
(To Appear: International Performance, Computing, and Communications Conference, Feb. 1998. Phoenix, AZ)

1

Benchmarking a Network of PCs Running Parallel Applications1

Jeffrey K. Hollingsworth Erol Guven Cuneyt Akinlar

Dept. of Computer Science
University of Maryland

{hollings,eguven,akinlar}@cs.umd.edu

Abstract
We present a benchmarking study that compares the per-
formance of a network of four PCs connected by 100 Mb/s
Fast Ethernet running three different system software con-
figurations: TCP/IP on Windows NT, TCP/IP on Linux and
a light weight message passing protocol (U-Net Active
messages) on Linux. For each configuration, we report
results for communication micro-benchmarks and the NAS
parallel benchmarks. For the NAS benchmarks, the overall
running time using Linux TCP/IP was 12 to 500 percent
less than the Windows NT TCP/IP configuration. Likewise,
the Linux U-Net based message passing protocol outper-
formed the Linux TCP/IP version by 5 to over 200 percent.
We also show that using Linux U-Net we are able to
achieve 125 micro-second latency between two processes
using PVM. Finally, we report that the default math li-
braries supplied with NT (for both gcc and Visual C++)
are substantially slower than the one supplied with Linux.

1. Introduction•

The low cost of commodity hardware and software has
encouraged their use for parallel computation. However,
the high overhead associated with message passing and
other system services in such environments often limits
their performance. In this paper, we present performance
measurements of a network of PCs connected with
100Mb/s Fast Ethernet running the Numerical Aerody-
namics Simulation (NAS) parallel benchmarks[1] devel-
oped by NASA. Our goal in this paper is to asses the im-
pact of different low-level communication systems and
operating system services on the performance of parallel
applications. A secondary goal is to identify specific bot-
tlenecks in system software that limit parallel application
performance.

All of the parallel applications used the Parallel Vir-
tual Machine (PVM) message passing library[5] developed
at Oak Ridge National Laboratories. The benchmarks were
run on Windows NT using TCP/IP, and on Linux using
TCP/IP and U-Net Active messages[13], a low latency

1 Supported in part by NSF Grant ASC-9703212, and DOE Grant
DE-FG02-93ER25176.

message passing protocol. In order to better understand and
interpret the application results, we also tested the per-
formance of the TCP/IP stack using a simple ping-pong
benchmark. We used the Pentium processor’s hardware
counters[8] to isolate performance differences between
these two platforms.

To pinpoint the differences between the two operating
systems, we also investigated the performance of a pure
computation kernel extracted from one of the NAS bench-
marks. We used this kernel to compare the performance of
the memory hierarchy, compiler, and math libraries. To
obtain a detailed understanding of this benchmark, we used
the Pentium hardware counters to measure floating point
operations, cache activity, and instructions executed.

The organization of this paper is as follows: Section 2
describes our experimental configurations; Section 3 pres-
ents our micro-benchmarks of communication perform-
ance; Section 4 reports the results for the NAS bench-
marks; Section 5 describes our evaluation of the compiler
and memory hierarchy; Section 6 reports our experience
with math libraries; and Section 7 compares our results to
previous work. Finally, Section 8 summarizes the conclu-
sions drawn from our experiments.

2. Experimental Configuration
Our experimental configuration consisted of four

nodes. Each node contained a 120 MHz Pentium proces-
sor, 64 megabytes of memory, a 10 Mb/sec Ethernet card,
and a SMC EtherPower 100 Mb/sec Fast Ethernet card
(DEC 21140 chipset). The 10 Mb/sec Ethernet card is
needed to run PVM with U-Net because U-Net cannot
share the network interface with the kernel TCP/IP stack
and we use the TCP/IP stack for PVM’s process manage-
ment functions such as pvm_spawn. Thus, in experiments
involving U-Net, PVM uses 10Mbits/s Ethernet card
through kernel TCP/IP and U-Net uses Fast Ethernet card
with its own device driver.

The benchmarks were run under three different soft-
ware configurations:
• Windows NT 4.0 with PVM using the standard

TCP/IP stack and the Fast Ethernet card.

