

 1

Using Hardware Counters to Automatically Improve Memory Performance

Mustafa M. Tikir Jeffrey K. Hollingsworth

Computer Science Department
University of Maryland

College Park, MD 20742
{tikir,hollings}@cs.umd.edu

Abstract
In this paper, we introduce a profile-driven online page mi-
gration scheme and investigate its impact on the perform-
ance of multithreaded applications. We use lightweight, in-
expensive plug-in hardware counters to profile the memory
access behavior of an application, and then migrate pages to
memory local to the most frequently accessing processor.
Using the Dyninst runtime instrumentation combined with
hardware counters, we were able to add page migration ca-
pabilities to the system without having to modify the operat-
ing system kernel, or to re-compile application programs.
This approach reduced the total number of non-local mem-
ory accesses of applications by up to 90%. Even on a sys-
tem with small remote to local memory access latency ra-
tions, this resulted in up to 16% improvement in execution
time.

1. Introduction
Large cache-coherent, shared-memory servers are
widely used for high performance computing. Sun Fire
servers now support more than 100 processors[6].
Similarly, the IBM pSeries 680[10] scales up to 24
processors, the HP Superdome[9] scales to 64 proces-
sors, the Compaq AlphaServer GS-series[7] scales to
32 processors, and the SGI Origin 2000[12] scales up
to more than 100 processors1.

In this paper, we introduce a dynamic page migration
scheme that profiles applications to determine the pre-
ferred location for each memory page using hardware
counters. We then use system calls to request that the
kernel move memory pages to their preferred loca-
tions.

In our dynamic page migration algorithm, both profil-
ing and page migration are conducted during the run-
time of the applications. For each memory page in the
application, we continuously monitor hardware per-
formance counters and collect information about
which processor most frequently accesses the page. At
fixed time intervals during the application’s execution,

1 All names are trademarks of their owners.

0-7695-2153-3/04 $20.00 (c)2004 IEEE

pages are migrated to memory that is local to the proc-
essor that most frequently accesses those.
Although page migration has been extensively studied,
our dynamic page migration approach demonstrates
several novel features. First, the goal in this paper is
not to introduce a new page placement policy. Instead,
our goal is to demonstrate that the combination of in-
expensive plug-in hardware counters that sample in-
formation about interconnect transactions and a simple
page migration policy can be used effectively to im-
prove the performance of real applications. The plug-
in hardware we used in this research is commercially
available from Sun Microsystems.

Second, even on multiprocessor systems with small
remote to local memory latency ratios, optimizing
page placement still provides substantial benefit to
some applications. The remote and local latencies in
the Sun Fire 6800 servers we used in our research are
approximately 300ns and 225ns respectively (i.e. a
remote:local memory latency ratio of 1.33:1). This is
quite low for a NUMA system, and previous research
on optimizing page placements has tended to focus on
systems with much larger remote to local memory la-
tency ratios.

Third, using the information provided by hardware
counters that gather information based on physical ad-
dresses rather than virtual addresses is accurate
enough to guide page migration and eliminates the
need for getting virtual address information via hard-
ware counters.

The rest of the paper is organized as follows: Section 2
describes the hardware and software components we
used; Section 3 describes the steps of our algorithm
for dynamic page migration; Section 4 presents the re-
sults of our preliminary experiments; Section 5 pre-
sents the results for a series of experiments conducted
to evaluate our dynamic page migration approach;
Section 6 presents the related work. Finally, Section 7
summarizes our results and presents some conclu-
sions.

 2

2. Hardware and Software Components
In this section, we describe the hardware and software
components used in this research. We first describe
the architecture of the Sun Fire servers. We next de-
scribe the Sun Fire Link hardware monitors for the
Sun Fireplane system interconnect, which we used to
measure memory access behavior. Finally, we give a
brief explanation about the system calls that we used.

2.1 Sun Fire Servers
The Sun Fireplane interconnect is Sun’s fourth genera-
tion of Symmetric Multiprocessor Systems(SMP)2 in-
terconnect. The Sun Fireplane interconnect is imple-
mented with up to four levels of interconnect logic de-
pending on the number of processors in the system[6].
In medium and large-sized Sun Fire servers, proces-
sors and memory units are grouped together on system
boards[18]. Each system board contains 4 processors
and 4 memory units local to the processors.

In Sun Fire servers, the transfer time to move a data
block from a memory unit to the requesting device is
non-uniform depending on the system boards the
memory unit and requestor are on. Processors on a
system board have faster access to the memory banks
on the same board (local memory) compared to the
memory banks on another board (non-local memory).
For example, back-to-back latency measured by a
pointer-chasing benchmark in a Sun Fire 6800 server
with 750MHz CPUs is around 225ns if the memory is
local and 300ns if the memory is non-local.
The Sun Fire 6800 server is a mid-range cc-NUMA
architecture based on the UltraSPARC III processors
and Sun Fireplane interconnect. It supports up to 24
processors and 24 memory units. The processors and
memory units in these servers are grouped into 6 sys-
tem boards. Each processor has its own on-chip and
external caches. Mid-range Sun Fire systems use a
single snooping coherence domain that spans all the
devices connected to a single Fireplane address bus.

