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Abstract Instrumentation is the activity of collecting information

We use a form of dynamic code generation, called dynamfP0ut an execution without modifying the intent of the
instrumentation, to collect data about the execution of atiNderlying calculation. Our code generation and modifica-
application program. Dynamic instrumentation allows us totio" techniques have a variety of uses, but in this paper we
instrument running programs to collect performance andconcentrate on their use in program instrumentation. We
other types of information. The instrumentation code i¢lescribe the MDL language, how to instrument running
generated incrementally and can be inserted and removelfo9rams and analyze binary programs, our code genera-
at any time. Our instrumentation currently runs on thetio" Scheme, and some performance measurements. The

SPARC, PA-RISC, Power2, Alpha, and x86 architectured€chniques described in this paper are part of the Paradyn
Specification of what data to collect are written in a spe{00!S; that run on Solaris (SPARC and x86), AlX, HP-UX,
cialized language called the Metric Description Language PEC  Unix, and Windows/NT (x86). To permit using
that is part of the Paradyn Parallel Performance Tools. Thisdynamic instrumentation as a foundation for constructing
language allows platform-independent descriptions of hopther run-time tools, we have developed an API [9] for run-
to collect performance data. It also provides a concise wajjMe code insertion.

to specify how to constrain performance data to particular ~ We have defined a language, called the Metric Descrip-
resources such as modules, procedures, nodes, files, or mégh Language (MDL) to cleanly specify the data to be col-
sage channels (or combinations of these resources). We alsted and how to collect it. The MDL is a specialized
describe the details of how we weave instrumentation into @nguage that has two key roles. First, it specifies code to be

running program. inserted into the application program to calculate the value
of performance metrics. This code includes simple control
1 Introduction and data operations, plus the ability to instantiate and con-

_ ) o ~ trol real and virtual timers. Second, it specifies how the
Dynamic (run-time) code generation is a powerful idiomjnstrymentation code is inserted into the application pro-
that allows a system to adapt to changing functionalam. This specification includes the points in the applica-

demand and workloads. It has been used for extensibigyn program that are used to place the instrumentation
operating system kernels [15], to construct efficient netygge.

work protocols [14], and for compile-on-demand for inter-
preted languages [3]. We use a form of dynamic cod&aOr
generation, calledynamic instrumentatigrin the Paradyn

The technical challenges for this work include support
a wide class of architectures. We address this issue by

. .using a standard language and intermediate form, and by
Parallel Performance Tools [7,13] to make run-time deCIkeeping the instrumentation specifications simple. A sec-

sions about what performance data to collect and Whe'?)‘nd challenge is to generate efficient instrumentation code.

Dynaml_c mstrumenta'qon dlﬁ_ers frgm_other run-_tl_me COdeWhile we cannot avoid instrumentation overhead, we work
generation schemes in that it periodically modifies a run

) ¢ lect inf i bout it i to minimize it. A third challenge is dealing with optimized
ning program fo coflect information about Its execution.  o4e - Unlike many tools, we operate on code generated
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with the full optimization of current compilers. In some the tool run on a variety of platformand that the in-
cases, this forces us to de-optimize small parts of code at strumentation specifications be portable between plat-
run-time so that we can insert instrumentation. Our current forms. For example, if a library writer describes a
instrumentation is at procedure granularity (entry, exit, performance metric for a library, that description
call), so this complexity is manageable; future versions that should be usable on any system that can run the library.
handle basic blocks will require additional development. To achieve this portability, data collection must be de-
Our dynamic code generation iS more genera| than spe- scribed at a higher level of abstraction than machine in-
cialization, but it is not as general as dynamically compiling ~ structions. However, while it is important to have
a procedural programming language. Since we incremen- portable metrics, some types of data may not be relevant
tally generate relatively small pieces of code, we cannot ©On particular platforms. Consequently, a metric descrip-
afford the cost of a full compiler; but simple code templates  tion language needs to permit platform specific metrics.
based on specialization are too restrictive. Decoupling metrics from program componenidthough
Dynamic instrumentation pushes the spectrum of metrics for the entire computation can be useful, gener-
instrumentation technology, complementing techniques ally it is necessary to gather data at a finer granularity.
such as binary rewriting [2,11,16,19]. Dynamic instrumen-  For example, it is possible to report I/O waiting time for
tation defers the decision about what to instrument until  an entire program, by file name, or by procedure. De-
program execution time. Performance can be evaluated on- Pending on the situation, any of these might be useful,
the-fly and changes made to the instrumentation based on ©Or even a combination of them. Describing individual
the application program’s execution characteristics. This ~Mmetrics for all the different ways to isolate the data is
allows long-running programs (such as large scientific ~ hot practical. If there are metrics, andn orthogonal
codes) and already-running programs (such as database Ways to constrain those metrics, then theren@f@dif-
servers) to be instrumented. Both dynamic instrumentation ~ferent combinations! Writing custom definitions for
and rewriting have the advantage of not requiring access to €ach metric and program component combination is im-
the source code. Binary rewriting is a static process that practical for more than a few metrics and program com-
works best when advanced knowledge about what to collect Pponents. We decouple the description of a metric from
is available and remains fixed for the program’s execution. ~ how to constrain it to different program components. As
a result, it is sufficient to descrilme constraints and
1.1 Instrumentation for Performance Debugging metrics M+n).
The rest of this paper describes the language and its
plementation. Section 2 describes the MDL language.
ection 3 describes how we obtain structural information