2

• Linux 2.0.1 with PVM using the standard TCP/IP
stack and the Fast Ethernet card.

• Linux 2.0.1 with PVM using U-Net Active messages
over Fast Ethernet card (described below).

U-Net is a protected, user-level network architecture
for low-latency and high-bandwidth communication. The
U-Net driver provides best effort delivery of data between
two processes. To run applications, we implemented the
basic PVM message passing operations (point-to-point and
multicast) as a library on top of the Generic Active Mes-
sage[12] library supplied with the U-Net driver. This al-
lowed us to run unmodified PVM applications in all of our
test configurations. To provide source compatibility we
replicated PVM’s pack and un-pack interface at the cost of
an extra data copy per message send.

3. Communication Micro Benchmark
 In this section, we present the results of a simple ping-

pong benchmark to measure the round-trip time of a mes-
sage. Three versions of the same benchmark were imple-
mented: One using core Active Messages; one using PVM
message passing library over TCP/IP; and one using our
implementation of PVM message passing library over U-
Net Active Messages.

We define the round-trip time as the time required for
a message to be sent by the sender, echoed by the receiver,
and received again by the sender. In order to reduce sam-
pling errors, the message is sent back and forth 3,000 times
and the average of the last 2,950 of these round-trip times
is taken.1 Since each message is sent twice, the bandwidth
is computed as half the round-trip time. Figure 1(a) shows
bandwidth (MB/s) versus message size achieved by PVM-
NT, PVM-Linux, PVM over U-Net Active messages and
core U-Net Active messages.

The graph in Figure 1(a) shows the micro benchmark
results when direct routing is used with PVM. Linux/TCP
incurs a cost of 527 microseconds for a four byte message;
whereas the same messages take 151 microseconds for
PVM/U-Net. As the message size is increased, the high per
message cost of the TCP version is amortized over a larger
message and the performance gap between the two ver-
sions narrows, but is still over 40%. The four byte message
NT/TCP performance was 1.3 milliseconds which is a
factor of 2.4 slower than Linux/TCP and over 10 times
slower than U-Net.

To quantify how much of the performance difference
between Windows NT and Linux is due to their respective
TCP/IP implementations, we repeated our micro-
benchmark study using raw TCP/IP rather than PVM. We
used a simple ping-pong benchmark to measure round-trip
latency and bandwidth between two nodes on an otherwise
idle Ethernet segment. The graph Figure 1(b) shows the

1 The first 50 iterations were dropped to allow for any dirty vir-
tual memory pages from other applications to be flushed.

bandwidth achieved by PVM and TCP/IP on two operating
systems. The results clearly show that latency in the Linux
implementation of TCP/IP protocol is much less than Win-
dows NT implementation.

0

2

4

6

8

10

12

4 48 96 19
6

37
6

97
6

16
00

23
00

30
76

38
00

44
00

50
76

56
00

80
00

Message Size(Bytes)

B
an

d
w

id
th

 (
M

B
/s

ec
)

PVM - Linux

PVM- NT

PVM - Unet

Raw- Unet

 (a)

0

1

2

3

4

5

6

7

8

9

4 48 96 19
6

37
6

97
6

16
00

23
00

30
76

38
00

44
00

50
76

56
00

80
00

Message Size (Bytes)

B
an

d
w

id
th

 (
M

B
/s

ec
)

TCP - Linux

TCP - NT

PVM - Linux

PVM- NT

(b)
Figure 1: Bandwidth vs. Message Size.

As shown Figure 1, bandwidth in Windows NT
TCP/IP is half of that in Linux for small messages. This
cost is primarily due to start-up cost in Windows NT
TCP/IP stack. As the message size is increased, bandwidth
becomes the bottleneck of communication. Although the
difference in round-tip latency of two systems becomes
smaller as the message size is increased, for 10KB mes-
sages Windows NT it is still 60% slower than Linux.

