
0-7695-1524-X/02 $17.00 (c) 2002 IEEE

SIGMA: A Simulator Infrastructure to Guide Memory Analysis

Luiz DeRose, K. Ekanadham, Jeffrey K. Hollingsworth, and Simone Sbaraglia

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

USA

Dept. of Computer Science
University of Maryland

College Park, MD 20740, USA

University of Rome
“La Sapienza”

Rome, Italy
{laderose,eknath}@us.ibm.com hollings@cs.umd.edu sbaragli@iac.rm.cnr.it

Abstract
In this paper we present SIGMA (Simulation Infrastructure to Guide Memory Analysis), a new
data collection framework and family of cache analysis tools. The SIGMA environment provides
detailed cache information by gathering memory reference data using software-based instrumen-
tation. This infrastructure can facilitate quick probing into the factors that influence the perform-
ance of an application by highlighting bottleneck scenarios including: excessive cache/TLB misses
and inefficient data layouts. The tool can also assist in perturbation analysis to determine per-
formance variations caused by changes to architecture or program. Our validation tests using the
SPEC Swim benchmark show that most of the performance metrics obtained with SIGMA are
within 1% of the metrics obtained with hardware performance counters, with the advantage that
SIGMA provides performance data on a data structure level, as specified by the programmer.

1. Introduction
Understanding and tuning memory system performance is a critical issue for most scientific programs. To help pro-
grammers tune their programs, a variety of tools have been created ranging from source code and binary analysis
tools [1, 2, 3, 4, 5] to libraries and utilities to access hardware performance counters built into microprocessors [6, 7,
8, 9]. Depending on the type of problem being studied and stage of the tuning process (initial tuning of a new algo-
rithm vs. fine-tuning for a specific platform), different tools are useful.

One area that has been lacking is a set of tools that allow programmers to understand the precise memory refer-
ences in their program that are causing poor cache behavior. Fine-grained information such as this is useful for tun-
ing loop kernels, understanding the cache behavior of new algorithms, and to investigate how different parts of a
program compete for and interact within the memory subsystem.

In this paper we present a new data collection framework and family of cache analysis tools called SIGMA
(Simulation Infrastructure to Guide Memory Analysis). The goal of the SIGMA environment is to provide detailed
cache information by gathering memory reference data using software-based instrumentation, in order to provide
feedback to programmers to help them to apply program transformations to improve cache performance. Typical
tuning operations that programmers perform include padding of data structures to improve cache alignment, block-
ing (also known as tiling) of their code to provide cache re-use, and loop fusion, also to increase cache and register
re-use. However, some of the challenges that users face when optimizing their applications are identifying which
data structures are causing poor memory behavior and detecting which sections of the program would benefit from
modifications such as blocking or fusion. The SIGMA framework provides an environment to help users to identify
data structures and code segments that are causing poor program performance due to data layout without having to
re-execute the program several times.

The SIGMA environment consists of a pre-execution tool that locates and instruments all instructions that refer
to memory locations, a runtime data collection tool that performs a highly efficient lossless compression of the
stream of memory addresses generated by the instrumentation, and a number of simulation and analysis tools that
process the compressed memory reference trace to provide programmers with tuning information. We chose to use
a post-compile instrumentation approach so that we would be able to gather data about the actual memory references
generated by optimizing compilers rather than using source instrumentation which would gather data about the user
specified array references. The simulation and analysis tools include a TLB simulator, a data cache simulator, a data
prefetcher simulator, and a query mechanism that allows users to obtain performance metrics and memory usage
statistics.

 2

2. SIGMA Design Overview
One of the main goals of SIGMA is to provide an infrastructure that facilitates quick probing into the factors that
influence the performance of an application. Its aims are two-fold. Firstly, it can be used to highlight bottleneck
scenarios, such as excessive cache/TLB misses and inefficient data layouts. Secondly and more importantly, it can
assist in perturbation analysis, to determine performance variations caused by architectural and (program) structural
changes. Varying cache parameters is an example of architectural change. Loop interchanges and padding data
structures are examples of structural changes to a program. A chief characteristic of SIGMA is that it relates the
analysis to the source programs by identifying the data structures, functions, and loop bodies as defined by the user.

2.1 Abstract Representation of Program Execution
Since our aim is to assist the performance analysis by perturbing both the architectural parameters as well as pro-
gram structure, we need to capture an abstract, but complete, information on the execution of a program, so that the
behavior can be simulated for the altered architecture/program. Although we gather this information from the execu-
tion of the program on a specific architecture, we strip the architecture-specific information and make it as abstract
as possible. Our abstract representation of an execution of a program has two components: Structural Information
and SIGMA Trace, which are described below.

The machine code of the program is statically divided into basic blocks. The blocks are numbered sequentially,
so that each instruction can be uniquely identified by the pair (blockNumber, blockOffset). The Structural Informa-
tion includes instruction addresses, opcodes and (register) dependence relations between instructions. The instruc-
tion semantics is the only architecture-dependent information, although most RISC architectures have similar in-
structions.

The SIGMA Trace of an execution captures the control flow as well as the memory addresses generated. It is a
sequence of block-instances of the form: block(blockNumber, blockOffset) {address-list}. Each block instance speci-
fies the sequence of instructions executed from the block with the given block number, starting from the block-offset
till the end. The address-list gives the memory addresses generated by the memory-access instructions in that se-
quence. Thus, structural information and trace, together, enable us to reconstruct the entire execution of the program.