Performance debugging of parallel programs requires a
detailed understanding of the program’s execution and i

interaction with the hardware on which it is executing. the bi table. Section 4. d ibes h
Given the wide range of hardware, operating systems, pr(gr—Om € binary execylable. Section 2 describes how we
insert and remove the code from a running program. Both

gramming languages, libraries, and primitives for parallel-

ism, it is difficult to build performance measurement toolsSeCtlon 3 and Section 4 discuss issues relating to instru-

that can provide all the required detailed information for aIlmentlng opt|m|zed code. Sectlon_5 describes our dynamic
hardware platforms. A key problem facing tool builders ismstrumentaﬂon and code generation.
how to create tools that are flexible enough to be useful on . -
variety of platforms, yet provide sufficient detail to assisthet”C Description Language (MDL)
the programmer. MDL is a special purpose language for writing instrumenta-
Performance debugging consists of two steps: data cdfion requests. Instrumentation requests are written in terms
lection and data presentation. In this paper, we focus oof performance metricsA performance metric is a time-
making the collection of new types of data easier. Wevarying function that characterizes some part of a pro-
present a language called MDL for describing parallel program’s behavior (such as percent CPU usage or message
gram performance metrics. MDL permits compiler, library,bytes per second). Specifications written in MDL describe
and even application programmers to customize a perfothe basic instrumentation to calculate a performance metric
mance measurement tool to gather the desired data. Rattzerd additional specifications for how to constrain the metric
than continually adding hard-wired data collection ando different program components. An MDL metric descrip-
analysis techniques to a tool, it is preferable to build a petion represents a potentially enormous number of variations
formance tool that is extensible and permits the easy addif possible performance measurements to gather. However,
tion of new types of data. We had several goals for ouonly those metric combinations that have been requested
metric description language: will execute.

Portability. Portability of a performance tool requires that An MDL description can be thought of as a two-part



program. The first part describes where to insert the prazall statements. In the future, points will be extended to
gram instrumentation code (thvehere specification); the include basic blocks and individual statements. Primitives
second specifies the code that will be inserted into thare simple operations that change the value of a counter or a
application (thewhat specification). When, during execu- timer. Predicates are Boolean expressions that can be asso-
tion, a request is made to instrument the application praeiated with primitives to determine if the associated primi-
gram, the where specification is interpreted to compute thize gets executed. By inserting predicates and primitives at
places in the application to instrument. The what specificahe correct points in a program, a wide variety of metrics
tion is then translated into machine code and combinedan be computed.
with the where-specification and information about the con-  MDL differs from most languages in that part of the
trol structure of the application program. The machine codgrogram specification executes when a request to insert
is then inserted into the running program. Figure 1 showgstrumentation is received, and part of it executes inside
the overall flow of information during MDL evaluation the application process to measure its performance. To clar-
Below, we introduce our model of program instrumen-ify the two parts of the language, consider this example:
tation and describe the MDL language. At the end of the foreach i in $procedures
section, we present a short example that shows how an append prelnsn i.entry
MDL metric description is combined with a request to gen- (* proc_calls++; *)
erate instrumentation. The first line contains a loop that (implicitly) declares a
variable to iterate through the list of procedures defined in
the list variableSprocedures 2 The second line contains
two keywords,append and preinsn  (described below)

MDL . Application that indicate where the instrumentation code should be
Program User Input: Binary . . . )
Metrics & (a.out or.exe inserted. The second line also defines the point where the
Focus

instrumentation should be inserted. In this example, we are
inserting the instrumentation at the beginning of the entry to
the procedure defined by the variableThe instrumenta-
tion code to insert is bracketed by the tokénhsand*) .

The code inserted will increment a variaptec_calls
pemmdenn. The result of this code snippet is that every time a proce-
E Application dure is called in the application program, the counter vari-
* Information 1 ableproc_calls  is incremented by one.

When instrumenting a point, controlling whether the
instrumentation happens before or after the code is desir-
able, as is controlling the order of snippet execution if mul-
tiple snippets are inserted at a single point. MDL includes
two parameters for controlling the placement of instrumen-
tation code. We can control whether instrumentation is exe-
cuted before or after the instruction corresponding to the
instrumentation point. This is especially useful for points
that are procedure calls, since it permits instrumentation to
be inserted either immediately before the call, or immedi-
2.1 Introduction to MDL e_ltely after it returns. The two possible values for this modi-

fier areprelnsn andpostinsn . We can also control the
Previously, we developed a simple, well-defined set oprder of instrumentation code snippets if more that one
operations that can be used as building blocks to computgippet is inserted at a given point. When a new snippet is
metrics for the desired program components [7]. To colledfp be added to a point, it can either be added as the first
data, we insert software instrumentation into the programsnippet for that pointpfepend ) or the last gppend ).

By keeping the instrumentation operations simple, we ca®rder is important since snippet execution can change the
optimize their performance for each platform. Recordingsalue of instrumentation variables.

performance information about the application program is
accomplished byoints primitives, and predicates Points

are well-defined locations in the application's code where
instrumentation can be inserted. Currently, the available. $procedures is a predefined variable that lists all procedures
points are procedure entry, procedure exit, and individuah the application program.
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Figure 1: MDL Flow of Control
Dashed-line boxes are generated by Paradyn

In addition to calls to the basic primitives, instrumenta-




tion code blocks also can contain conditional expressionstraint clause that is true when a selected module is active.

call_s to sgbroutines_in _the application, and ref_erences to constraint module /Code is counter {
variables in the application program. The following exam- foreach func in $constraint[1].funcs {
ple uses an application variablémgSteps ) to start a append prelnsn func.entry
timer after the 300th time step of the application. (* module =1, %)
prepend prelnsn func.return
(* if (readSymbol("timeSteps")==300) { (* module = 0; *)
startProcessTimer(x); }