We performed a black-box analysis of the NT kernel
versus the Linux kernel to see if we could infer the source
of the differences in TCP performance. To do this, we used
the Pentium hardware counters to measure the behavior of
the memory hierarchy and instructions executed on each
platform. A summary of our findings appears in Figure 2.
The values in this figure were gathered by sending 3,000
messages, each 10,000 bytes long between two nodes.
Since the Pentium counters can only measure two values at

3

once, the test program was run multiple times under each
operating system configuration. The measured elapsed
wall-time for different executions on the same OS configu-
ration varied by less than 3% for both platforms. The first
row of the figure shows that Windows NT requires 60%
longer to execute the test program based on the elapsed
cycles. Two factors contribute to NT’s slow performance
relative to Linux. First, the total number of instructions
executed under NT is 32% more than under Linux. Second,
the average number of cycles per instruction (Avg. CPI) is
7.58 on NT, but only 6.00 on Linux. For both operating
systems, the average cycles per instructions is substantially
higher than would typically be expected for the Pentium
processor. However, since this test program consists of
only calls to message passing routines, the high CPI values
are unsurprising because of poor cache locality due to fre-
quent kernel-user space copy operations.

To obtain a better understanding of the source of the
increased cycles per instruction on Windows NT, we used
additional hardware counters to measure the performance
of various architectural features of the Pentium processor.
Specifically, we measured the caches, translation look-
aside buffers (TLB), utilization of the second integer exe-
cution unit (V-pipe), and branch prediction logic. The re-
sults of these measurements also are shown in Figure 2. For
each hardware feature, we report the number of operations
where that feature slowed program execution, the percent
of instructions that experienced this slowdown, the ap-
proximate number of cycles required to handle this opera-
tion, and the amount this type of operation increased the
average cycles per instruction.

To convert from operations to cycles for each of the
hardware features, we used published information from the
Pentium Programmer Manual[7]. Specifically, 5 cycles for
unpredicted branches, 3 cycles each for misaligned data
read references, 6 cycles per instruction for v-pipe utiliza-
tion, and at 41 cycles each for TLB misses were used. In
addition, instruction cache misses are assumed to average
14 cycles each. For the data read misses, we used the count
of pipeline data memory read stalls reported by the

Pentium monitor.
The last two columns of Figure 2 show the increase in

CPI for NT versus Linux. Overall data read stalls are re-
sponsible for 37% of the increased CPI under NT, code
cache misses, 15%; misaligned data references, 11%; and
differences in V-pipe utilization, 11%. The data read stalls
include both the time required to service data cache misses
and the stalls caused by memory operands on integer in-
structions other than mov. For utilization of the second
integer unit (called the V-pipe), the Linux version was able
to execute 23.6% of the instructions in this unit and NT
was able to execute 20.7% of its instructions there. For
this metric, a higher percentage of operations is desirable
since it implies that fewer instructions will execute in the
primary execution unit. For V-pipe utilization, the ap-
proximate cycles and CPI values are an indication of the
average number of cycles per instructions saved by using
the second unit. In addition, branches that were taken, but
not predicted by the branch prediction logic are responsible
for approximately 7% of the additional cycles per instruc-
tion. Finally, code TLB misses and data TLB misses con-
tribute approximately 5% and 4%, respectively.

In summary, the longer code paths (indicated by in-
creased instruction counts), and poor memory hierarchy
utilization explain the differences in time required between
Linux and NT for the micro-communication benchmark.

 To verify that the CPU time for protocol processing
time by the NT operating system was responsible for the
overall difference in TCP performance, we configured our
Ethernet cards to use classic 10 Megabit-per-second
Ethernet (by replacing the Fast Ethernet hub with a stan-
dard one). When run at lower speeds and large packet
sizes, the NT operating system is able to achieve data
transfers of 1.1 MB/s, which is nearly wire speed. This
confirmed our suspicion, that protocol processing in NT is
being masked by the low bandwidth of 10 Mbps Ethernet.

Another significant component of overhead required to
send messages is the PVM system itself. By comparing the
curves showing the raw TCP results versus the PVM re-
sults for the same operating system we see that a consider-

Linux Windows NT

Operations
Pct.

Instr.
Approx.

Cycle Count
Avg.
CPI Operations

Pct.
Instr.