2.2 Trace Compression
Loops in programs provide an excellent opportunity for representing the trace information in a very compact form
and we exploit this here. The body of a loop is a sequence of block instances, repeated many times, possibly with a
different address-list each time a block instance is repeated. A reference to an element of an m-dimensional array,
within a nest of n loops takes the general form, AX+B, where A is an m by n matrix, X is the n-dimensional iteration
vector and B is an m-dimensional constant vector. If a is the base address of the array and each element of the array
is e bytes long, then the address of the reference is given by a+ e WT (A X + B), where W is the m-dimensional vec-
tor of total sizes of each dimension of the array (i.e. successive products of the dimensions of the array). We can
simplify the form to c+ SX, where the constant c=a+eWTB and the n-dimensional row-vector S = e WT A. Thus, we
can compactly represent the reference with the n+1-tuple <c,S>, so that addresses can be generated for all values of
the iteration vector X. A block instance within a nest of n loops will now be of the form block(blockNumber, block-
Offset) {<n+1_tuple>,<n+1_tuple>, …}. A loop having m iterations can be represented as repeat(m){item-list},
where each item is either a block instance at that level or a loop at the next level. Thus the format of the SIGMA
Trace can be formally expressed as follows:

sigmaTrace ::= level_0_item, level_0_item,…..
level_n_item ::= block(blockNum, blockOffset) { <n+1_tuple>, <n+1_tuple>, …..} |
 repeat(iterCount) { level_n+1_item, level_n+1_item, ….} |
 repeat(iterCount){level_n+1_item,level_n+1_item,…exit, level_n+1_item, level_n+1_item, ….}

where the words block, repeat and exit are keywords, and the number of tuples in a block instance must match the
number of memory access instructions in it. The keyword exit indicates that the last iteration of the loop ends with it
(rather than going all the way to the end). This feature was added since we found that a majority of the loops exhibit
this behavior and it resulted in considerable saving in the length of a compressed trace (especially for nested loops).

2.3 Instrumentation and Trace Generation
The trace is generated by instrumenting selected instructions of the program. To instrument an instruction Z, which
is at offset y in block b of the program, the instruction is replaced by a branch to a new code segment added at the

 3

end of the program. The code segment saves the necessary state, computes the target address a, if Z is a memory
access instruction, invokes a trace library supplying the triple (b,y,a), performs the instruction Z, restores the state,
and branches back to the next instruction after the instrumented instruction. By instrumenting all memory access
instructions and the first instruction executed in each branch instance, we have complete information as described in
section 2.1.

The trace library (linked into the application by our instrumentation tool) maintains a buffer. Each time the li-
brary is invoked, the corresponding triple is appended to the buffer, and the buffer is searched backwards to find any
matching triple that corresponds to the previous execution of the same block instance. As an example, suppose the
suffix of the current buffer is the sequence of triples: (b1,y1,a1), (b2,y2,a2),… (bn,yn,an) as depicted in Figure 1(a). If
this is followed by the sequence of triples (b1,y1,d1), (b2,y2,d2),…(bn,yn,dn), as shown in Figure 1(b), then a loop is
detected with the strides given by si = di – ai. At this point, as illustrated in Figure 1(c), an iteration counter x=2 is
started, indicating that the body can be repeated for x=0,1. As long as the subsequent triples match the pattern
(b1,y1,a1+x*s1), (b2,y2,a2+x*s2),…(bn,yn,an+x*sn), the iteration counter x is incremented. Whenever the match fails,
as illustrated in Figure 1(d), the matched part of the loop is recorded in the encoded form, using the repeat/exit
clause described in Section 2.2, as depicted in Figure 1(e). This indicates that the loop can be repeated for x=0..k-1,
except that the last iteration is terminated at the exit clause. To detect nested loops, the compression algorithm is
applied again to the output of the first level of compression.

A chief advantage of this method of compressing the trace is that the trace can be compressed online, as the ap-
plication program executes. This avoids the need to store large traces first and post-process them later for compres-
sion. Furthermore, it is easy to see that one can reverse the above algorithm to generate the sequence of triples from
a compressed trace in an incremental manner. Thus all the tools that process the trace can operate upon the com-
pressed trace.

This method has some limitations. Clearly the size of the buffer limits the extent to which repeated patterns can
be recognized. While small buffers miss some repeated patterns, large buffers increase the runtime overhead by re-
quiring larger number of comparisons. The above method of matching nested loops requires that the iteration counts
for inner loops must be constants and cannot be functions of outer iteration variables (as is the case for some compu-
tations involving wavefronts or recursive function calls). It is possible to extend the notation of the repeat clause, to
handle such cases. However, we have not pursued this approach in this study. Finally, loops do contain references
that do not generate address sequences in the form specified in section 2.2. Even if they miss the pattern occasion-
ally because of conditionals, the matching algorithm fails and a longer trace will be generated. Again, while further
modifications can be made to the format to accommodate such cases, we have not pursued them here.

b1y1
a1

b2y2
a2

bnyn
an

......(a)

b1y1
d1

bnyn
dn

b2y2
d2

...b1y1
a1

b2y2
a2

bnyn
an

......(b)

...(d)

