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Abstract 
In this paper, we introduce a profile-driven online page mi-
gration scheme and investigate its impact on the perform-
ance of multithreaded applications. We use lightweight, in-
expensive plug-in hardware counters to profile the memory 
access behavior of an application, and then migrate pages to 
memory local to the most frequently accessing processor. 
Using the Dyninst runtime instrumentation combined with 
hardware counters, we were able to add page migration ca-
pabilities to the system without having to modify the operat-
ing system kernel, or to re-compile application programs. 
This approach reduced the total number of non-local mem-
ory accesses of applications by up to 90%. Even on a sys-
tem with small remote to local memory access latency ra-
tions, this resulted in up to 16% improvement in execution 
time. 

1. Introduction 
Large cache-coherent, shared-memory servers are 
widely used for high performance computing. Sun Fire 
servers now support more than 100 processors[6]. 
Similarly, the IBM pSeries 680[10] scales up to 24 
processors, the HP Superdome[9] scales to 64 proces-
sors, the Compaq AlphaServer GS-series[7] scales to 
32 processors, and the SGI Origin 2000[12] scales up 
to more than 100 processors1. 

In this paper, we introduce a dynamic page migration 
scheme that profiles applications to determine the pre-
ferred location for each memory page using hardware 
counters. We then use system calls to request that the 
kernel move memory pages to their preferred loca-
tions. 

In our dynamic page migration algorithm, both profil-
ing and page migration are conducted during the run-
time of the applications. For each memory page in the 
application, we continuously monitor hardware per-
formance counters and collect information about 
which processor most frequently accesses the page. At 
fixed time intervals during the application’s execution, 
                                                           
1 All names are trademarks of their owners. 
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pages are migrated to memory that is local to the proc-
essor that most frequently accesses those. 
Although page migration has been extensively studied, 
our dynamic page migration approach demonstrates 
several novel features. First, the goal in this paper is 
not to introduce a new page placement policy. Instead, 
our goal is to demonstrate that the combination of in-
expensive plug-in hardware counters that sample in-
formation about interconnect transactions and a simple 
page migration policy can be used effectively to im-
prove the performance of real applications. The plug-
in hardware we used in this research is commercially 
available from Sun Microsystems. 

Second, even on multiprocessor systems with small 
remote to local memory latency ratios, optimizing 
page placement still provides substantial benefit to 
some applications. The remote and local latencies in 
the Sun Fire 6800 servers we used in our research are 
approximately 300ns and 225ns respectively (i.e. a 
remote:local memory latency ratio of 1.33:1). This is 
quite low for a NUMA system, and previous research 
on optimizing page placements has tended to focus on 
systems with much larger remote to local memory la-
tency ratios. 

Third, using the information provided by hardware 
counters that gather information based on physical ad-
dresses rather than virtual addresses is accurate 
enough to guide page migration and eliminates the 
need for getting virtual address information via hard-
ware counters. 

The rest of the paper is organized as follows: Section 2 
describes the hardware and software components we 
used; Section 3 describes the steps of our algorithm 
for dynamic page migration; Section 4 presents the re-
sults of our preliminary experiments; Section 5 pre-
sents the results for a series of experiments conducted 
to evaluate our dynamic page migration approach; 
Section 6 presents the related work. Finally, Section 7 
summarizes our results and presents some conclu-
sions. 
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2. Hardware and Software Components 
In this section, we describe the hardware and software 
components used in this research. We first describe 
the architecture of the Sun Fire servers. We next de-
scribe the Sun Fire Link hardware monitors for the 
Sun Fireplane system interconnect, which we used to 
measure memory access behavior. Finally, we give a 
brief explanation about the system calls that we used. 

2.1 Sun Fire Servers 
The Sun Fireplane interconnect is Sun’s fourth genera-
tion of Symmetric Multiprocessor Systems(SMP)2 in-
terconnect. The Sun Fireplane interconnect is imple-
mented with up to four levels of interconnect logic de-
pending on the number of processors in the system[6]. 
In medium and large-sized Sun Fire servers, proces-
sors and memory units are grouped together on system 
boards[18]. Each system board contains 4 processors 
and 4 memory units local to the processors. 

In Sun Fire servers, the transfer time to move a data 
block from a memory unit to the requesting device is 
non-uniform depending on the system boards the 
memory unit and requestor are on. Processors on a 
system board have faster access to the memory banks 
on the same board (local memory) compared to the 
memory banks on another board (non-local memory). 
For example, back-to-back latency measured by a 
pointer-chasing benchmark in a Sun Fire 6800 server 
with 750MHz CPUs is around 225ns if the memory is 
local and 300ns if the memory is non-local. 
The Sun Fire 6800 server is a mid-range cc-NUMA 
architecture based on the UltraSPARC III processors 
and Sun Fireplane interconnect. It supports up to 24 
processors and 24 memory units. The processors and 
memory units in these servers are grouped into 6 sys-
tem boards. Each processor has its own on-chip and 
external caches. Mid-range Sun Fire systems use a 
single snooping coherence domain that spans all the 
devices connected to a single Fireplane address bus.  

2.2 Sun Fire Link Counters and Bus Analyzer 
In a cache-coherent shared-memory multiprocessor, 
the system interconnect is often the performance-
limiting component[15]. Moreover, due to complex in-
teractions among the processors and devices that util-
ize the system interconnect, it is difficult to analyze 
the performance of the system interconnect. Due to 
high transaction rates in these systems, gathering a 

                                                           
2 We use the term SMP to refer to any machine that allows each 
processor to access all memory in the system regardless whether 
the memory access time is uniform or not. 

complete set of interconnect transactions is not practi-
cal. Instead, these systems often have additional hard-
ware monitors to count and sample the system transac-
tions. Even though the information collected by these 
hardware monitors is incomplete, it is still an impor-
tant source of profiling information [15]. 