Approx.
Cycle Count

Avg.
CPI

Extra
CPI

Percent
Extra CPI

Instructions executed 164,773,816 989,074,214 6.00 217,488,387 1,648,579,760 7.58 1.58

Data read Misses 6,073,500 3.69 283,205,815 1.72 12,342,575 5.68 502,519,616 2.31 0.59 37.5

Code cache miss 12,469,533 7.57 162,103,929 0.98 20,542,717 9.45 267,055,321 1.23 0.24 15.5

Misaligned data refes 8,148,426 4.95 24,445,278 0.15 23,361,052 10.74 70,083,156 0.32 0.17 11.0

V-Pipe Utilization 38,829,901 23.57 (233,081,049) (1.41) 44,963,826 20.67 (269,900,655) (1.24) 0.17 11.0

Un-predicted Branches 5,986,357 3.63 29,931,785 0.18 12,982,186 5.97 64,910,930 0.30 0.12 7.4

Code TLB miss 367,307 0.22 15,059,587 0.09 872,205 0.40 35,760,405 0.16 0.07 4.6

Data TLB miss 42,122.00 0.03 1,727,002 0.01 1,727,002 0.79 14,783,083 0.07 0.06 3.6

Other 0.15 9.3

Figure 2: Comparison of TCP Performance.

4

able overhead is introduced by PVM over raw TCP/IP. For
small messages, overhead is more than twice the pure
communication cost of TCP/IP in both Linux and NT. The
overhead is still over 60% for large-sized messages. The
primary reason for this additional overhead is the extra
copy required to implement the pack and unpack semantics
of PVM. Other message passing interfaces such as MPI[6]
and Nexus[4] do not require this step. In Nexus, for exam-
ple, the overhead added by the message passing layer has
been reported as less than 10 µs.

4. Application Benchmarks
The Numerical Aerodynamics Simulation (NAS) par-

allel benchmarks are a set of eight programs designed to
measure the performance of parallel supercomputers. We
used a version of the benchmarks implemented using PVM
message passing primitives. The NAS suite consists of
three C and five Fortran 77 programs. Five of the programs
are general-purpose kernels that occur frequently in scien-
tific applications, and three are kernels taken from compu-
tational fluid dynamics. This suite of test programs is use-
ful for our study since it includes programs with varying
computational granularity and differing message sizes.

In this section, we describe the performance results for
each benchmark. The execution times denote the wall
clock time and are the average of five runs. Figure 3 shows
the performance results of all of the benchmarks for the
three configurations. Figure 4 shows the communication
statistics for the applications. The same results are pre-
sented graphically in Figure 5.

Performance results for Embarrassingly Parallel Ker-
nel (EP) are shown in Figure 3. Since there is no communi-
cation, U-Net and Linux TCP results are almost the same.
However, the same benchmark takes longer to execute in
NT due to the increased execution time of functions in the
NT math libraries as shown in Section 6.

The Multigrid (MG) benchmark was run for a data
size of 1283. For this application each processor sends
messages ranging in size from 100 bytes to 32K bytes.
PVM over U-Net clearly out performs the TCP based con-
figurations. The computation time is almost equal in all
platforms but communication time is less in U-Net. This
behavior can be explained by the results in Figure 1 that
show the overhead of TCP is around 1.5 times that of U-
Net for 10K messages (an average message for MG).

For the Integer Sort benchmark (IS) used 220 elements
and keys in the range of 218. Over 75% of the messages
sent by this program were one megabyte or larger. As a
result of these large messages, bandwidth is the dominate
factor; thus, all three platforms perform almost identically.

Block tridiagonal solver (BT) and Pentadiagonal
solver (SP) benchmarks are both communication bound
and send many medium-sized messages ranging from a few
hundred to a few thousand bytes each. Due to these numer-
ous messages, the U-Net versions of the applications run

25 to 130% faster than the Linux TCP version. The NT
version takes two to three times longer than the Linux ver-
sion due to the gap in communication speed between the
platforms for messages of 1KB (shown in Figure 1).