(c)

b1y1
d1

bnyn
dn

b2y2
d2

...b1y1
a1

b2y2
a2

bnyn
an

... b1y1
p1

b2y2
p2

bnyn
pn

...... b1y1
q1

b2y2
q2

(e)

iii ads −=

111)1(skaq −+=

222)1(skaq −+≠

iii skap)2(−+=

b1y1
a1,s1

... ... RPT

 X=k
bnyn
an,sn

b2y2
q2

 exit b2y2
a2,s2

b1y1
a1,s1

b2y2
a2,s2

bnyn
an,sn

... ... RPT

 X=2

Figure 1: Schematic view of operations on the buffer during compression

 4

 In spite of these limitations, we have found substantial reductions in trace sizes, as evidenced by the statistics
presented in Table 1. We observe two extremes in the compression ratio when running the matrix multiplication
kernels (blocked and recursive). In both cases we multiplied two matrices of 128 by 128 elements. With the blocked
matrix multiplication kernel, which is characterized by its six levels of loop nest and very regular memory access
pattern, the compression algorithm was able to compress up to the sixth level, achieving a compression rate of more
than 20,000. On the other hand, with the recursive matrix multiplication kernel, we observe the limitations of our
approach for random and irregular accesses. In this case, the compression rate was only 1%, which was due to the
loop used to initialize the arrays. With the applications from the SPEC benchmark, we observed an average of com-
pression rate of three orders of magnitude, but again with extremes in both sides. Swim spends most of its execution
time on loops with 2 nesting levels accessing data with regular strides, while wupwise has several loop nests, but
several subroutine calls inside of the inner loop, and irregular memory access.

Program Memory
References (M)

Uncompressed
trace (Mbytes)

Compressed
trace (Mbytes)

Nesting
level

Compression
Ratio

Blocked matrix mult. 6.5 29.7 0.0014 6 21,214.29
Bitonic sort 16.3 100.0 66.5 1 1.50
Recursive matrix mult. 18.9 102.1 101.1 2 1.01
Red black SOR 137.1 574.3 14.6 2 39.34
SPEC applu 59.5 243.6 0.17 4 1,432.94
SPEC hydro2d 130.3 643.8 0.83 2 775.66
SPEC mgrid 100.2 415.0 0.40 3 1,037.50
SPEC swim 147.9 685.6 0.011 3 62,327.27
SPEC wupwise 375.9 2,073.3 477.6 4 4.34

Table 1: Trace compression statistics

2.4 Source Code and Data Structure Mapping
Performance Analysis is best understood when the observations are expressed in terms of functions and data struc-
tures defined in the source code. For instance, it is more useful to know that the accesses to array “A” from the func-
tion “F” are causing several cache misses, rather than indicating excessive cache misses for this application. In order
to provide such relation to the source programs, two key mappings are required: for each memory reference made,
we gather the source line in the program that made the reference and the element of the data structure that corre-
sponds to the reference. Debugger information stored in an executable created with the debug option1, contains
mappings to go from instruction to source line and a mapping to go from data structure to its address and type in-
formation. Using this, we can connect every reference triple (b,y,a) in the SIGMA Trace to the data structure and the
place of reference in the source code. Section 3 describes how we use these mapings in the performance analysis.

3. Using SIGMA for Memory Analysis
As shown in Figure 2, the process flow of memory analysis with SIGMA is divided into three main steps: instru-
mentation/execution, simulation, and querying. The source code is initially instrumented and executed as described
in Section 2.3, in a completely transparent manner, as it does not require any directives or source code modifica-
tions. This yields the (program/data) structural information file and the compressed trace file.

The simulation phase takes these two files and architectural and data layout specifications of interest to the
user. The architectural specifications include cache hierarchy and cache parameters. Data layout specifications con-
tain internal and external padding for desired data structures. A feeder module dynamically uncompresses the trace
and suitably modifies the addresses to reflect the given layout specifications. This sequence is fed to a module that
simulates the specified architecture. The result is a condensed repository of statistics on memory accesses. The re-
pository is organized in such a manner that statistics can be tailored to provide a host of sectional views based on
functions and data structures. This is implemented by the query module, which provides an interactive interface
through which the user can view different views of the statistics. One can repeatedly view various statistics from a
given repository. One can generate different repositories for different architectural/lay out specifications. Finally,
one can make source modifications and rerun the whole thing. This provides a flexible 3-tier framework to do
“what-if” analysis with progressively faster turn-around times.

1 Notice that with most compilers, the use of the debug option (-g) does not inhibit optimizations.

 5

source
code

ins trumentation
& execution

compressed
SIGMA
trace file

simulation

st
at

ist
ic

s
re

po
si

to
ry

querying
performance

metrics

architectural
and data layout
specifications

source code
modification

program/
data

s tructural
information

file

query
specification

Figure 2: Memory analysis flow with SIGMA

3.1 Simulator
The purpose of the simulator is to project the performance of the same memory reference trace on a memory subsys-
tem of choice. By repeating the simulation with an altered architecture, one can do perturbation analysis and answer
questions like, “should we increase the size of the cache or increase its associativity?”. The behaviors emulated in-
clude, data prefetcher, TLB and multiple levels of caches, with parameterized size, associativity, line size, write-
back/writethru policy, replacement policy etc. The simulation collects statistics like the number of cache hits/misses
and number of loads/stores. Two novelties of the simulator are worth mentioning. First the simulator operates on the
compressed trace, by dynamically uncompressing the trace and feeding one address at a time to the memory hierar-
chy. Secondly, the addresses are passed through filters on their way to the memory. A filter suitably modifies an
address to reflect the given layout specifications (see Section 3.2 for more details). Work is underway to extend this
for multiple processors and to collect statistics on false sharing. We are also investigating to extend the filters to do
more sophisticated transformations, such as blocking of well-known operations.

