentation of optimized code on all our
supported platforms, including the commercial compilers
such as IBM xlc, Microsoft Visual, and Sun Sparcworks.
As compiler technology advances, our dynamic instrumen-
tation will have to advance with it. Our ability to handle
optimizations in the future may depend on the compiler
providing more information about the nature of its transfor-
mations.

Our run-time code generation system currently pro-
duces code for the SUN SPARC, HP PA-RISC, DEC
Alpha, IBM Power2, and Intel x86 architectures. All fea-
tures described in this paper have been incorporated into the
Paradyn parallel performance tools. We have also created
an API to export the run-time compiler features for other
uses.

References
[1] A. Beguelin, J. Dongarra, A. Geist, and V. S. Sunderam.

Visualization and Debugging in a Heterogeneous Environment.
IEEE Computer (26) 6, June 1993.

[2] I. Nashon and D. Berstein. FDPR: A Post-pass Object-code
Optimization Tool. International Conference on Compiler
Construction, Linkoping, Spring Verlag LNCS (April 1996).

[3] U. Hölzle, C. Chambers, and D. Ungar. Debugging Optimized
Code with Dynamic Deoptimization.SIGPLAN PLDI Conf., San
Francisco (June 1992).

[4] M.T. Heath and J.A. Etheridge. Visualizing Performance of
Parallel Programs.IEEE Software(8) 5, Sept. 1991.

[5] J.K. Hollingsworth, R.B. Irvin, and B.P. Miller. The Integration of
Application and System Based Metrics in a Parallel Program
Performance Tool.3rd ACM Symp. on Principles and Practice of
Parallel Programming, Williamsburg, VA (April 1991).

[6] J.K Hollingsworth and B.P. Miller. An Adaptive Cost Model for
Parallel Program Instrumentation.Euro-Par ‘96, Lyon, France
(August 1996).

[7] J.K. Hollingsworth, B.P. Miller, and J.M. Cargille. Dynamic
Program Instrumentation for Scalable Performance Tools.
Scalable High Performance Computing Conference, Knoxville,
TN (May 1994).

[8] H. A. A. Hough and J. E. Cuny. Perspective Views: A Technique
for Enhancing Parallel Program Visualization.International
Conference on Parallel Processing, Vol.II (August 1990).

[9] J.K. Hollingsworth and B. Buck. DyninstAPI Programmer’s
Guide. University of MarylandComputer Sciences Technical
Report CS-TR-3821, (August 1997).

[10] D. Kimelman. Environments for Visualization of Program
Execution. InPerformance Instrumentation and Visualization,
M. Simmons and R. Koskela, editors. Addison-Wesley, 1990.

[11] J.R. Larus and E. Schnarr. EEL: Machine-Independent Executable
Editing. SIGPLAN ‘95 Conference on Programming Language
Design and Implementation, La Jolla, CA (June 1995).

[12] H. Massalin and C. Pu. Threads and Input/Output in the Synthesis
Kernel., 12th Symposium on Operating Systems Principles,
Operating Systems Review (23) 5, December 1989.

[13] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth,
R.B. Irvin, K.L. Karavanic, K. Kunchithapadam, and Tia Newhall.
The Paradyn Parallel Performance Measurement Tools.IEEE
Computer, (28)11, November 1995.

[14] G. Necula and P. Lee. Safe Kernel Extensions Without Run-Time
Checking.2nd Symposium on Operating Systems Design and
Implementation, Seattle, Washington, (October 1996).

[15] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L.
Kethana, J. Walpole and K. Zhang. Optimistic Incremental
Specialization: Streamlining a Commercial Operating System.
15th Symposium on Operating Systems Principles, Copper
Mountain, CO (December 1995).

[16] R. Rastings and B. Joyce. Purify: Fast Detection of Memory Leaks
and Access Errors.Winter Usenix Conference (January 1992).

[17] D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B.W.
Schwartz, and L.F. Tavera. Scalable Performance Analysis: The
Pablo Performance Analysis Environment.Scalable Parallel
Libraries Conference, A. Skjellum, Editor. 1993, IEEE Computer
Society.

[18] S. Shende, J. Cuny, L. Hansen, J. Kundu, S. McLaughry, and O.
Wolf. Event and State-Based Debugging in TAU: A Prototype.
SIGMETRICS Symposium on Parallel and Distributed Tools,
Philadelphia, PA (May 1996),

[19] A. Srivastava and A. Eustace. ATOM: A system for Building
Customized Program Analysis Tools.SIGPLAN Conference on
Programming Language Design and Implementation,Orlando,
FL (1994).

[20] B. Topol, J. T. Stasko and V. S. Sunderam. Monitoring and
Visualization in Cluster Environments.Technical Report GIT-
CC-96-10, Georgia Institute of Technology (March 1996).

[21] J. C. Yan, S. R. Sarukkai, and P. Mehra, “Performance
Measurement. Visualization and Modeling of Parallel and
Distributed Programs Using the AIMS Toolkit.Software Practice
& Experience, (25) 4.