2 Processors 4 Processors
App OS-Comm Total

Time
Comm
Time

 Total
Time

Comm
Time

 Linux-TCP 143.7 0 81.0 0
EP Linux-UNet 139.7 0 82.1 0

 NT-TCP 262.2 0 145.3 0
 Linux-TCP 33.3 18.9 24.6 17.2

MG Linux-UNet 27.3 12.6 18.3 10.9
 NT-TCP 37.3 22.1 27.4 20.0

 Linux-TCP 18.0 11.6 16.3 14.0
IS Linux-UNet 17.0 10.1 15.4 13.1

 NT-TCP 20.3 13.8 16.4 14.7
 Linux-TCP 107.7 81.5 58.3 45.2

BT Linux-UNet 70.0 44.4 46.4 33.5
 NT-TCP 262.0 184.6 158.0 144.5

 Linux-TCP 107.6 91.2 59.5 52.2
SP Linux-UNet 45.5 29.8 33.4 26.7

 NT-TCP 292.6 277.6 199.6 193.2
 Linux-TCP - - 22.5 17.8

FT2 Linux-UNet - - 15.3 10.8
 NT-TCP - - 38.1 32.1

 Linux-TCP 15.6 10.9 15.7 13.1
LU Linux-UNet 7.6 3.0 5.4 3.2

 NT-TCP 103.0 98.0 100.2 96.6

Figure 3: Comparison of Execution Times.

Program Bytes Msgs Msg Size Bytes/sec3 Msgs/sec

MG 1,532,360 181 8,466 140,583 16.6

IS 33,558,120 41 818,491 2,561,689 3.1

BT 88,708,888 52,923 1,676 2,648,027 1,579.8

SP 30,948,112 22,703 1,363 2,865,566 2,102.1

FT 11,010,384 42 262,152 3,440,745 13.1

LU 244,944 5,105 48 9,174 191.2

Figure 4: Message Statistics for NAS Applications.

Although Fast Fourier Transform (FFT) sends a small
number of large messages (about 256KB each); even this
does not save the benchmark from being communication
bound as shown in Figure 3. The U-Net communication
time is still about 45% faster than Linux TCP. However,
the communication cost reduction is not as large as it was
for the LU benchmark because the message size is larger.

The Lower block-Upper block matrix decomposition
(LU) benchmark sends very small messages, less than 50
bytes each. Because of these small messages U-Net out
performs the others by the largest margin on this applica-
tion - a factor of 2.9 faster than Linux and 18.6 times faster
than NT.

2 FT could not be run on two nodes due to a lack of memory.
3 The aggregate rate for all processes in the entire application.

5

SE
C

SE
C S
E

C

SE
C

SE
C

EP - 4

0.00

50.00

100.00

150.00

Linux-
Unet

Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

IS - 4

0.00

5.00

10.00

15.00

20.00

Linux-
Unet

Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

MG - 4

0.00
5.00

10.00
15.00

20.00
25.00
30.00

Linux-
Unet

Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

SP - 4

0.00

50.00

100.00

150.00

200.00

Linux-
Unet

Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

BT - 4

0.00

50.00

100.00

150.00

200.00

Linux-
Unet

Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

LU - 4

0.00
20.00
40.00
60.00
80.00

100.00
120.00

Linux-
Unet

Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

FFT - 4

0.00

10.00

20.00

30.00

40.00

Linux-
Unet

Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

IS - 2

0

5

10
15

20

25

Linux-Unet Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

MG - 2

0

10

20

30

40

Linux-Unet Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

SP - 2

0
50

100
150

200
250
300

Linux-Unet Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

BT - 2

0
50

100
150

200
250
300

Linux-Unet Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

LU - 2

0
20
40
60
80

100
120

Linux-Unet Linux-
TCP/IP

WinNT-
TCP/IP

Comm

Exec

Figure 5: Performance Results for All Benchmarks (All Y-axes in seconds).

6

5. Instruction and Memory Behavior
Many scientific programs are constrained not only by

computation, but also by the amount of memory available
and the performance of the memory hierarchy. Due to the
importance of the memory hierarchy to application per-
formance, we compared the performance of the memory
hierarchy under each OS configuration for the NAS
benchmarks.

Figure 6 shows the floating point operations per-
formed in user mode. In both systems, the results are simi-
lar. In EP, BT, and SP, NT performs more operations than
Linux; these extra operations are due to the floating point
operations performed as part of the NT TCP/IP imple-
mentation. (During our micro-benchmarking of TCP/IP, we
verified that NT performs user space floating point opera-
tions during communication.)