3.2 Data Structure Padding
A technique that attempts to improve program performance by reducing misses due to lack of cache associativity in
the memory subsystem is to include buffers between array definitions, in order to space the variables with respect to
each other, or to increase one of the dimensions of a multidimensional data structure with the purpose of spacing the
columns/rows of the data with respect to each other. These techniques are known as external and internal padding
respectively. Padding may improve program performance when data is laid out in such a way that several frequently
used data structures map into the same cache set or TLB line. With SIGMA one can analyze the effect of modifica-
tions in the data structure layout, without having to modify the source code and re-execute the program. This is
achieved by re-mapping the data structure to different relative locations in memory, which correspond to external or
internal padding.

External padding works as follows: Consider, for example, the static memory layout of the following
FORTRAN common block (assuming real*4 variables):

COMMON a1(512,512),a2(512,512),a3(512,512)

presented in Table 2 and suppose that the data-structure transformation consists of an 8-byte external padding of
array “a1”. This padding would mean that arrays “a2” and “a3” would have to be shifted by 8-bytes, leading to the
“padded” memory layout presented in Table 3. This external padding transformation is equivalent to inserting
“dummy” variables between “a1” and “a2” that would occupy a total of 8 bytes. This would correspond to the fol-
lowing FORTRAN common block:

 6

COMMON a1(512,512), dummy1, dummy2, a2(512,512),a3(512,512)

Start address End address Data Type Dimensions
0x20001dbc 0x20101dbc a1 real*4 (512,512)
0x20101dbc 0x20201dbc a2 real*4 (512,512)
0x20201dbc 0x20301dbc a3 real*4 (512,512)

Table 2: Static memory layout example

Start address End address Data Type Dimensions
0x20001dbc 0x20101dbc a1 real*4 (512,512)
0x20101dc4 0x20201dc4 a2 real*4 (512,512)
0x20201dc4 0x20301dc4 a3 real*4 (512,512)

Table 3: Padded memory layout

Internal padding is slightly more complicated, as address computation involves arithmetic with the dimensions of
the array. Suppose, for example, that the first dimension of array “a1” in the previous example is increased from
“512” to “513” elements, and assume, without loss of generality, that the memory layout is column-major, as is the
layout produced by Fortran codes. As illustrated in Figure 3, the data belonging to the second column of “a1” would
have to be shifted by 4 bytes, the data belonging to the third column of “a1” would have to be shifted by “4+4”
bytes, and so on. In addition, the arrays “a2” and “a3” would have to be shifted by “512*4” bytes each. Considering
again Table 2 as an example, the internal padding transformation of increasing the dimension of array “a1” by one
row would involve building the new memory layout to take into account the shift of “a2” and “a3”, as well as, re-
computing the correct offsets within the padded data structure “a1”. The corresponding memory layout is presented
in Table 4.

The procedure to compute the new offset of any given element in an m-dimensional array “A”, uses a
weights vector w=(1,d1,d2,…,dm-1), where dk is the kth dimension of “A”, such that if I=(i1, i2, …im), where 0≤ ik <dk,
is an index vector of “A”, the scalar product of I • w is the integer offset of the element A(i1, i2, …im) within the
array. For the example illustrated in Table 4, we have w = (1,512) for the original data structure and w = (1,513) for
the padded version.

Start address End address Data Type Dimensions
0x20001dbc 0x201025bc a1 real*4 (513,512)
0x201025bc 0x202025bc a2 real*4 (513,512)
0x202025bc 0x203025bc a3 real*4 (513,512)

Table 4: Memory layout after internal padding

a2 a3a1

Increasing
Memory
Addresses

Padding
Row

Figure 3: Memory layout changes due to internal padding

 7

 Output from any subspace
 in the 3D space

Con
tro

l S
tru

ctu
re

Data Structure

M
et

ric
s

Select from list of
data Structure in
the mapping file

Select from list of
Files, Functions,
Loops

Select from list of
metrics such as
TLB Misses,
Cache Misses,
Hit Ratios, etc.

3.3 Repository of Statistics and Query Tool

The statistics collected during the simulation phase are organized into a repository, with the purpose of allowing for
both a “data-centric” and “control-centric” retrieval, providing users the flexibility of looking at performance met-
rics based on both data and control-flow selections interactively. The interactive query module provides interface to
the user to select (i) a subset of the statistics, (ii) a reduction operation on them, and (iii) a means to display of the
result. As illustrated in Figure 4, statistics are selected by providing a desired sub-space of the following 3-

dimensional space. Along one
dimension, all data structures
are laid out. One can specify a
list of desired arrays or array
subsections. Along the second
dimension, the control flow
through loops, functions and
files is laid out. One can select
segments of the locus of
control from this. Finally,
along the third dimension, all
the performance metrics are
laid out. These include loads,
stores, misses etc. Thus
selecting a sub-space
[{a,b,c[*,1]}, {foo}, {loads}]
will give the number of loads
issued from the function “foo”
to the arrays “a” and “b” and
to the first column of “c”.
Currently the reduction
operators are addition and
max/min. In addition,
facilities are provided for

computation of derived metrics, such as cache hit or miss ratio. The results can be displayed as tables, histograms,
pi-charts, graphs etc.

4. Experimental Results
In this section we discuss our experiments to validate the SIGMA approach. In Section 4.1 we validate the perform-
ance metrics obtained with SIGMA against data obtained using the hardware performance counters. In Section 4.2
we validate the padding algorithm using a synthetic kernel that generates a large number of TLB misses and com-
pare the performance metrics obtained after using the padding algorithm with the numbers obtained with a padded
version of the same kernel.