1) }

Program instrumentation generally needs to be insertefhe first part of a constraint clause describes the constraint
into specific procedures in an application or library. Folhame, module , and the resource hierarchy the constraint
example, to compute metrics about a message passigfause applies todGode ). Within a constraint clause, the
library requires instrumentation to be inserted into the mesygriable $constraint is bound to the name of the
sage passing functions. Often, the same instrumentatigasource that has been selected. In this case if the metric
needs to be inserted in several procedures (if a library hager requested a metric restricted to a specific module, the

several entry points). To make this operation easier, MDlesource named might béCode/foo.c , and the
includes a way to create lists of procedures. For example,gonstraint[1] variable would be bound ttoc .3
simple list declaration might be: Associated  with the module described by
list pvm_msg_func is procedure { $constraint[1] is an attributefgncs ) whose value is a
flavor pvm; list of the procedures defined in that module. The constraint
items { "pvm_send", "pvm_recv" } shown in the above code fragment creates a Boolean vari-

}
The first line defines the name of the ligtm_msg_func ,

able that is true when a selected module is active.

] —HHe The power of constraints is that they can be combined.
and the type of the lisprocedure . The second line indi- 4 example, a module constraint could be combined with a
cates that the list applies to PVM programs. The third lingnessage type (tag) constraint to restrict a metric to only
enu_merates the pro_cedures_ln this list. When the list is usgflyqe messages of a specific type that were sent or received
during MDL evaluation, the listed procedures are looked UBy a single module. By combining constraints it is possible

in the application program and any that are not present i metric users to request detailed metrics about applica-
the program are removed from the list. tion programs. Since each constraint corresponds to a Bool-
. ean variable, constraints are combined using an “and”
2.2 Constraints operation
A key feature of MDL is its ability to constrain a metric

description to different program components. Progran2.3 A Complete MDL Definition

components are identified using a hierarchical naming Sy$x complete metric definition contains a description of the
tem. Each program component (e.g., procedure, file, prosade to insert and to compute the un-constrained metric
cess, etc.) has a unique name. Collections of prografle ' a metric computed for the entire application); it also a

components are grouped together in resource hierarchigs of attributes about the metric, and a list of constraints

For example, procedures are grouped together into MOghat can be applied to the metric. Figure 2 shows a complete

ules, and modules are grouped together into & resourGgatric description. The first section of the definition
called Code. Therefore the procedfurecl , located infile 1 des information that is used to display the metric such
testc , would be namefCodeftest.c/funcl as its name, and the units (operations per second). The
To gather performance data about a specific programygregateOperator ~ describes how the metric can be
component, the metric description language provides cortombined from different processes or threads to compute a
straint clauses. Constraint clauses create Boolean variablgigle value for all threads of execution. Most metrics are
that are true when a specific program component is activeombined using a sum operation, but minimum and maxi-
For example, a constraint on a module would be true whefnum operators are also provided. Tlaeor ~field lists the
ever a procedure in that module is the currently executingifferent programming models where the metric is valid.
procedure. The following is an example of a simple consince not all metrics apply to all possible configurations
this provides control over which metrics can be requested.
The second part of the metric description lists constraints

3. The subscripts for resource names start at zero with the most
specific (trailing component) of a name.



that can be applied to this metric. Since not all constraintstatements conditionally increment a variable that counts
may be appropriate to all metrics, only those that apply tthe number of messages sent or received. The last two snip-
the metric being defined are listed. The final section of thpets are inserted by evaluating the base clause for msgs for
metric definition is thebase clause that describes the each of the procedures defined in thedish_msg_func .
instrumentation code necessary to compute the value of th¢ad the metric been requested for the entire program (i.e.,
metric for the entire program. In the example shown, then-constrained), snippets withoifit statements would be
base metric increments a counter every time a function imserted at the entry favm_send andpvm_recv .

the listpym_msg_func is called.

list pym_msg_func is procedure { f0o()

flavor pvm; fooFlg = 1; {

items { "pvm_send", "pvm_recv" };

) fecFo-o >}

constraint procedure /Code is counter {

append prelnsn $constraint[0].entry | it tooFig) msgs++; > pvm_send(...)
(* procedure = 1; *) {..}
prepend prelnsn $constraint[0].return
(* procedure = 0; *) [ (tooFig) msgs++; }> pvm_recv(...)
} {..}
}
metric msgs { Figure 3: Instrumentation Generated for msgs metric
name "Messages"; constrained to the foo function.
units opsPerSecond;
aggregateOperator sum; 2.4 Capabilities and Limitations of MDL
flavor { pvm };
MDL has a simple type system consisting of two base types
/I Constraints that can be applied that can be used in instrumentation code and four types
constraint module; used to define where instrumentation code should be
ConStfa?nt procedure; inserted. The instrumentation code types, counter and timer,
constraint msgTag; can be used in instrumentation code as integer variables and
) , to record the time between events respectively. The four
/I'the base computation of the metric. types used to define where instrumentation can be inserted
base is counter { . . . .
foreach func in pvm_msg_func are: procedure, module, |IS.t, and iterator. .Procedure is an
append prelnsn func.entry constrained a}ggregate type that _descnbes a subroutine and contains
(* msgs++; *) fields for the entry point, return statements(s), and subrou-
} tines called. Modules are collections of procedures. List is
} an aggregate type that represents a collection of variables of

the same type. Lists may be accessed sequentially using

Figure 2: A Complete Metric Description ) . . .
iterators or randomly using array subscript notation (square

Metric “msgs” counts messages sent by PVM message passing
routines (listed inpvm_msg_func ). brackets).