In this paper, we use the Sun Fire Link hardware 
monitors[15] to gather profiling information for page 
migration (Shown in Figure 1). The Sun Fire Link 
hardware monitor counts and samples the transactions 
on the address bus of the Sun Fireplane interconnect. 
These monitors were developed as part of a system to 
cluster multiple systems together, thus they listen to 
the address bus of the system interconnect. 
The Sun Fire Link Counters consist of two 32-bit 
counter registers, a programmable control register that 
activates the counters, two registers to filter transac-
tions based on transaction type, and two sets of mask 
and match registers to filter transactions based on 
other parameters, such as physical address range and 
the device identifier. In addition to counter registers, 
the Sun Fire Link Bus Analyzer has an 8-deep FIFO 
that records a limited sequence of consecutive inter-
connect address transactions. Each recorded transac-
tion includes the requested physical address, the re-
questor device id, and the transaction type. The bus 
analyzer is configured with mask and match registers 
to select specific address ranges, processors or transac-
tion types. 

Even though the Sun Fire Link counters and bus ana-
lyzer provide useful information about the addresses 
and requesting processors in the transactions, the in-
formation is at the level of physical addresses. To ac-
curately evaluate the memory performance of an ap-
plication, the address transactions have to be associ-
ated with virtual addresses used by the application. 
This requires us to reverse map physical addresses 
back to virtual addresses. We used the meminfo sys-
tem call in Solaris 9 to create a mapping between 
physical and virtual memory pages in the applications. 

2.3 Solaris 9 Operating System 
To ensure the reusability of local caches in the proces-
sors, each application thread should be scheduled on 
the same processor, if possible, throughout its execu-
tion[17]. To ensure the reusability of local caches and 
to accurately count page access frequencies by proces-
sors independent of thread scheduling, we explicitly 
bind application threads to the processors in the sys-
tem. We bind application threads to the processors in a 
round robin fashion using the processor_bind system 
call in Solaris. 
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Figure 1 Framework for Our Dynamic Page Migration Scheme 

 
Solaris places each physical memory page into the 
memory that is local to the first processor that touches 
the page. However, first-touch page placement may 
result in non-local placement of a page relative to the 
processor that accesses it the most, which may have a 
significant impact on memory performance of the ap-
plication. 

To migrate pages, we use the move-on-next-touch fea-
ture of the madvise system call in Solaris 9. Using the 
move-on-next-touch feature, we request the operating 
system to move (migrate) a range of virtual memory 
onto the local memory of the processor that next 
touches it. 

3. Methodology 
Our dynamic page migration algorithm consists of two 
different modules. The first module gathers profiling 
information using the Sun Fire Link counters and bus 
analyzer3. The second module migrates memory pages 
using the profiling information gathered by the first 
module. In our page migration approach, we insert in-
strumentation code into the application to gather pro-
filing information, to migrate the memory pages, to 
bind application threads to processors and to detect the 
application termination. 

We used Dyninst[2] to insert instrumentation code 
into the application being analyzed. Dyninst is a li-
                                                           
3 An HPC application often runs as the only process on the target 
machine for the highest speedup. Similarly, we assume that at any 
time there is only one application using the plug-in Sun Fire Link 
counters. However, if multiple users run HPC applications at the 
same time, more plug-in performance counters are required. Since 
these counters are plugged into the I/O boards, as many users as 
available I/O boards can be provided with similar counters. 

brary that permits the insertion of code into a running 
program. The Dyninst library provides a machine in-
dependent interface to permit the creation of tools and 
applications that use runtime code patching. 

For our dynamic page migration algorithm, instrumen-
tation code is inserted at the entry of the main func-
tion, exit point(s) of thr_create function, and the entry 
of exithandle function. The instrumentation code that 
is inserted at main loads a shared library that creates 
additional helper threads for gathering profiling in-
formation and migrating memory pages. The instru-
mentation code inserted at the exit point(s) of 
thr_create calls the processor_bind system call to ex-
plicitly bind the newly created application threads to 
available processors in a round robin fashion. The 
helper threads are bound to dedicated processors and 
the remaining processors are used to bind the other 
threads in the application. The instrumentation code 
inserted at the entry to exithandle detects the applica-
tion termination and cleans up the hardware counters 
and software libraries. 

Our dynamic page migration algorithm is a two-phase 
algorithm. It creates two helper threads, one for profil-
ing and another for page migration. The profiling 
thread samples the interconnect transactions and up-
dates the access frequencies of the memory pages for 
each system board. The migration thread stops the 
execution of all other application threads at fixed time 
intervals and triggers page migration based on the pro-
filing information gathered. In addition, to prevent 
memory pages ping ponging between memory boards, 
we freeze memory pages that have been migrated re-
cently for a fixed number of page migration iterations 
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(We currently freeze a page if it migrated during the 
last 3 consecutive intervals). Thus, the memory pages 
are migrated at fixed time intervals and a page may be 
migrated more than once throughout the execution of 
the application. 
Our migration algorithm does not currently use any 
minimum access frequency threshold for the migration 
of a page. At every migration interval, regardless of 
the number of accesses, each page is considered as 
candidate for migration. Alternatively, we could limit 
migration to the pages with a minimum number of ac-
cesses or cache misses and thus migration overhead 
would potentially be eliminated for pages with little 
contribution to the application's memory time. 

4. Preliminary Experiments 
In this section we will discuss the results of our pre-
liminary experiments to ensure that we could accu-
rately sample interconnect transactions in the applica-
tions being analyzed, and that placing pages local to 
the same board as the processor can have a significant 
impact on the memory performance of an application. 