4.1 Validation using hardware performance counters
In order to validate the numbers generated by SIGMA, we used a set of micro-benchmarks that allows us to pre-
cisely estimate the expected number of loads, stores, level 1 load and store misses, and TLB misses, based on the
description of the micro-architecture. We ran these benchmarks on an IBM Power3 and using an interface to access
the hardware counters [9], we counted the actual numbers for each of the metrics above, and compared with the val-
ues obtained with SIGMA. In addition, we instrumented the SPEC Swim benchmark [10] to access the hardware
performance counters and again compared the results with the numbers obtained with SIGMA.

4.1.1 Validation using micro-benchmark
Our micro-benchmark is composed of three functions: sequential stores, random loads, and multiple random loads.
For each of these functions we use an array, B, of n=1 million double precision words (8 bytes). In addition, in func-

Figure 4: Sigma 3D view of memory analysis

 8

tions random loads and multiple random loads, we use an array, I, of 1K integers (4 bytes), containing random indi-
ces from the range (1..n). For each of the functions we expect the following results:

• Sequential stores: This function makes the following assignments: B[k] = c, for k = 1..n. Since we are
accessing 1M double precision words (8M bytes) sequentially and the IBM Power3 has pages of 4K bytes,
we would expect to have 2K page faults, which should generate 2K TLB misses. The IBM Power 3 cache
line has 128 bytes, so that each page has 32 cache lines. Hence, this function should generate 64K store
misses.

• Random loads: This functions performs the summation: s = s + B[I[k]], k=1..1024. In this case, we are
accessing 1K random elements of the array, B; therefore, we expect to have 1K TLB misses and 1K L1
load misses. However, given that we are dealing with random entries, these numbers should be viewed as
upper bounds. The larger the array B gets, the closer will be the measured value from this bound.

• Multiple random loads: This function is an extension of random loads, which performs the following
summation: s = s + B[I[k]+32*j], j=0..15, k=1..1024. For each randomly accessed page, we access 16
consecutive entries in the array B, with a stride of 32 double precision words, which is equivalent of two
cache lines (256 bytes), thus foiling any attempt to prefetch successive lines ahead in the hardware. Hence,
we expect to have one cache miss for each load, with a total of 16K L1 load misses and 2K TLB misses
overall. The second TLB miss per load is due to the fact that a page boundary is crossed during the span of
accessing 16 double precision elements at a stride of 32. Again, these numbers should be viewed as upper
bounds as we are dealing with random indices.

Figure 5 depicts the results of the micro-benchmark. Along the horizontal axis, the three functions, Sequential

Stores, Random Loads, and Multiple Random Loads are shown. Along the vertical axis the data structures, Buffer B,
Index I, and their sum total are shown. At each point in this two-dimensional space, the metrics of load/store counts,
load/store misses and TLB misses are shown. Each metric has three values: an expected value estimated by observ-
ing the code, the value obtained from sigma simulation and the value measured by HPM. For load/stores, the height
of a bar is the total number of loads/stores and the shaded area within shows the cache misses. For TLB, only misses
are shown. In all cases, the measured values were close to the expected numbers. We observe, however, that there

1024

2

1024

1026

2048

1061

2057

32

1024

1048

2048

1024
1016

Loads/Misses TLB Misses

1024

2

1026

889

2

891 902

Exp sigma hpm Exp sigma hpm

 64 K

1 M

Stores/Misses TLB Misses

2048 2034

Exp sigma hpm Exp sigma hpm

 64 K

1 M

 64 K

1 M

2048

 Sequential Stores Random Loads Multiple Random Loads
 (Control Structure Axis: functions)

 (D
at

a
 S

tru
ct

ur
e

A
xi

s:
 A

rr
ay

s a
nd

 to
ta

ls
)

 T

ot
al

 B

uf
fe

r
B

In

de
x

I

Note: For loads/stores, the height of each bar is the total number of loads/stores and the shaded height gives the miss count within that. For TLB, only miss counts are shown.
Also note that the heights of the bars are not to scale.

16384

2

1024

16386

17408

31

1024

16384
16306

Loads/Misses TLB Misses

2048

2

2050

1735

1

1736 1762

Exp sigma hpm Exp sigma hpm

16337

17408

16335

17437

Figure 5: Expected, simulated, and measured metric values from the micro-benchmark

 9

was a small variance when collecting the numbers with the hardware performance counters. This variance occurs
due to several factors, including effects of the operating system and the fact that the HPM utility was not designed
for collection of data with code regions that have small granularity. We also notice that while the HPM toolkit pro-
vided the values for the metrics accumulated over all variables in each function, with SIGMA we were able to col-
lect the same data, specific for each variable.

4.1.2 Validation using the SPEC Swim Benchmark
For our second validation test we instrumented the SPEC Swim benchmark to collect hardware counters at a func-
tion level, in order to compare with the results obtained with SIGMA. We ran three different problem sizes to verify
if differences in measurement were scaling with the problem size, or were just random noises. For each run, we
executed three time-steps, so the function CALC3 would be executed only once, in the second iteration. This ap-
proach would also reduce the effects of operating system and cold misses that would occur in the first time-step. The
metric values for function CALC3, one of the most time consuming function in the program, are presented in Figure
6, for the problem sizes defined by N1=N2=127, N1=N2=255, and N1=N2=511, respectively.