0.50

0.75

1.00

1.25

EP IS MG LU BT SP

R
at

io
 t

o
 N

T

Linux

NT

Figure 6: FPU Instructions (normalized to NT).

Figure 7 shows the user mode instruction cache misses
for the TCP versions of the NAS applications. NT clearly
has bad cache locality. For the three applications with sig-
nificant instruction cache misses (LU, BT, and SP), NT’s
miss rate is 8 to 400% higher than Linux. Chen et al.[2]
have shown a similar result for sequential workloads. We
speculate that these cache misses result from frequent con-
text switches among system services and applications
caused by message passing. All three applications with
poor instruction cache miss rates frequently send messages.
These three applications also had the greatest slowdown
relative to Linux/TCP. Also, the poor cache locality is con-
sistent with the micro-benchmarks presented in Section 2.

0
2
4
6
8

10
12

EP IS MG LU BT SP

P
er

ce
n

t
M

is
se

s

Linux
NT

Figure 7: Code Cache Misses.

6. Math Libraries
Based on the observation that the EP application

showed such a large variation in performance when run on
NT and Linux, we decided to investigate why two identical

compute-bound jobs would have different behavior. We
discovered that the problem was due to differences in the
way the math libraries are implemented on the two plat-
forms.

We extracted the main computational loop of the EP
benchmark and compiled it with gcc and Visual C++ on
NT, and gcc on Linux. Figure 8 shows the results of run-
ning this program. This benchmark makes extensive use of
math library function calls. Gcc and Visual C++ on NT
produce similar results. However, both NT versions exe-
cute more than twice the number of instructions executed
by Linux gcc, yet the number of floating point operations
performed is approximately the same. By disassembling
the math library functions for each program, we verified
that the default math libraries on NT for both gcc and the
Microsoft C compiler generate software implementations
of rounding down and up (floor, ceil), absolute value
(fabs), and logarithm (log10). The Linux version of the
math library used the Pentium hardware instructions for
these functions. We then replaced the version of the math
library with one that used the native instructions for these
functions. The performance under Windows NT using the
modified math libraries is within 10% of the performance
under Linux. The results of that experiment are shown in
the bars labeled “fixed math”.

0

1

2

3

4

5

6

7

flops insns cycles

B
ill

io
n

 O
p

er
at

io
n

s Linux-GCC

Fixed Math

NT-GCC

NT- Microsoft C

Figure 8: Comparison of Math Libraries.

7. Related Work
Chen et al.[2] have studied the interactions of applica-

tion programs on different personal computer operating
systems (Windows, Windows NT, and Net BSD). How-
ever, the applications were traditional sequential UNIX
applications. Our work differs in that we measure the per-
formance of communication intensive parallel applications.

Nahum et. al[11] studied the cache behavior of net-
work protocols on actual and simulated versions of the
MIPS R4400 processor. Their study showed that with di-
rect mapped caches and TCP checksums disabled, instruc-
tion cache performance dominates the memory hierarchy’s
performance. Our results show that for Pentium processors,
that the performance of the data cache is more important
than the instruction cache. However, for a configuration
comparable to ours (8KB two-way set associate caches and

7

TCP checksums enabled), their data indicates that the data
cache has a higher miss rate than the instruction cache.

An alternative to provide higher communication
throughput is third party transfers where a user process
supplies a file handle and a network connection to the ker-
nel, and the kernel completes the transfer. Such systems
have been proposed by Fall and Pasquale[3], Miller and
Tripathi[10], and commercially by Microsoft[9]. However,
third party transfers are only appropriate for cases where
data is merely being shipped from one device to another
(e.g., file servers or static web page servers). For other
applications such as parallel computing, database process-
ing, or dynamic web page creation, efficient data move-
ment from user space process to the network is required.

8. Conclusions
In this paper, we presented the performance of a net-

work of four PCs connected with Fast Ethernet running the
NAS parallel benchmarks under two different operating
systems and two message passing systems: PVM and U-
Net Active Messages. The Embarrassingly Parallel bench-
mark, which involves just computation and no communi-
cation between processes, shows how well PCs perform on
computationally bound, floating point intensive workloads.
However, EP performed worse on NT than on Linux due to
the poor performance of its math library.