4.1 Interconnect Transaction Sampling 
We sample the interconnect transactions using the Sun 
Fire Link hardware monitors and approximate the ac-
cess frequencies for the memory pages. However, for 
sampling to be effective, the sampling technique has 
to be representative of all transactions that occurred 
during the execution of the application being analyzed. 

One approach to sample interconnect transactions us-
ing the Sun Fire Link bus analyzer is to continuously 
sample at the maximum speed of interconnect instru-
mentation software. We refer to this sampling scheme 
as maximum-rate sampling. (Note that maximum-rate 
sampling does not capture a compete set of transac-
tions, but it tries to sample as many transactions as 
possible). Alternatively, transactions can be sampled 
at fixed time intervals or at every Nth transaction oc-
currence, where N is a constant that defines the inter-
val of sampling [3]. In this paper, we refer to sampling 
at every Nth transaction occurrence as interval sam-
pling. 

We conducted a series of experiments to compare how 
representative the maximum-rate and interval sam-
pling techniques are of all transactions. To objectively 
compare the two sampling techniques we designed a 
distance metric D that given a set of transactions and a 
set of samples from the set, measures the percent dif-
ference between the values of a property P for these 
sets. The property we used in our experiments is the 
ratio of transactions requested by a specific processor 

to the total number of transactions in a given time in-
terval. The closer the value of our distance metric is to 
0, the more representative the set of sampled transac-
tions is of the set of all transactions. Since the Sun Fire 
Link counters can accurately count the number of 
transactions as well as the number of transactions from 
a given processor, we counted both of these values and 
compared them with samples taken via Sun Fire Link 
bus analyzer.  

During each experiment, we configured one of the two 
counters in the Sun Fire Link hardware monitors to 
count the number of transactions requested by a se-
lected processor N, denoted CN. The other counter is 
configured to count all transactions, CA. Using the Sun 
Fire Link bus analyzer we also sampled interconnect 
transactions and recorded the number of transactions 
sampled, denoted SA. In the set of sampled transac-
tions, we count the number of transactions that are re-
quested by processor N, denoted SN. We calculate the 
ratios for the set of sampled transactions and the set of 
all transactions as PSample = SN/SA and PAll = CN/CA, re-
spectively. We define the distance as D=ABS(PSample - 
PAll)/PAll. That is, the distance metric gives an insight 
as to how far the set of sampled transactions deviate 
from the set of all transactions with respect to the 
property P. 
We conducted a series of experiments for a set of 
processors while running OpenMP version of the CG4 
benchmark from NAS Parallel benchmark suite[16]. 
We repeated the experiments with different sampling 
intervals in which samples taken at every 64, 256, 
1024 and 4096 transactions. 

Table 1 presents the results of the experiments con-
ducted to compare how representative the sampled 
transactions are of all transactions. In Table 1, the sec-
ond column gives the distance values for maximum-
rate sampling. The third to sixth columns give results 
for interval sampling with different interval values. In 
Table 1, the rows that are labeled with processor iden-
tifiers give the distance between the set of all transac-
tions and the set of sampled transactions with respect 
to that processor. The second from the last row aver-
ages the distance values of all experiments. 

Table 1 shows that maximum-rate sampling can sam-
ple about 18% of all transactions. Table 1 also shows 
that for maximum-rate sampling, for each processor, 
the distance metric is significantly higher compared to 

                                                           
4 We have also conducted same set of experiments for the other 
applications in the NAS Parallel benchmark suite and observed 
similar results as application CG. We chose to present the results 
for only CG due to the space limitations. 
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interval sampling. Moreover, for maximum-rate sam-
pling, the average distance over all processors is 0.56, 
which shows that the set of sampled transactions is 
quite different from the set of all transactions (Recall a 
value of 0 for distance D is perfect sampling correla-
tion). 

 Interval Sampling 
 

Maximum-rate 
Sampling 4K 1K 256 64 

Proc 0 0.51 0.03 0.03 0.03 0.09 
Proc 1 0.61 0.04 0.04 0.04 0.09 
Proc 2 0.47 0.01 0.02 0.02 0.23 
Proc 3 0.58 0.00 0.01 0.01 0.02 
Proc 4 0.65 0.02 0.02 0.02 0.12 
Proc 5 0.57 0.03 0.02 0.03 0.15 
Average Dist. 0.56 0.02 0.02 0.02 0.11 
% Sampled 17.56 0.19 0.78 3.07 9.75 

Table 1 Comparison of distance values for maxi-
mum-rate sampling and interval sampling 
During maximum-rate sampling, the maximum num-
ber of transactions the instrumentation software can 
record bounds the number of samples that can be 
taken for a processor. Thus, if a processor requests 
transactions faster than the maximum rate the instru-
mentation software can read, many transactions for the 
processor will not be recorded. Similarly, if a proces-
sor requests transactions slower than the rate of in-
strumentation software, almost all of its transactions 
will be recorded as samples. Thus, maximum-rate 
sampling results in a skewed distribution of sampled 
transactions with respect to the level of memory sys-
tem activity on processors and the sample set does not 
accurately represent all transactions. 

Table 1 also shows that for interval sampling, the dis-
tance values depend on the sampling rate. The dis-
tance values are low and similar to each other except 
for the experiments where transactions are sampled at 
every 64 transactions. In particular, if the samples are 
taken at every 256 transactions or more, the set of 
sampled transactions is fairly representative of all 
transactions. Table 1 also suggests that for interval 
sampling, if the rate that samples are taken exceeds 
5% of all transactions, the set of sampled transactions 
becomes less representative. 
Since transaction sampling competes for bus band-
width with the application being measured, it is also 
necessary to quantify the bus load due to the sampling 
technique used. To quantify the bus load of each sam-
pling technique, we conducted an experiment where 
we counted the number of address transactions due to 

accessing the hardware monitor. From this, we calcu-
lated the additional bandwidth consumed. 