From Figure 6 we observe that the differences in measurements for most metrics are just random noise in
the measurements. They did not scale with the problem size. In fact, some of these differences can be attributed to
the environmental perturbations that affect the hardware counters, as described in Section 4.1.1. There is no easy
way to filter them out. For the larger problem size, we observed that all but L1 store misses had differences less than
0.1%. The large difference in L1 store misses is due to the subtleties involved in the micro operations for a store
operation involving store queues, which may determine as to when a store miss is detected. The current simulator
implements each memory operation as atomic and does not model any timing.

9091

144411

9812

144427

7.93%

0.011%

801

96775

1153

96799

43.9%

0.026%

215 238 10.7%

36597

583707

36608

583723

0.03%

0.003%

1617

390151

2085

390175

28.9%

0.006%

1911 1919 0.42%

146897

2347035

146911

2347052

0.01%

0.001%

3249

1566727

8753

1566751

169.4%

0.002%

7658 7661 0.04%

N1=N2=127 N1=N2=255 N1=N2=511

L
oa

dM
is

se
s/

L
oa

ds

St
or

eM
is

se
s/

St
or

es

T

L
B

 M
is

se
s

Note: Error is computed as percentage of the difference between sigma and hpm values, with sigma value as the base
Also note that the heights of the bars are not to scale.

sigma hpm error sigma hpm error sigma hpm error

Figure 6: Metric values for function CALC 3 in swim, for various problem sizes

 10

Finally, as shown in Table 5, which presents the metrics for the function CALC3 with the larger problem
size, we observe that a major advantage of the SIGMA approach over the collection of hardware performance
counters, is that it relates the analysis to data structures as defined by the user. All the metrics obtained from Sigma
are broken down and given for each array structure, so one can investigate the influence of each array in the per-
formance of the program. We omitted them in Figure 6, as we are comparing with the output from hpm, which col-
lected the metrics for the entire CALC3 function. The row in Table 5 labeled as “unknown” indicates memory ad-
dresses that were not declared as global variables by the programmer2. This includes local variables, as well as stack
variables generated by the compiler for temporary use. Although we have not discussed here, the detection of a large
number of temporaries can be helpful in the identification of sections of code that could need restructuring, in order
to help the compiler to avoid the generation of an excessive number of temporaries.

Loads Stores TLB misses SWIM CALC3
N1 & N2 = 511 Total L1 misses TLB misses Total L1 misses TLB misses (total)

POLD 261121 16355 514 261121 542 509 1023
VOLD 261121 16355 514 261121 541 508 1022
UOLD 261121 16354 513 261121 541 508 1021
PNEW 260100 16253 508 0 0 0 508
VNEW 260100 16252 508 0 0 0 508
UNEW 260100 16255 508 0 0 0 508
P 261121 16353 514 261121 542 509 1023
V 261121 16352 514 261121 541 508 1022
U 261121 16353 512 261121 541 508 1020
scalars 3 0 0 0 0 0 0
unknown 6 5 3 1 1 0 3

SIGMA

Total 2347035 146897 4605 1566727 3249 3050 7658
HPM 2347052 146911 ---- 1566751 8753 ---- 7661
Difference 0.001% 0.01% 0.002% 169.4% 0.039%

Table 5: Metric values for the function CALC3 with problem size N1 and N2=511

4.2 Validation of the padding algorithm

In general, when a large number of arrays is accessed in a loop and the hardware counters indicate a large number of
misses (e.g., TLB), it is not trivial to determine the exact cause of the problem - whether it is caused by accesses to a
single array or by complex interactions between many array accesses. We ran the synthetic kernel summarized in
Figure 7 on an IBM Power3 system to test the effectiveness of the padding algorithm. When running this program,
we observed a poor performance, which was caused by a large number of TLB misses (35.6M TLB misses for a
total of 44.8M accesses). We generated a trace file for the program and two SIGMA data repositories, one for the
original program and the other using the filtering algorithm for internal padding of one extra row on all arrays. We
then used the memory query tool to obtain the performance metrics presented in Table 6. In addition, we padded the
program by hand and generated a second trace file and a third repository, in order to validate the numbers obtained
with the filtering algorithm. We observe that the error of measurement between the numbers obtained when using
the filter and the numbers obtained with the repository from the hand-padded program was less than 0.01%.

2 The current simulator breaks down the accesses only by global variables. Work is in progress to break down further with local
variables details.

 11

 Figure 7: Synthetic kernel that generates a large number of TLB misses

 Total loads Total stores Total accesses
TLB LD misses

NO padding
TLB ST misses

NO padding
TLB LD misses

with padding
TLB ST misses

with padding
a1 2359296 3145728 5505024 2354697 2883072 4626 3375
a2 2359296 3145728 5505024 2359296 2753280 8037 202702
a3 2359296 3145728 5505024 2359296 2754048 198501 201505
b1 2359296 0 2359296 2359296 0 198495 0
b2 2359296 0 2359296 2359296 0 2310 0
b3 2359296 0 2359296 2359296 0 2310 0
c11 2359296 0 2359296 2359296 0 2313 0
c12 2359296 0 2359296 2359296 0 2313 0
c13 2359296 0 2359296 2359296 0 2313 0
c21 2359296 0 2359296 2359296 0 2313 0
c22 2359296 0 2359296 2359296 0 2313 0
c23 2359296 0 2359296 2359296 0 2313 0
c31 2359296 0 2359296 2359296 0 2313 0
c32 2359296 0 2359296 2359296 0 2313 0
c33 2359296 0 2359296 2359296 0 2313 0
total 35389440 9437184 44826624 35384841 8390400 435096 407582