During application execution, a user (or higher level ~ MDL can be used to describe many types of metrics.
software) can request that a metric defined in MDL pdlowever, since the instrumentation code lacks a looping
enabled for a specific combination of program resource§onstruct, the language is not Turing complete. We choose
For example, if the user requested thatrtisgs metric be ~ Not t0 include a looping construct since it would make it
enabled for the procedurt&ode/myprog.c/foo , the impossible to predict the execution time of the instrumenta-
code shown in Figure 3 would be inserted into the prograntion code. With MDL it is currently possible, given the exe-
To satisfy this request, four instrumentation code snippetgution time of called application subroutines, to develop a
are inserted. The first two are inserted into the proceduf@irly accurate model of the cost to execute each instrumen-
foo . The one at the entry point foo sets a counter to 1 tation snippet to be inserted. In Paradyn, we use this cost
whenfoo is called, and the instrumentation at the end ofnformation to control the amount of instrumentation
foo clears the counter whdoo returns. These two snip- inserted into the program [6]. For the metrics we have writ-
pets are inserted by the evaluating the constraint clause. TH¥ o date, we have not found the absence of a looping
third and fourth code snippets are inserted into the messa§ttement a limitation to expressing any metrics we have
passing routinegpvm_send and pvm_recv . These two wanted to create. As we gain more experience with MDL,



we will evaluate whether the absence of a looping construslymbol table. The basic method for finding the other instru-

unduly limits the type of metrics that can be created mentation points is to sequentially scan the code of each
function, beginning from the entry point, searching for

3 Structural Analysis: Parsing the Binary File instruction sequences that implement calls or exit. This step
. _is platform dependent. Scanning the instructions is trivial in
_Parz_idy_n performs a S|mpl_e for_m of structgral_analy3| ost RISC platforms, as all instructions are of the same

to identify mstrument_atlon p0|_nt_s n _the appll_catlon IOm'size; we perform a simple matching. On the x86, where

gram. The result of this analysis is a list of the INStrUMeNt&p o1 ctions have different sizes, we decode each instruction

tion points for each function, annotated with the address % determine its length before processing it, so that we can

the point, the original instruction at the point, and add'_'find the start of the next instruction.

tional instructions that can be replaced when the point is , . L

instrumented. Other useful information about functions is . In many cases, we can find fun_ct|on e>§|t points a_nd call
also obtained during the analysis of the executable. We cfﬁtes by looking f(_)r return and ca_II mstructhns. _Any Jumps
determine if a function is a leaf function, and if the functiont at leave a function are also defined as exit points. Indirect

creates a new stack frame. This information can be usef{ff'PS aré more d|ff_|cu_lt to analyze, since we do not kr_10w
later, when we do a stack trace for inserting or deleting' farget at analysis time, and therefore do not know if an
instrumentation as described in Section 4 direct jump is leaving a function. The basic approach is to

paradvn finds th ints b vzing th ; bIassume that indirect jumps do not leave a function, except
' aradyn Tinds the points by analyzing the eXeCUlablg,; in some cases we can use heuristics to find the target of
file(s) of the application. Our goal is to be able to handle a

bi ble fi hering inf ion f b hﬂ1e indirect jump. For example, SPARC code uses an idiom
arbitrary executable file, gat ering In OrF“a“OP rom bot where the target of a jump is loaded into a register, and then
the symbol table and by scanning the binary image. Whegn indirect jump through that register is used:
we identify a point, we also determine how instrumentation

sethi Hl(addr), reg

could be inserted at that point. Our analysis uses many of
he techniques used in binary rewriting [11] or LOW(addr), reg, reg
the aq y 9 ’ jump reg

An executable file is processed in several steps. In thJF
first step we process the symbol table to get the size a%!"
address of the code and data segments. The result of t
step is a platform-independent representation of the exec

able file consisting of pointers to the code and text segme bde and the target is outside the function, then the jump

(in the memory mapped executable file), and a list of SYMyill be defined as an exit point. In cases where this is not

bols (fungtlons and daFa objectg) annotated with nam ossible, we can insert code to dynamically check the jump
type, starting address, size, and (in some cases) the modul

to which each symbol belongs. An important piece of infor- @stmatlor? _addres_s. _ . .
mation, not directly available on all platforms, is the size of . In addition to finding mstru_mentatlon _pomts_, the an_aly—
each function. The size is needed when we look for instrie'S of the executable also finds additional instructions,
mentation points. If the size is not in the symbol table, w@ither hefore or after a point, _that can be us_ed when instru-
infer the size by locating the starting address of the ne)gpentmg the point. These additional |r_13truct|(_)ns are T‘eeded
function or data object. This inference step is needed evel] Cases where_ we replace_ Se"e“'_’" Instructions to mser_t a
on platforms that supposedly provide the size directly, sinck!MP at Fhat po_|nt (severa_l m;tructlons are needed to build
we have found that many functions do not have the corre{MPS W'th a dlstanF destination). _We CheCk that there are
size in the symbol table. On the AlX/Power2 platform, we'0 JUmps into the middle of these_ mstrucnon sequences, so
determine the end of a function by scanning for the signav-ve can_collect the targgts of all dlre_ct Jumps as we scan the
ture of a trace-back record that follows each procedure jijistructions '°°"'”_9 for mstrumen_tauon points. )
the extended COFF file format. On some platforms (Solaris Several compilers put data in the code segment in a
and HP-UX), we read symbolic debugging information toWay that can make it difficult to distinguish between data
find the module (source file) of the functions, since thi@nd instructions when we scan the executable file. The most
information cannot be derived from the standard symbofommon data that is mixed with code is a jump table for
table. switch statements. We use heuristics that find and skip jump
bles, and are effective on the code generated by the GNU,
un, and Microsoft Visual compilers. For example, many
ndirect jumps are of the form:

is code sequence is frequently used for jumps where the
stance between the target and the jump instruction is
feater than the value that fits in the immediate field of the
1mp instruction. If we find this instruction sequence in the