Our experiments showed that both maximum-rate and 
interval sampling produce the same bus load of around 
0.5MB/sec (0.005% of the maximum data bandwidth). 
This is due to the fact that the dominant part of the bus 
load is produced by sampling the counter contents to 
determine whether it is time to take a sample rather 
than getting the sample. If the counters had an inter-
rupt on overflow feature (common in current CPU 
counters), we could eliminate much of this bus load. 

4.2 Impact of Local Page Placement 
Before testing the effectiveness of our page migration 
scheme on multithreaded applications, we wanted to 
assess the impact of page placement on the memory 
performance of a single threaded application. We de-
signed a simple application that sequentially traverses 
over the elements of an array repeatedly. Before each 
array element is accessed, the cache line containing 
the element is invalidated and the access is satisfied by 
the memory in which the array pages are placed. Note 
that this application is designed to exercise memory 
heavily and real applications would not have as many 
cache misses. 
We conducted experiments running the single 
threaded application under local and non-local page 
placement, and we measured the total time spent to 
access array elements. Moreover, to eliminate factors 
such as pre-fetching or speculative loads, we also im-
plemented a variant of this benchmark that uses a ran-
dom number generator to decide on the next element 
to be accessed. 

Table 2 presents the memory access times for our test 
programs. In Table 2, the first column lists the appli-
cations, where each row is labeled by the pattern in 
which the array elements are traversed. The second 
and third columns give the memory access times for 
local and non-local placements of the array pages, re-
spectively. The fourth column lists the slowdown ra-
tios when array pages are placed non-locally com-
pared to being placed locally on the processor running 
the application. 

Array Page Placement Array Access 
Pattern Local Non-Local 

Slowdown 

Sequential 546.6 685.8 1.25 
Strided 659.7 810.1 1.23 
Random 512.5 606.0 1.18 

Table 2 Array access times for local and non-local 
page placement 
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For each program, Table 2 shows a significant slow-
down in array access times when array pages are 
placed non-local to the processor running the applica-
tion compared to placing array pages locally. The 
slowdown ratios for array access times range from 
1.18 to 1.25. More importantly, Table 2 shows that the 
slowdown due to non-local page placement is directly 
proportional to the back-to-back latencies measured by 
the pointer-chasing latency benchmark listed in Sec-
tion 1. 
We noticed a form of intra-board locality in the Sun 
Fire servers. That is, although the array pages are lo-
cal, the choice of the processor from the group of 
processors on the same system board also has an im-
pact on the array access times. Table 3 presents the ar-
ray access times for each application when different 
processors in the same system board are used to exe-
cute the application. In each execution, array pages are 
placed identically. In Table 3, the second column pre-
sents array access times when the test programs run on 
the first processor in a system board where the third 
column presents array access times when they run on 
the second processor. 

Processor on 
Local System Board Array Access 

Pattern 
CPU 0 CPU 1 

Slowdown 

Sequential 546.6 604.3 1.11 
Strided 659.7 715.4 1.08 
Random 512.5 546.0 1.07 

Table 3 Intra-board variation in array access times  
Table 3 shows that the programs spent 7-11% more 
time traversing the array elements when they are 
bound to the second processor of the system board 
compared to when they are bound to the first proces-
sor even though the array pages are placed local to the 
processors. We believe intra-boards variations in array 
access times are to due to whether the array pages are 
placed on the memory banks controlled by the proces-
sor running the application or on the memory banks 
controlled by another processor in the same system 
board. We also believe increasing the number of 
memory banks controlled by each processor will re-
duce the intra-board variations. 

5. Page Migration Experiments 
To investigate the effectiveness of our dynamic page 
migration approach on the performance of real appli-
cations, we conducted experiments using the OpenMP 
C implementation of the NAS Parallel Benchmark 
suite[16]. We chose applications with different sizes 
ranging from B to C such that each application would 

have a similar memory footprint. We compiled the ap-
plications using Sun’s native compiler, Sun C 5.5 
EA2, with optimizations(-O3) on to support parallel-
ized code. 

We conducted all of our experiments on a 24-
processor Sun Fire 6800 with 24GB of main memory. 
The system clock frequency is 150MHz. The proces-
sors are 750MHz UltraSPARC III. The memory in 
each system board is 8-way interleaved where each 
processor controls two banks of memory. The Sun 
Fire Link hardware is plugged into an I/O drawer in 
this system. The Sun Fire Link instrumentation has 
full visibility into all transactions on Fireplane inter-
connect. 
To quantify the benefits of our dynamic page migra-
tion approach, we conducted a series of experiments 
with and without page migration. For all applications, 
we measured both the original execution times and the 
execution times when memory pages are migrated us-
ing our dynamic page migration approach. For each 
application, we also measured the percentage reduc-
tion in the number of non-local memory accesses 
when memory pages are dynamically migrated com-
pared to its original execution.  

We ran all applications with 12 threads on 6 system 
boards of the Sun Fire 6800 server. To eliminate any 
possible contention due to resource sharing among 
processors, we scheduled two threads on each system 
board. We sampled interconnect transactions at every 
1024 transactions. 

For the experiments with page migration, we triggered 
page migration at every 5 seconds. To choose the mi-
gration interval, we conducted a sensitivity analysis in 
which we considered different migration interval val-
ues ranging from 1 second to 50 seconds. The sensitiv-
ity analysis showed that the migration interval does 
not have a major impact on the performance of the ap-
plications when page migration is used. 