Table 6: TLB misses generated from a SIGMA trace file with/without filters for internal padding

 program array1
 integer ix, iy, ixy, id, jd, nx, ny, nxy, nd
 parameter (nx=512, ny=512), (nxy=nx*ny), (nd=3)
 real a1(nx,ny),a2(nx,ny),a3(nx,ny)
 real b1(nxy,nd),b2(nxy,nd),b3(nxy,nd)
 real c11(nxy,nd,nd),c12(nxy,nd,nd),c13(nxy,nd,nd)
 real c21(nxy,nd,nd),c22(nxy,nd,nd),c23(nxy,nd,nd)
 real c31(nxy,nd,nd),c32(nxy,nd,nd),c33(nxy,nd,nd)
 ...
 do id = 1, nd
 do jd = 1, nd
 do iy = 1, ny
 do ix = 1, nx
 ixy = ix + (iy-1)*nx
 a1(ix,iy) = a1(ix,iy)
 & + c11(ixy,id,jd)*b1(ixy,jd)
 & + c12(ixy,id,jd)*b2(ixy,jd)
 & + c13(ixy,id,jd)*b3(ixy,jd)
 a2(ix,iy) = a2(ix,iy)
 & + c21(ixy,id,jd)*b1(ixy,jd)
 & + c22(ixy,id,jd)*b2(ixy,jd)
 & + c23(ixy,id,jd)*b3(ixy,jd)
 a3(ix,iy) = a3(ix,iy)
 & + c31(ixy,id,jd)*b1(ixy,jd)
 & + c32(ixy,id,jd)*b2(ixy,jd)
 & + c33(ixy,id,jd)*b3(ixy,jd)
 end do
 end do
 end do
 end do
 ...

 12

5. Related Work
Execution-driven simulators [11,12] were first developed for MIPS processors. They first developed the technique
of modifying a program binary to collect performance statistics while running the program on the native processor.
Subsequently, Torrellas et.al., [13] extended MINT to collect timing characteristics of Intel processors, which was
ported to PowerPC processors (Augment6k) by Giampapa [14]. All these simulators were concerned with timing
characteristics of program segments. They trapped memory access instructions and transferred control to a backend
that can simulate desired memory architecture. Non-memory access instructions were run on the native processors
and efficient techniques of estimating their timing were incorporated. Since our objective is not timing characteris-
tics, we stripped Augmint6k to its barest essentials and incorporated the identification of blocks and offsets. Each
memory access invoked a trace library routine that recorded the instruction identification and the address being ac-
cessed. For blocks that do not have memory accesses, special calls were made to the trace library to record the con-
trol flow properly. These enhancements enabled us to produce a trace that gives complete information to orchestrate
the whole program on a modified architecture. Also none of the above simulators linked the memory references to
symbolic data structures and subroutines in the source program. This was another crucial aspect of the SIGMA ap-
proach.

There have been some tools that access hardware performance counters. For Intel platforms, Vtune[15] is avail-
able. PAPI[7] provides a multi-platform interface to access hardware counters. However, these approaches only
provide counters of data or sampling among code regions. In contrast, SIGMA provides detailed information about
individual memory references, and the actual memory addresses being accessed.

Other systems have taken advantage of the flexibility provided by the hardware to add instrumentation of data-
centric caches. ATUM [16] uses the ability to change the microcode in some processors to collect memory reference
information. The FlashPoint [17] system uses the fact that the Stanford FLASH multiprocessor [18] implements its
coherence protocols in software, allowing instrumentation to be added at this level. Buck and Hollingsworth [19]
proposed using interrupt on overflow to sample the addresses of data cache misses, but this approach does not pro-
vide the level of detail provided by SIGMA. Mtool [20] provides information about the amount of performance lost
due to the memory hierarchy, but only relates this information back to program source lines, not to data structures. A
system with more similarity to the techniques in this paper is MemSpy [21], which provides data-oriented informa-
tion as well as code-oriented, but it uses simulation to collect its data. StormWatch [22] is another system that allows
a user to study memory system interaction. It is used for visualizing memory system protocols under Tempest [23], a
library that provides software shared memory and message passing. However, the goal of StormWatch is to study
how to adapt a memory system protocol to suit the application, rather than how to change the application to match
the memory system. Because of this, the information provided is also different. This information includes what pro-
tocol events are taking place, what code is causing them, and how they are related.

6. Conclusions
In this paper we presented the Simulation Infrastructure to Guide Memory Analysis (SIGMA), a new data collection
framework and family of cache analysis tools that provide detailed cache information by gathering memory refer-
ence data using software-based instrumentation. This infrastructure can facilitate quick probing into the factors that
influence the performance of an application by highlighting bottleneck scenarios including: excessive cache/TLB
misses, false sharing, and inefficient data layout. This framework can also assist in perturbation analysis to deter-
mine performance variations caused by architectural or program changes.

Our simulation infrastructure performs run-time trace compression that produces substantial reductions in trace
sizes, as evidenced by the statistics presented in our experiments. The compression algorithm works particularly
well with programs that have regular memory access pattern. In these cases, the compression rates were over 20000.
With the applications from the SPEC benchmark, we observed an average of compression rate of three orders of
magnitude.