The more common barrier is the high latencies in-
curred by message passing libraries. We presented the exe-
cution times of benchmarks when a low cost message
passing library, U-Net Active Messages, is used instead of
TCP. Message passing costs are much lower for small mes-
sages in U-Net than TCP. The LU benchmark is a typical
example of this kind of a program; communication cost is
reduced by a factor of three compared to TCP/IP-based
PVM. But even in the FFT benchmark, where cooperating
processes send large messages (on the order of 250KB), U-
Net performs better than TCP.

We also presented results for PVM under two operat-
ing systems: Linux and NT. For most of benchmarks, exe-
cution times are longer with NT due the poor performance
of its TCP/IP stack. As we showed in Section 3, round trip
time for TCP is much higher for NT than it is for Linux. In
terms of processor performance, NT also shows bad cache
locality. For two of the applications NT had instruction
cache miss rates several times higher than Linux. We also
showed that the math library implementations on both sys-
tems are considerably different. The gcc math library in
Linux is much more efficient than either the Visual C or
gcc math libraries in NT. This is very important drawback
for NT, especially for scientific applications.

In conclusion, the standard distributions of NT and Li-
nux are not able to achieve consistently high performance
for parallel applications. However, with the addition of low
latency message passing libraries, Linux achieved a sig-
nificant fraction of the raw hardware performance.

Acknowledgments
The authors thank Matt Welsh and Anindya Basu from

Cornell University for their great help and patience for
answering our many questions and addressing the problems
we encountered during the installation and use of the U-
Net software and Active Messages. We thank Ismail Hari-
taoglu from the University of Maryland for his help in run-
ning the Windows NT benchmarks. We also thank Rich
Gerber for his helpful suggestions about the structure and
presentation of this paper.

References
1. D. H. Bailey, E. Barszcz, J. T. Barton, and D. S.

Browning, "The NAS Parallel Benchmarks," Interna-
tional Journal of Supercomputer Applications, 5(3),
1991, pp. 63-73.

2. J. B. Chen, Y. Endo, K. Chan, D. Mazieres, A. Dias,
M. Seltzer, and M. D. Smith, "The Measured Perform-
ance of Personal Computer Operating Systems," 15th
SOSP. Dec. 1995, pp. 299-313.

3. K. Fall and J. Pasquale, "Improving In-Kernel Data
Paths," IEEE International Conference on Multimedia
Computing and Systems (ICMCS). 1994, pp. 100-109.

4. I. Foster, C. Kesselman, and S. Tuecke, "The Nexus
Approach to Integrating Multithreading and Communi-
cation," J. Parallel and Distributed Computing, 37(1),
1996, pp. 70-82.

5. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Man-
chek, and V. Sunderam, PVM: Parallel Virtual Ma-
chine. 1994, Cambridge, Mass: The MIT Press.

6. W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message
Passing Interace. 1995: MIT Press.

7. Intel, Architecture and Programming Manual. Pentium
Processor Family Developer’s Manual. Vol. 3. 1997.

8. T. Mathisen, "Pentium Secrets," Byte, 19(7), 1994, pp.
191-192.

9. Microsoft Corporation, WDM Connection and
Streaming Architecture, 1997.
http://www.microsoft.com/hwdev/pcfuture/csa1.htm.

10. F. W. Miller and S. K. Tripathi, "An Integrated In-
put/Output System for Kernel Data Streaming," Multi-
media Computing and Networking. Jan. 1998.

11. E. Nahum, D. Yates, J. Kurose, and D. Towsley,
"Cache Behavior of Network Protocols," SIGMET-
RICS. May 1997, Seattle, WA, pp. 1-12.

12. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schause, "Active Messages: a Mechanism for Inte-
grated Communication and Computation," 19th Inter-
national Symposium on Computer Architecture. June
1992, Gold Cost, Australia, pp. 256-266.

13. M. Welsh, A. Basu, and T. von Eicken, "Low-Latency
Communication over Fast Ethernet," Euro-Par ’96.
Aug, 1996, Lyon, France, vol. I, pp. 187-194.