As explained in Section 3, we insert instrumentation 
code into the application using the Dyninst library. For 
each application, the instrumentation overhead is a 
one-time overhead since the Dyninst library has a ca-
pability of saving instrumented executables for later 
reuse. Moreover, the instrumentation overhead for our 
page migration approach is independent from the exe-
cution times of the applications we analyzed. We 
measured the instrumentation overhead for all applica-
tions for our dynamic page migration approach and it 
is typically around 2 seconds. 
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5.1 Reduction in Non-Local Memory Accesses 
To quantify the benefits of our dynamic page migra-
tion approach, we counted the total number of non-
local memory accesses for all applications with and 
without using dynamic page migration. We used the 
Sun Fire Link hardware monitors to measure the total 
number of non-local memory accesses in the applica-
tions. 

Due to limitations in the number of counters in the 
Sun Fire Link hardware monitor, we were not able to 
count the per board number of non-local memory ac-
cesses in an application during a single run. Instead, 
we ran each application once for each system board 
and counted the number of non-local memory accesses 
requested by the group of processors in that system 
board. We later calculated the total number of non-
local memory accesses for an application as the sum 
of the non-local memory accesses for all system 
boards. 
Table 4 presents the percentage reduction in the total 
number of non-local memory accesses when dynamic 
page migration is used compared to when memory 
pages are not migrated. In the second column, we give 
the total number of address transactions requested by 
each application during its execution. The third col-
umn gives the percentage of non-local memory ac-
cesses without our page migration approach and the 
fourth column shows the percentage of non-local 
memory accesses when memory pages in the applica-
tion are migrated using our dynamic page migration 
approach. The fifth column lists the percentage reduc-
tion in the total number of non-local memory accesses 
when dynamic page migration is used. 
Table 4 shows that for all applications, our dynamic 
page migration approach was able to reduce the num-
ber of non-local memory accesses by 19.7-89.6% (The 
average is 58.3%). 
Table 4 also shows that for MG, a significant number 
of non-local memory accesses were eliminated when 
memory pages were migrated. However, for LU our 
dynamic page migration approach was not able to re-
duce the number of non-local memory accesses sig-
nificantly. In LU, all system boards uniformly access 
most of the memory pages that our dynamic approach 
was able to migrate. That is, while migrating those 
pages to a system board reduces the number of non-
local memory accesses requested by the processors in 
that system board, the number of non-local memory 
accesses by the processors in all other system boards 
increases. Our dynamic page migration approach cur-
rently uses a simple decision mechanism that identi-

fies the preferred location of a memory page as the 
system board that accesses it most. It does not take the 
access frequencies by other system boards into con-
sideration. The access frequencies by other system 
boards might be useful to better decide whether a page 
should be migrated. 

Percentage of 
Non-local Memory 

Accesses  
Memory 
Accesses 
(Million) w/o Page 

Migration 
Page 

Migration 

% 
Reduction 

BT (B) 38,507 40.9 25.3 38.0 
CG (C) 15,721 80.9 15.3 81.0 
EP (C) 42 85.4 28.2 67.0 
FT (B) 2,329 64.2 29.6 54.0 
LU (C) 48,682 41.2 33.1 19.7 
MG (B) 841 80.5 8.3 89.6 
SP (C) 116,116 55.0 22.7 58.8 

Table 4 Reduction in non-local memory accesses 
when memory pages are dynamically migrated 
5.2 Impact of Page Migration on Cache Usage 
The UltraSPARC III processors in the Sun Fire servers 
use physical addresses to index their external caches. 
Since page migration changes the physical addresses 
of the memory pages in an application, it is also nec-
essary to ensure that our page migration approach does 
not have a significant impact on the external cache us-
age of the applications. To quantify the external cache 
usage of the applications, we counted the number of 
conflict and capacity misses during the execution of 
the applications with and without dynamic page mi-
gration. We counted the number of conflict and capac-
ity misses in the applications using Sun Fire Link 
counters by measuring the number of write-back (WB) 
transactions requested. A WB transaction is requested 
when a dirty cache line is evicted from the external 
cache due to a capacity or conflict miss. 

Table 5 presents the number of WB transactions with 
and without our page migration approach. Table 5 
shows that our dynamic page migration approach does 
not significantly affect the number of conflict and ca-
pacity cache misses. It also shows that our dynamic 
page migration approach has a higher impact on EP 
compared to other applications. However, EP does not 
allocate a significant number of memory pages during 
its execution and thus the absolute number of cache 
misses is more than a factor of 20 lower than any other 
application we measured. Moreover, the total number 
of address transactions requested by EP is not signifi-
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cant due its effective use of local caches. The increase 
in cache misses in EP is mainly due to the invalidation 
of data in processor caches caused by migration of 
memory pages. 

Number of WB 
Transactions (Millions) 

 
w/o Page 

Migration 
Page 

Migration 

% 
Change 

BT (B) 14,948.8 14,900.1 -0.33 
CG (C) 270.6 268.7 -0.67 
EP (C) 12.3 12.6 2.38 
FT (B) 855.0 851.8 -0.37 
LU (C) 18,252.8 18,171.6 -0.44 
MG (B) 217.4 218.0 0.28 
SP (C) 39,223.3 39,139.9 -0.21 

Table 5 Percent change in the number of write-
back transactions  
5.3 Execution Times 
While reducing the number of non-local memory ac-
cesses in an application is important, what matters is 
the impact of this reduction on application’s runtime. 
In this section, we look at the impact of our page mi-
gration approach on the execution times of the appli-
cations.  For each application, we conducted three dif-
ferent experiments and measured the total execution 
time of the application in each experiment. 