Our validation tests using micro-benchmarks demonstrated that the performance metrics obtained with
SIGMA are close to the expected values and comparable to the numbers obtained with hardware performance
counters. Using the SPEC Swim benchmark as a test case, we observed that most of the performance metrics ob-
tained with SIGMA were in the same range of the values collected with hardware performance counters, with the
advantage that SIGMA provides information at a data structure level, as specified by the programmer. Such feature
is not possible with the current state of the art tools that use the hardware counters. Finally, we described the use of
filters for prediction of performance from perturbation analysis, such as padding of data structures, where we ob-
serve an error of measurement of less than 0.01%.

 13

References

[1] L. DeRose and D. Reed. “SvPablo: A Multi-Language Arquiteture-Independent Performance Analysis System”. In Proceed-

ings of the International Conference on Parallel Processing, pages 311-318, August 1999.

[2] D. Reed, R. Aydt, R. Noe, P. Roth, K. Shields, B. Schwartz, and L. Tavera. “Scalable Performance Analysis: The Pablo Per-
formance Analysis Environment”. In Proceedings of the Scalable Parallel Libraries Conference, IEEE Computer Soci-
ety, 1993.

[3] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kunchithapadam, and T. Newhall. “The
Paradyn Parallel Performance Measurement Tools”. IEEE Computer, 28(11) pages 37-46, November 1995.

[4] B. Mohr, A. Malony, and J. Cuny. “TAU Tuning and Analysis Utilities for Portable Parallel Programming”. In G. Wilson,
editor, Parallel Programming using C++, M.I.T. Press, 1996.

[5] J. Yan, S. Sarukkai, and P. Mehra. “Performance Measurement, Visualization and Modeling of Parallel and Distributed Pro-
grams Using the AIMS Toolkit”. Software Practice & Experience, 25(4) pages 429-461, April 1995.

[6] M. Zagha, B. Larson, S. Turner and M. Itzkowitz. “Performance Analysis Using the MIPS R10000 Performance Counters”.
In Proceedings of Supercomputing'96, November 1996.

[7] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. “A Scalable Cross-Platform Infrastructure for Application Per-
formance Tuning Using Hardware Counters”. In Proceedings of Supercomputing’00, November 2000.

[8] R. Berrendorf, Heinz Ziegler, and Bernd Mohr. “PCL - The Performance Counter Library: A Common Interface to Access
Hardware Performance Counters on Microprocessors”. Research Centre Juelich GmbH, http://www.fz-
juelich.de/zam/PCL/ Version 2.1, February 2002.

[9] L. DeRose. “The Hardware Performance Monitor Toolkit”. In Proceedings of Euro-Par, pages 122-131, August 2001.

[10] R. Sadourny. “The Dynamics of Finite-Difference Models of the Shallow-Water Equation”. In Journal of Atmospheric.
Sciences, 32(4), April 1975.

[11] S. Herrod. “Tango lite: A multiprocessor simulation environment”. In Stanford University, Computer Systems Laboratory,
Technical report, http://citeseer.nj.nec.com/herrod93tango.html. 1993.

[12] J. Veenstra and R. Fowler. “MINT: A Front End for Efficient Simulation of Shared-Memory Multiprocessors”. In Proceed-
ings of the Second International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS '94), pages 201--207, Durham, NC, January--February 1994.

[13] A. Nguyen, M. Michael, A. Sharma, and J. Torrellas. “The augmint multiprocessor simulation toolkit for intel x86 architec-
tures”. In Proceedings of the International Conference on Computer Design, 1996.

[14] M. Giampapa. “Augmint6k: The Augmint multiprocessor simulation toolkit for IBM PowerPC architecture”. IBM Internal
Report, 1998.

[15] Intel Corporation, http://developer.intel.com/software/products/vtune/index.htm.

[16] A. Agrawal, R. L. Sites, and M. Horowitz, “ATUM: A New Technique for Capturing Address Traces Using Microcode”. In
Proceedings of the 13th Annual International Symposium on Computer Architecture. June 1986, pp. 119-127.

[17] M. Martonosi, D. Ofelt, and M. Heinrich, “Integrating Performance Monitoring and Communication in Parallel Computers”.
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems. May 1996, Philadelphia, PA.

[18] J. Kuskin, et al., “The Stanford FLASH Multiprocessor”. In Proceedings of the 21st International Symposium on Computer
Architecture. April 1994, Chicago, IL, pp. 302-313.

[19] B. Buck, and J. K. Hollingsworth, “Using Hardware Performance Monitors to Isolate Memory Bottlenecks”, In Proceedings
of Supercomputing'02, November 2002.

[20] A. J. Goldberg and J. L. Hennessy, “MTOOL: An Integrated System for Performance Debugging Shared Memory Multi-
processor Applications”. IEEE Transactions on Parallel and Distributed Systems, 1993, pp. 28-40.

[21] M. Martonosi, A. Gupta, and T. Anderson, “MemSpy: Analyzing Memory System Bottlenecks in Programs”. In Proceed-
ings of the 1992 SIGMETRICS Conference on Measurement and Modeling of Computer Systems. June 1-5, 1992, New-
port, Rhode Island, pp. 1-12.

[22] T. M. Chilimbi, T. Ball, S. G. Eick, and J. R. Larus, “StormWatch: A Tool for Visualizing Memory System Protocols”. In
Proceedings of Supercomputing '95. December 1995, San Diego, CA.

[23] S. K. Reinhardt, J. R. Larus, and D. A. Wood, “Typhoon and Tempest: User-Level Shared Memory”. In Proceedings of the
ACM/IEEE International Symposium on Computer Architecture. April 1994.