Once we have the list of functions, the second step is
find the instrumentation points for each function. The
instrumentation points currently provided are function entr)}
and exit points, and call sites. The entry point for each func- jmp dword ptr[reg*4+addr]
tion is defined as the starting address obtained from thgherereg is a general register, ardidr an immediate



value that gives the base address of the jump table. Deperskquence that we want to modify. If there is any jump into
ing on the base address, we can tell if the jump table e middle of an instruction sequence, we cannot modify
within the code segment or not. Although we do not knowthat sequence. If we can not, there are several alternatives:
the size of the table, we can infer it by looking at theinsert a trap instruction (which requires the modification of
addresses in the table. As long as we find an address thabigly one instruction, and always can be safely inserted);
within the current function, we assume that it is part of theopy the larger instruction sequence (including the jump) to

jump table. the trampoline, padding the code to make room for instru-
mentation code and modifying the jump; or reject the
4 Inserting and Deleting Instrumentation instrumentation request for that point.

A major challenge of dynamic (run time) instrumentation, Check|_ng ﬂ:ﬁ targets %f qll(;j_wectt_Jumps 'Sh not tehnotugh,t
that is not encountered in binary rewriting, is interactinghowever’ since there may be Indirect Jumps where Ihe targe
with the execution state of the application program. TSannot be determined until execution time. In those cases

instrument a program at run time, we generate instrumente use heuristics to find the targets of indirect jumps stati-

tion code fragments and place them in dynamically allopally, and this works well for all of the code that we have

cated patch areas callettampolines Once code is encountered from the GNU and commercial compilers. As

generated and placed in the trampolines, it must be tied in e increase the abilities of our structure analysis to include
the application program. The Instrumentation Manager igll control and data dependences, this becomes less of an

responsible for the insertion of instrumentation into and>su¢- The general solution to this problem is to instrument

deletion from the application process. The complete detail@IOSe |nd|rect_1umps t_hat cannot be _analy;ed _and check the
for trampolines are described in Section 5. target at run-time, taking some special action if we find that

Each block of ted inst tati d tbthe target is in the middle of a modified instruction
. ach block ot generated instrumentation code mus Sequence, but we have not implemented this solution yet as
tied to an instrumentation point in the application pro-

. : . we currently have no demand for it.
cesses. To insert this code, we stop the application process ) . :
Sometimes we want to instrument functions that are

and install the code and data (counters and timers) into the o i i b i i t th t
application address space using operating system facilitiég0 small 1o Insert Jumps 1o a base trampoine at the entry
(for UNIX systems, ptrace or the /proc file system). Afterand exit points. This often happens with C library functions

the code is generated for the trampolines, the originaﬁum as read and write. In this case, we relocate the entire

instruction(s) at the point are relocated to the trampoline.unctlon to a different location, near the base trampoline,

The original instruction(s) at the instrumentation point ar e X . - X
then modified to jump to the base trampoline. When thgnodlflcatlon of only one instruction. The original function
instrumentation is disabled, we first remove the branch intt? then replaced with a J_ump to _th_e reIocaFed f_unct|on_.

it from the trampoline, and them reclaim its memory when ~ Another problem with modifying multiple instructions

nd use short jumps, which in most platforms require the

the code is no longer active. is that the program might be executing that particular
instruction sequence at the moment we stop it to insert
4.1 Instrumentation Insertion instrumentation. If we simply resume the program after

L _ . . . modifying that instruction sequence, it will begin executing
Inserting instrumentation requires creating the trampolineg, the middle of the new code. which would cause unpre-

(described in Section 5.1) and modifying the originalgiciapie results. A simple solution is to modify the applica-
instructions in the instrumentation point to jump to the basg '« pC so that the code resumes in the relocated
trampoline. If there is some instrumentation already at thahgiryctions in the trampoline (instead of in their original

instrumentation point, we use the existing trampoline. |5cation). We can also insert a breakpoint (trap) at the end

When instrumentation is inserted at a point, the origiof the sequence and run the program and wait until it
nal instruction at the point must be changed to a jJump to th@aches the breakpoint.

trampoline. Sometimes, the instruction at the point can be
replaced with a single jump instruction. However, in gen4.2 |Instrumentation Deletion
eral we may have to replace multiple instructions at th

point, either because the size of the instruction at the poisﬁlhen ?tﬁelt_atetreque_:,t tl's mglde, v:;(_a prevtehnt f uturet act:rt]lva—
is smaller than the size of a jump instruction, or because wiPns of the instrumentation by mo ifying the jump to the

need several instructions for a jump. First, we must mak ampoline to bypass it. The memory block that contains the
sure that there are no jumps into some Ioc,ation in the midieleted code can also be freed, but first we must make sure

Jhat the code is not active. Requests to delete instrumenta-

dle of the sequence of instructions being modified. We ha q I d and handled i batch .
dle this case by checking that no direct jump in the!on code are collected and handied in a batch to amortize

application jumps into the middle of an instruction the fixed overhead involved in deletion. The queued deletes



are processed when the list exceeds a predefined lengthinestrument such a point, instead of relocating the instruc-
when the total free space drops below a specified thresholtions, we generate new code in the trampoline that emulates

To delete instrumentation, we first stop the applicatiorthe original code, but without the optimized tail-call. For
process and examine the PC and call stack. We check tkte code fragment above, we generate the following code:

PC and current stack frames to make sure that the instru- restore

mentation code is not currently being executed. If it is cur- st %07,[%fp+0x44]
rently being executed, we defer the deletion, placing the call  f

deletion request back on the list and this deletion is o

attempted when deletion is next triggered. Id [%fp+0x44],%07

When we delete the instrumeptation code, we MuStpig de-optimization is used most commonly when instru-
also delete the data (counters and timers) used by that CO‘?ﬁenting C library functions (such as “read”).