First, we ran each application using our dynamic page 
migration approach and measured the total execution 
time including overhead due to the creation of the 
helper threads and triggering memory page migra-
tions. Even though the migration thread runs in paral-
lel with other threads of the application, it suspends all 
application threads to trigger the actual page migra-
tions and later resumes their executions. During the 
second set of experiments, we measured the original 
execution times of the applications with no interven-
tion. Lastly, we conducted a third set of experiments 
to investigate the impact of binding application 
threads to fixed processors, and therefore the impact 
of dynamic page migration in isolation. During these 
experiments, we ran each application with page migra-
tion disabled but bound the threads to the processors 
in the system. 
For each application and experiment, we repeated the 
experiment seven times and recorded the minimum of 
the execution times among all runs. We used the 
minimum execution time since we noticed higher 
variation in the original execution times for some ap-
plications. We suspect the higher variation in the 

original execution times of those applications is due to 
differences in the initial page placements and thread 
scheduling by the operating system.  

Table 6 presents the execution times of the applica-
tions we analyzed. The second column lists the origi-
nal execution times of the applications. In the third 
column, we present the execution times when the ap-
plication threads are bound to the processors through-
out the executions. The fourth column lists the execu-
tion times of the applications when we migrate mem-
ory pages using our dynamic page migration approach. 
The fifth column presents the number of page migra-
tions triggered. Lastly, the sixth column presents the 
overhead due to page migrations. 
Table 6 shows that for all applications except LU and 
MG, when the application threads are bound to proc-
essors the applications run faster by 0.16-1.76% com-
pared to their original executions. However, LU slows 
down by 0.6% where MG slows down by 2.2% when 
their threads are bound to the processors. Table 6 
shows that binding application threads to the proces-
sors is almost always beneficial even though the per-
formance gain is not significant. 

Execution Times (sec) 

 Origi-
nal 

Bound 
Thread 

Page 
Migra-

tion 

Number 
of 

Migra-
tions 

Over-
head 
(sec) 

BT (B) 996 992 966 112,310 11.8 
CG C) 625 613 534 47,213 4.4 
EP (C) 293 292 292 2,071 0.3 
FT (B) 113 112 118 177,602 15.1 
LU (C) 1981 1994 1978 132,696 13.1 
MG (B) 31 32 26 49,884 2.7 
SP (C) 3901 3854 3347 138,943 17.1 

Table 6 Execution times of the applications for 
their original execution, for the execution where 
application threads are bound to processors, and 
for our dynamic page migration approach. Migra-
tion overhead is also included in the listed times for 
page migration column. 
Table 6 also shows that the overhead due to page mi-
gration is mainly proportional to the number of page 
migrations requested and it ranges up to 12.8% com-
pared to the original execution times of the applica-
tions. To guarantee that the migration thread touches 
the page next before all other threads, all other threads 
have to be suspended. If the operating system instead 
provided a system call that would allow applications 
to indicate the target locations of the memory pages, it 
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would permit migration of pages to their target loca-
tions during the next available opportunity, and thus 
reduce the page migration overhead. 

Figure 2 presents the performance improvement when 
our page migration approach is used compared to both 
the original execution time and the execution time 
when the threads of the applications are bound to 
processors. Under the label of each application on the 
x-axis, Figure 2 also presents the migration overhead 
percentage with respect to the original execution time 
of the application. Figure 2 shows that our dynamic 
page migration approach was able to improve the exe-
cution performance of the applications except FT by 
up to 15.9% compared to their original executions. 
However, FT runs slower under our dynamic page mi-
gration approach. 

Our dynamic page migration approach improved the 
performance of CG and SP by 14.5% and 14.2%, re-
spectively, compared to their original execution times. 
CG and SP request many memory accesses and our 
dynamic page migration approach was able to elimi-
nate many of the non-local memory accesses (see 
Table 4). In addition, dynamic page migration im-
proved the execution performance of CG and SP by 

12.8% and 13.2% respectively, compared to the exe-
cutions where application threads are bound. 

Like CG and SP, our dynamic page migration ap-
proach was also able to improve the performance of 
MG by 15.9% compared to its original execution time. 
Even though MG does not request many memory ac-
cesses, our page migration approach was still able to 
reduce the number of non-local memory accesses sig-
nificantly (see Table 4). Compared to the execution of 
MG when its threads are bound to the processors, dy-
namically migrating memory pages in MG improved 
the execution performance by 18.1%. 

Figure 2 also shows that our dynamic page migration 
approach improved the execution performance of BT 
by 2.9% compared to its original execution. Dynami-
cally migrating memory pages in isolation for BT im-
proves the execution performance by 2.6%. Figure 2 
also shows that our page migration approach is not as 
effective for BT as for CG, MG, and SP, which is par-
tially due to fact that the reduction in the number of 
non-local memory accesses in BT is not as high. Simi-
larly, our page migration approach improved the per-
formance of LU by 0.8%, which is also mainly due the 
small amount of reduction in number of non-local 
memory accesses in LU. 

Improvement due Page Migration

-10%
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5%

10%
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20%
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0.8%
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Figure 2 Performance gain for the applications using our dynamic page migration approach compared to 
original execution time and to the execution time when threads are bound to processors. Percentage value 

below each application label corresponds to page migration overhead introduced 
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Figure 2 also shows that our dynamic page migration 
approach was not as effective in improving the execu-
tion performance of EP even though it reduced the 
number of non-local memory accesses by 67.0%. This 
due to fact that EP reuses data in the local caches of 
the processors, and the majority of its memory ac-
cesses are requested at the beginning of its execution, 
before the memory pages are migrated. 

Figure 2 shows that our dynamic page migration ap-
proach was not able to improve the execution per-
formance of FT even though it reduced the number of 
non-local memory accesses in FT by 54.0% (Table 4). 
Instead, our page migration approach slowed down the 
execution of FT by around 4.2% compared to its 
original execution. However, Figure 2 also shows that 
the slowdown for FT is mainly due to the overhead in-
troduced by page migration, which is 12.8% of the 
original execution time for FT. That is, the reduction 
in the number of non-local memory accesses did not 
overcome the overhead introduced by migrating many 
pages that are initially placed poorly. Moreover, the 
page migration overhead for FT would be reduced 
significantly if the operating system did not require 
suspending application threads to trigger the actual 
migrations by touching pages and instead provided a 
mechanism to directly request migration. 