Since this data is shared by multiple instrumentation points,

\év:ahlzgazorsference count for each counter/timer to contrg Compiling and Code Generation for MDL
We also handle fragmentation of the instrumentatiof>0Mpiling and generating code for MDL takes place at two

heap by compacting the heap and updating all branch desROiNts in time (see Figure 1). The first stage occurs when

nations and data addresses. The compaction algorithm f&radyn (“MDL Parse”) processes its configuration file
run when a request cannot be satisfied from the free list. containing the basic metric definitions; these definitions are

compiled into parse trees. The second, and more interesting

4.3 Dealing with Compiler Optimizations stage (“Code Generator”), occurs when a request is made to
) . . . . instrument the running program. Machine code is then gen-

A major challenge for run-time tools is coping with com- g ataq to satisfy the request. Code generation is an incre-
piler optimizations. Users are interested in improving thenenta process, with each new request for instrumentation

performance of their applications, and must be able to MeJenerating a new fragment of code in the application pro-
sure their programs with compiler optimizations enabled o,

Many optimizations will not affect our ability to instrument

che aqd .Obtfmn meaningful performance resu]ts, but ““fhe instrumentation code. We then describe the code gener-
tain optimizations could lead our instrumentation to pro- tion for the instrumentation primitives and predicates.

duce incorrect results. Although we do not have a gener%] . L . T
ext, we describe optimizations we use at various points in

method for _d_eallng V.V'th. com_pller optimizations, we €@Mhe code generation. All of the features described in this
handle specific optimizations in such a way that we can get . . . )
meaninaful results. One of these techniaues is to undo co Section are available on all supported architectures: Sun
. giuf resutts. nique . PARC, HP PA-RISC, IBM Power2, DEC Alpha, and Intel
piler optimizations that fuse multiple instrumentation . ; . - .
Pentium architectures, accommodating the idiosyncrasies

points together when an instrumentation request for a fuse ) .
o of the various architectures.
point is made.

_ Some compilers use tail-call optimizationfor fuhc- 5.1 Trampolines: Tying It Together

tions that make a procedure call as its last operation. The ) i ) o
optimized function will not return to its caller; instead it The first step for inserting code into an application is to
gives its return address to the called function, which thedllocate space for the dynamically generated code. Code
returns directly to the caller. On the SPARC platform, theJeneration is done incrementally, as each new request for
tail-call optimization is usually implemented by having theinstrumentation is made. At a given point in the application
instruction in the delay slot of the call instruction modify Program, instrumentation code can be inserted or deleted.

the register where the return address of the call is writteyV& use small code fragments, called trampolines, as the
For example: mechanism to tie this all together. Associated with each

active instrumentation point iskese-trampolingand each
block of instrumentation code is placed in its ommi-
trampoline The base trampoline contains the relocated
original instructions from the instrumentation point in the
Efpplication program, instructions to save and restore regis-
_ . L ters, slots where jumps to mini-trampolines can be inserted,
alternative IS to treat_ the tail ca!l as an exit point, .bUt therE:lmd a jump to return to the application code. The mini-tram-
we could miss the time spent in the called function. OuE)olines contain instrumentation code followed by a jump. If

a_lpproach to this problem is to undo the tail-call optimizas, g o are multiple instrumentation requests for a point, the
tion so to gather accurate performance data. Whenever we

In this section, we first present the basic structure of

call f
restore
This kind of optimization can make it difficult to col-
lect correct performance data. If we treat the call as a no
mal call site, we miss the exit point of the function. An



mini-trampolines are chained together (much as is done[n Instrumentation code (incr primitive)

Synthesis [12]), with the last trampoline in the list jumpingy/ Load counter
back to the base trampoline. To trigger the instrumentatipminitramp: sethi %hi(0x61800),%I0
code, instructions are inserted at the point in the applicatigninitramp+4: Id [%l0+0x3e0],%I0
code to jump to the base trampoline (see Section 4.1). Tie Increment counter
cost of the instrumentation at a particular instrumentatigfnitramp+8: inc %I0

/ Store counter

oint is updated in the base trampoline (for both pre-instri-

P . P . p ( . P minitramp+12: sethi %hi(0x61800),%I1

mentation and post-instrumentation). In this way, Paradyn. . :
. . minitramp+16: st %I0, [%|1+0x3e0]

can keep track of how much perturbation has been intn

. L . GBI Branch to either base trampoline or next
duced into the application. Figure 4 shows the structure 9fmini-trampoline

base and mini-trampolines. minitramp+20: b,a basetramp+44
minitramp+24: nop
Application Base Mini _ . _ _
Program Trampoline Trampoline Figure 5: Mini-trampoline (SPARC architecture)
Save Regs Instrumentation most architectures the range of jump instructions is limited.
Update cost (e.g. StartTimer) We may have to generate multiple instructions to emulate
- [ the original jump, since the destination can be further away
|Func foo: Pre instrument. - than the displacement of the original jump instruction.
— Restore Regs Fpr the x86 architeqture t.here'is an a_ldditional Qiﬁer—.
< ence in the base trampoline. Since instruction length is vari-
Relocated able, we may need to relocate up to five instructions, the
Instruction(s) . . . - . .
instruction at the point, plus additional instructions before
Save Regs or after the point. These extra instructions are moved to
Update cost makg suffic.ient space for the jump to the base trampoline.
Additional instructions that are taken from before the
Post instrument. instrumentation point are relocated to the beginning of the
base trampoline, and additional instructions from after the
Restore Regs . . .
point are relocated to the end of the base trampoline, just
~ before the return to the application code. This permits us to
include a jump instruction in the relocated sequence:
Figure 4: Application Code, Base and Mini-Trampolines L1:
For the base trampoline, we need to reserve space to jeL1
hold the relocated instructions from the application. Nor- leave
mally, we relocate two or three instructions (two feat ret
and its delay slot and some times one additicaak The ret instruction is an instrumentation point, and

before thecall ), but we might need to relocate extra since the instruction is only one byte, we need to relocate
instructions. For example, on the SPARC if there is a funcadditional instructions. Thig instruction can be relocated
tion that returns a structure, then the instruction after thas long as there is no jump to thaeve orret instruc-
delay slot has the size of the structure and it has to be reltions. Since thé¢e L1 is relocated to the beginning of the
cated too. Onenop is added when relocating a jump base trampoline, no instrumentation will be executed if the
instruction, since we currently do not try to fill delay slotsjump is taken:
in relocated instructions. Base trampoline:

The mini-trampoline in Figure 5 illustrates an example jeLl
of an increment primitive (similar to what would be gener- leave

o . int inst tati
ated at the entry oo in Figure 3): it loads the value of the r<eptre point instrumentation=

counter, increments the value of the counter, stores the <post instrumentation> (not reached)
value of the counter and then jumps back to either the base <return to user code>
trampoline or to the next mini-trampoline. Instrumentation of a function return point is handled in

When we relocate a jump or branch instruction to thea special way on the Power platform. Because it can be dif-
base trampoline, we need to modify that jump, since ificult to determine precisely the exact return points, we use



the following approach. We insert instrumentation at thehe number of resource instances. With this amount of
entry point to replace the value of the link register, whichinstrumentation, the perturbation could be intolerable.

contains the return address, with the address of the base- |n5tead, we can allocate a vector of counters/timers for
trampoline for the return point. The original return addresg|| resource instances, and insert code to index into the

is saved on the stack so that it can be restored later. Whgapropriate cells of the vector. The optimized code looks
the function returns, it will jump to the base-trampoline,jike:

which executes the instrumentation code, retrieves the real . .
. . if ( <other constraint> ) {
return address from the stack, and jumps to that location. index = f(arg[1],resource):
vector[index]++;

5.2 Optimizations }

There are several places where optimizations are made o this examplef() is a user-supplied function that maps
our dynamic code generation. Optimization in our environfrom the resource instance to the vector index. This func-
ment has several unique aspects because we are interactiif) also takes as input a description of the resource class
with both existing application code and with previously_(arg[l] in this (_:ase). The number of instructions inserted
inserted instrumentation code. To avoid repeated addrels @ constant independent of the number of resource
computation, we perform common sub-expression enmina’mstan_ces. This_ optimization is especially effective when the
tion. To avoid long streams of redundant instrumentatiofn@pping function can produce a dense vector. To further
when collecting data on many instances of a resource, wWaProve this optimization, we pre-calculate and propagate
employ a simple form of vectorization. all constants at the time of instrumentation.

A simple optimization is eliminating common sub- ~ AS an example, we have measured operations (cache
expressions. This type of operation is particularly effectiveMisses) for each memory block (cache line) in arrays in the
since we frequently have multiple references to compute@Pplication program. We allocate a vector of counters, one
addresses. During code generation, we use the stand&@unter associated with each memory block the array. The
techniques of generating the code once for such an exprd&source in this case is the user array, and the information
sion and keep the result (if possible) in a register until théhat we use in the mapping function is the base address and

last occurrence of the sub-expression. length. The resource instance specifiedatn[l] is the
gnemory address. Functid) mapsarg[l] to a cell in

same resource can generate repetitious and expensﬁ/hg counter vectqr based on the array information gnq the
instrumentation. For example, this situation can occur whef['€MorY block size. For this example, the unoptimized

profiling many memory blocks. In each case, there could b@strumentation execute§(X+15) instructions in the mini-

hundreds or thousands of instances of each resource. SirH:%mpO"ne’ whereN is the number of resource instances

each instrumentation request is generated separately, \ﬁgdx's the numbgr of |ns_truct|ons fpr r_eglster save/restore
d other constraints. With vectorization, the number of

need to detect independent requests and vectorize them. ) : L
Without vectorization, the generated code might look like: Instructions is<+28. A peephole optimization could further
' reduce the number of instruction Xa-20. Since memory

Collecting performance data for many instances of th

if( <other constraint> ) objects are numerous, vectorization saves a substantial
if (arg[1] == instancel) amount of time
counterl++; '
if ( <other constraint> )
if (arg[1] == instance2) 6 Performance Measurements
counter2++; . ) . )
o The critical performance cost for our instrumentation is the
if ( <other constraint> ) time it takes to go from the user code to the trampolines and
if (arg[1] =t= 'Eiti‘”ce'\‘) back. The cost of the instrumentation code itself (the part
counter )

that calculates the metrics) is specific to the semantics of
The firstif ~statement represents a constraint not related the metric description, so it is difficult to make general
the vectorization (such as constraining to a particular proctatements about it. For the counter and timer operations,
dure). The secondl statement in each group is the targetwe have previously reported these costs [7].