6. Related Work 
Noordergraaf and Zak[15] describe a set of embedded 
hardware instrumentation mechanisms implemented 
for monitoring the system interconnect on Sun Fire 
servers. The instrumentation supports sophisticated 
programmable filtering of event counters. Their im-
plementation results in a very small hardware footprint 
making it appropriate for inclusion in commodity 
hardware. In our page migration scheme, we heavily 
used these instrumentation mechanisms to sample in-
terconnect transactions. 

Many prior page migration policies[1,11] have been in 
the context of non-cache-coherent NUMA multiproc-
essor systems. These kernel-level policies were based 
on page fault mechanisms and studied different page 
placement and migration policies for NUMA multi-
processors with large remote to local latency ratios. 
Bolosky et al[1] used memory reference traces to drive 
simulations of NUMA page placement policies. La-
Rowe et al[11] modified OS memory management 
modules to decide whether a page will be migrated. In 
contrast, our research introduces page migration poli-
cies for cache-coherent shared memory multiprocessor 
systems with small remote to local latency ratios. 
Moreover, our approach implements the migration 

policy at the user level and uses access frequencies 
gathered from the plug-in hardware counters. 

Chandra et al[5] investigated the effects of different 
OS scheduling and page migration policies for cache-
coherent shared-memory multiprocessors using the 
Stanford DASH multiprocessor. Although they mainly 
focused on OS scheduling policies, they also investi-
gated page migration policies based on TLB misses. 
Chandra et al. reported that page migration did not 
improve the response time for the workloads used due 
to overhead incurred by the operating system. They 
also performed a trace-driven study to explore the pos-
sible benefits of memory page migrations. Compared 
to their approach, our page migration approach is 
more effective partially due to elimination of most of 
the operating system overhead by using a slower mi-
gration rate. 

Verghese et al.[19] studied operating system support 
for page migration, and replication in cache-coherent 
shared-memory multiprocessors. They introduced a 
decision tree to select the action to be taken on mem-
ory pages upon cache misses. The actions taken for a 
page include replication, migration and freeze, de-
pending on the threshold values used in the decision 
tree. Using the thresholds that gave the best results, 
they evaluated the approach using a machine simulator 
for SGI Origin2000 multiprocessors. The multiproces-
sor system they used also had a large remote to local 
memory latency ratio of 4:1. They reported that dy-
namic page placements did not yield performance 
gains due to the overhead introduced by the operating 
system. They also reported that the primary sources of 
overhead were processor synchronization and TLB 
flushing. Unlike their approach, our page migration 
approach eliminates most of the operating system 
overhead due to using a slower migration rate. More-
over, the Sun Fire servers we used in our research in-
cur a lower overhead due to TLB flushing since TLB 
misses are serviced by hardware. 

Kernel-level dynamic page placement schemes are 
also extensively studied in the Sun(TM) WildFire sys-
tems[4,8,14]. The Sun WildFire system is a prototype 
cache coherent NUMA architecture, built from small 
number of large standard SMP nodes and has large 
remote to local latency ratios. Hagersten and Koster[8] 
evaluated the impact of coherent page replication and 
hierarchical affinity scheduling on TPC-C execution. 
They used excess-remote-cache-miss counts to guide 
page placement. Noordergraaf and vander Pas[14] also 
evaluated kernel-level page migration and replication 
using a simple HPC application in a large Sun Wild-
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Fire system. To identify memory pages for migration, 
they used excess misses that indicate conflict and ca-
pacity misses in a local node’s cache. They reported 
that using a replication-only policy yielded much bet-
ter performance than policies that included migration. 
Recently, Bull and Johnson[4] studied the interactions 
between data distribution, migration and replication 
for the OpenMP applications. Although they primarily 
focused on a data distribution extension for OpenMP, 
they also studied the impact of page migration and 
replication. Their study also showed that page replica-
tion is more beneficial than migration. This is mainly 
due to higher overhead in page migration from copy-
ing a memory page from its local node to a remote 
node. In comparison, our page migration approach 
also has a slower migration rate, which partly explains 
the reduction in page migration overhead. 

Recent work has used dynamic page placements to 
improve the locality for TPC-C in cc-NUMA servers. 
Wilson and Aglietti[20] used Verghese’s dynamic 
page placement algorithm to tune TPC-C execution on 
Sybase. They used a one-second trace of TPC-C exe-
cution and a simulator for a 4-node multiprocessor 
system to study the performance, bandwidth and local-
ity of TPC-C. They used hand-tuned threshold values 
for dynamic page placements in their simulations. 
Wilson and Aglietti showed that dynamic page place-
ment could be effective if operating system overhead 
is hidden within the idle CPU cycles. 

7. Conclusions 
In this paper, we introduced an automatic profile-
driven page migration scheme and investigated the 
impact of our page migration scheme on the memory 
performance of multithreaded programs. We used 
commercially available plug-in hardware monitors to 
profile the applications. We tested our dynamic page 
migration approach using the OpenMP C implementa-
tion of the NAS Parallel Benchmark suite. 
Our dynamic page migration approach always reduced 
the total number of non-local memory accesses in the 
applications we analyzed compared to their original 
executions, by up to 90%. Our page migration ap-
proach was also able to improve the execution time of 
the applications up to 16% compared to their original 
execution time.  

We conducted our experiments on a Sun Fire 6800 
server which has only small differences between local 
and non-local memory access times (225ns vs. 300ns). 
We believe our page migration approach will be even 
more effective in improving the performance of the 

applications running on larger cc-NUMA servers such 
as the Sun Fire 15K. In these larger cc-NUMA serv-
ers, the data transfer times differ significantly among 
local and non-local memory accesses (225ns vs. 
400ns). For our page migration approach to work on 
these larger cc-NUMA servers, however, separate 
plug-in hardware counters for each coherency domain 
would be required. 

More importantly, the effectiveness of our page migra-
tion approach shows the importance of inexpensive 
hardware counters in automatic performance tuning of 
the applications. In this paper, our page migration ap-
proach depends on accurate interconnect transaction 
samples gathered from hardware counters. We believe 
this type of hardware counters and tools like our page 
migration approach will be of increasing utility as 
memory systems become more complex. 

We believe the effectiveness of our page migration 
approach also shows the advantage of putting the page 
migration policy at the user level while only relying 
on the operating system kernel to provide the actual 
migration mechanism.  

We also believe that for page migration mechanism to 
be more beneficial, underlying operating system 
should provide means to trigger page migration with-
out stopping the application. That is, if the user could 
simply request migration of a page and the underlying 
operating system could migrate the page during avail-
able idle cycles, most of the migration overhead would 
be hidden. 

Acknowledgements 
We thank Lisa Noordergraaf for her valuable com-
ments on this paper and help in understanding the in-
ternals of the Sun Fire servers and Sun Fire Link 
hardware monitors. We also thank Jeffrey Odom who 
helped configure the system used in this paper; and 
Bryan Buck and Chadd Williams for their comments. 
This work was supported in part by NSF awards EIA-
0080206, and DOE Grants DE-FG02-93ER25176, 
DE-FG02-01ER25510 and DE-CFC02-01ER254489. 
References 
[1] Bolosky, W.J., Scott, M.L., Fitzgerald, R.P., 

Fowler, R.J., Cox, A.L., NUMA Policies and Their 
Relation to Memory Architecture, International 
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 
1991, San Jose, CA. 

[2] Buck, B.B., Hollingsworth, J.K., An API for Run-
time Code Patching, The Journal of High Per-
formance Computing Applications, 2000, 14. 



 

    12 

[3] Buck, B.R., Hollingsworth, J.K., Using Hardware 
Performance Monitors to Isolate Memory Bottle-
necks, SC2000, 2000, Dallas, TX. 

[4] Bull, J.M., Johnson, C., Data Distribution, Migra-
tion and Replication on a cc-NUMA Architecture, 
The Fourth European Workshop on OpenMP, 
2002, Rome, Italy. 

[5] Chandra, R., Devine, S., Verghese, B., Gupta, A., 
Rosenblum, M., Scheduling and Page Migration 
for Multiprocessor Compute Servers, 6th Interna-
tional Conference on Architectural Support for 
Programming Languages and Operating Systems, 
1994, San Jose, CA. 

[6] Charlesworth, A., The Sun Fireplane System In-
terconnect, SC2001, Denver, CO. 

[7] Gharachorloo, K., Sharma, M., Steely, S., Doren, 
S.V., Architecture and Design of AlphaServer 
GS320, International Conference on Architectural 
Support for Programming Languages and Operat-
ing Systems, 2000, Cambridge, MA. 

[8] Hagersten, E., Koster, M., WildFire: A Scalable 
Path for SMPs, Fifth IEEE Symposium on High-
Performance Computer Architecture, 1999. 

[9] Hewlett Packard, HP Superdome White Paper, , 
http://www.hp.com/products1/servers/scalableserv
ers/superdome/infolibrary/, 2000. 

[10]IBM, The IBM pSeries 680 Technology and Archi-
tecture, 2000, 
http://www.ibm.com/servers/eserver/pseries/hard
ware/ whitepapers/p680_technology.html. 

[11]LaRowe, R.P., Ellis, C.S., Kaplan, L.S., The Ro-
bustness of NUMA Memory Management, Sympo-
sium on Operating Systems Principles, 1991. 

[12]Laudon, J., Lenoski, D., The SGI Origin: A 
ccNUMA Highly Scalable Server, International 
Symposium on Computer Architecture, 1997. 

[13]Laudon, J., Lenoski, D., System Overview of the 
SGI Origin 200/2OOO Product Line, IEEE Com-
puter Society International Conference, 1997, San 
Jose, CA. 

[14]Noordergraaf, L., Pas, R.v.d., Performance Ex-
periences on Sun's WildFire Prototype, SC1999, 
Portland, OR. 

[15]Noordergraaf, L., Zak, R., SMP System Intercon-
nect Instrumentation for Performance Analysis, 
SC2002, Baltimore, MD. 

[16]Omni OpenMP Compiler Project, NAS Parallel 
Benchmarks OpenMP C Versions, 
http://phase.hpcc.jp/Omni/benchmarks/NPB. 

[17]Squillante, M.S., Lazowska, E.D., Using Proces-
sor-cache Affinity in Shared Memory Multiproces-

sor scheduling, IEEE Transactions on Parallel and 
Distributed Systems, 1993, 4(2). 

[18]Sun Microsystems, UltraSPARC III Cu User's 
Manual (version 1.0), 2002,  

[19]Verghese, B., Devine, S., Gupta, A., Rosenblum, 
M., Operating System Support for Improving Data 
Locality on CC-NUMA Compute Servers, Interna-
tional Conference on Architectural Support for 
Programming Languages and Operating Systems, 
1996, Cambridge, MA. 

[20]Wilson, K.M., Aglietti, B.B., Dynamic Page 
Placement to Improve Locality in CC-NUMA Mul-
tiprocessors for TPC-C, SC2001, Denver, CO. 

 