of the vectorization optimization. Note that this optimiza- The results in Figures 6 and 7 show the performance of
tion is similar to that used in a “switch” statement. Theyr code patching system on four different processor archi-
arg[1]  term specifies the resource instance; in this xaMgcyyres. The overall time shown in the fourth row of
ple, it means that the instance is identified by parameter 1 gfq 1o 6 reflects the time required to execute instrumenta-
the function in which this instrumentation was inserted. Th,q to call an empty procedure at a single point in a pro-

number of instructions inserted is linearly proportional togram. Due to our need to preserve machine state and



x86, 200MHz, Pentium- SPARC, 110MHz, Power. 66MHz. Power2 PA-RISC, 50MHz, HP
Pro microSPARC I ' ' 9000/715
Call to empty procedure 40ns 87ns 156ns 261ns
* base trampoline w/jump 67ns (1.7) 209ns (2.4) 226ns (1.4) 633ns (2.4)
(no saves/restores)
+ base trampoline wi/trap 42 120ns nia n/a n/a
(no saves/restores) ’
+ base trampoline w/jump
(with savesfrestores) 264ns (6.6) 504ns (5.8) 365ns (2.3) 1374 (5.3)
+ empty mini-trampoline 281ns (7.0) 556ns (6.4) 465ns (3.0) 1632ns (6.3)

Figure 6: Cost of Triggering Instrumentation.

The 1st line is the cost of a procedure call with no parameters, with no instrumentation in place. The 2nd line adds the jump
to the base trampoline and back, with no register save/restores and no jump to mini-trampolines. The 3rd line uses a trap
instruction instead of a jump to get to the base tramp. The 4th line adds register save/restores (to the jump case)eThe 5th |i
adds to the base tramp the register save/restores and a jump to an empty mini-trampoline. Numbers in parentheses are cost
relative to the empty procedure call.

decide if we really need to save registers at a specific instru-
mentation point.

i

r:g ' The third row of Figure 6 also shows the time required

0 to execute a null procedure when we have to use a trap
| ;iLI [Bnramp instruction. As expected, since this requires a trap into the
E. en | O sinvsireslone operat|.ng system k.ernel, this t|m§ is S|gn|f|cantly longer
- than simply executing a branch instruction (42us versus
i\ Al B hase Iramp .
| R, 2$1ns). Howe\{er for many uses such as Qata brgakpomts,
L | this approqch is much faster than a trap instruction and a

il context switch to a separate debugger process.

0 There are also several other opportunities to improve

the performance of our instrumentation system. First, the
base trampoline is a static code template with place holders
(nop's) for all possible situations. By customizing the base
trampoline for each situation, we could improve the time of
base trampoline execution for most cases. Likewise, we
could fuse the base and mini-trampolines to reduce the
squeeze the code into an existing binary image, the timgfumber of branches by two. This change would improve
are somewhat higher than a traditional compiler would genrun-time performance at the cost of greater complexity in
erate for a procedure call. managing multiple mini-trampolines at a single point.

For most architectures, the largest share of the time is
spent saving and restoring machine state. For example, ghConclusions
the x86 platform, 70% of the time is spent saving an . .
restoring machine state. Most of this time is spent preserﬂ)[' th's_ paper we ha_ve mtroduce_d MDL, a Ianggage for
ing one registeflags Saving and restoring this one registerdynar_nIC _program |nstrumentat|on_. MDL. provides a
required 112ns or 40% of the total instrumentation time. Olrlnachlr_1e mdepgndent way _to d_escrlbe the instrumentation
the SPARC, we use the register wheel to preserve the loc be_ inserted into an application program. _The_ language
and parameter registers, but must still preserve the gene o includes features to de-couple_ the specn‘lcat_lon of what
and floating point registers to ensure correct behavior. Th ata to collect from how to constrain data collection to par-

save and restore time is significantly shorter on the Powerlv‘f'Jlar program components such as procedures. In addi-

architecture, since we only save registers when they a ﬁn, M?L pﬁrrlnlts customlzatlorél (I)f bdata cq:!(_ectlon tt(')
used by the resulting instrumentation. A more thoroug ierent para’iel programming modets by permitting meric

analysis of the instrumentation code could be used tgefinitions to be tagged for specific programming models.

XBE
SPARC
Powers

PA-RISC

Figure 7: Cost of Operations Normalized by Clock Speed



The second part of this paper described the meché®l
nisms we used to create a run-time instrumentation com-
piler. Our run-time code instrumentation system differs
from binary editors and run-time code specialization tool$0!
since we need to both generate code at run-intveave
it into arbitrary points in a binary image during its execu-
tion. We presented techniques to squeeze instrumentati&!
into tight code sequences, including moving code and
selective de-optimization of compiler generated code. W
also reported ways to insert and delete code from a running
program, and optimization techniques for run-time code
generation. [13]

We allow instrumentation of optimized code on all our
supported platforms, including the commercial compilers
such as IBM xlc, Microsoft Visual, and Sun Sparcworks.
As compiler technology advances, our dynamic instrumen*4!
tation will have to advance with it. Our ability to handle
optimizations in the future may depend on the compiler
providing more information about the nature of its transfor{*®
mations.

Our run-time code generation system currently pro-
duces code for the SUN SPARC, HP PA-RISC, DEC
Alpha, IBM Power2, and Intel x86 architectures. All fea-[16]
tures described in this paper have been incorporated into the
Paradyn parallel performance tools. We have also creatéty]
an API to export the run-time compiler features for other
uses.
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