2.2 Sun Fire Link Counters and Bus Analyzer
In a cache-coherent shared-memory multiprocessor,
the system interconnect is often the performance-
limiting component[15]. Moreover, due to complex in-
teractions among the processors and devices that util-
ize the system interconnect, it is difficult to analyze
the performance of the system interconnect. Due to
high transaction rates in these systems, gathering a

2 We use the term SMP to refer to any machine that allows each
processor to access all memory in the system regardless whether
the memory access time is uniform or not.

complete set of interconnect transactions is not practi-
cal. Instead, these systems often have additional hard-
ware monitors to count and sample the system transac-
tions. Even though the information collected by these
hardware monitors is incomplete, it is still an impor-
tant source of profiling information [15].

In this paper, we use the Sun Fire Link hardware
monitors[15] to gather profiling information for page
migration (Shown in Figure 1). The Sun Fire Link
hardware monitor counts and samples the transactions
on the address bus of the Sun Fireplane interconnect.
These monitors were developed as part of a system to
cluster multiple systems together, thus they listen to
the address bus of the system interconnect.
The Sun Fire Link Counters consist of two 32-bit
counter registers, a programmable control register that
activates the counters, two registers to filter transac-
tions based on transaction type, and two sets of mask
and match registers to filter transactions based on
other parameters, such as physical address range and
the device identifier. In addition to counter registers,
the Sun Fire Link Bus Analyzer has an 8-deep FIFO
that records a limited sequence of consecutive inter-
connect address transactions. Each recorded transac-
tion includes the requested physical address, the re-
questor device id, and the transaction type. The bus
analyzer is configured with mask and match registers
to select specific address ranges, processors or transac-
tion types.

Even though the Sun Fire Link counters and bus ana-
lyzer provide useful information about the addresses
and requesting processors in the transactions, the in-
formation is at the level of physical addresses. To ac-
curately evaluate the memory performance of an ap-
plication, the address transactions have to be associ-
ated with virtual addresses used by the application.
This requires us to reverse map physical addresses
back to virtual addresses. We used the meminfo sys-
tem call in Solaris 9 to create a mapping between
physical and virtual memory pages in the applications.

2.3 Solaris 9 Operating System
To ensure the reusability of local caches in the proces-
sors, each application thread should be scheduled on
the same processor, if possible, throughout its execu-
tion[17]. To ensure the reusability of local caches and
to accurately count page access frequencies by proces-
sors independent of thread scheduling, we explicitly
bind application threads to the processors in the sys-
tem. We bind application threads to the processors in a
round robin fashion using the processor_bind system
call in Solaris.

 3

A d d r e s s B u s

P r o c e s s o r

M e m o r y

S y s t e m B o a r d

S u n F i r e L in k
H a r d w a r e C o u n te r s

P r o c e s s o r

M e m o r y

P r o c e s s o r

M e m o r y
P r o c e s s o r

M e m o r y

P r o c e s s o r

M e m o r y
P r o c e s s o r

M e m o r y
P r o c e s s o r

M e m o r y

P r o c e s s o r

M e m o r y
P r o c e s s o r

M e m o r y
P r o c e s s o r

M e m o r y

S y s t e m B o a r d

P r o c e s s o r

M e m o r y

P h y s i c a l
P a g e

P h y s i c a l
P a g e

A p p l ic a t io n
V i r t u a l
P a g e P

ag
e

m
ig

ra
tio

n

(m
ad

vi
ce

)

V
irt

ua
l t

o
ph

ys
ic

al

m
ap

pi
ng

(m
em

in
fo

) Tr
an

sa
ct

io
n

S
am

pl
in

g
vi

a

In
st

ru
m

en
ta

tio
n

so
ftw

ar
e

Figure 1 Framework for Our Dynamic Page Migration Scheme

Solaris places each physical memory page into the
memory that is local to the first processor that touches
the page. However, first-touch page placement may
result in non-local placement of a page relative to the
processor that accesses it the most, which may have a
significant impact on memory performance of the ap-
plication.

To migrate pages, we use the move-on-next-touch fea-
ture of the madvise system call in Solaris 9. Using the
move-on-next-touch feature, we request the operating
system to move (migrate) a range of virtual memory
onto the local memory of the processor that next
touches it.

3. Methodology
Our dynamic page migration algorithm consists of two
different modules. The first module gathers profiling
information using the Sun Fire Link counters and bus
analyzer3. The second module migrates memory pages
using the profiling information gathered by the first
module. In our page migration approach, we insert in-
strumentation code into the application to gather pro-
filing information, to migrate the memory pages, to
bind application threads to processors and to detect the
application termination.

We used Dyninst[2] to insert instrumentation code
into the application being analyzed. Dyninst is a li-

3 An HPC application often runs as the only process on the target
machine for the highest speedup. Similarly, we assume that at any
time there is only one application using the plug-in Sun Fire Link
counters. However, if multiple users run HPC applications at the
same time, more plug-in performance counters are required. Since
these counters are plugged into the I/O boards, as many users as
available I/O boards can be provided with similar counters.

brary that permits the insertion of code into a running
program. The Dyninst library provides a machine in-
dependent interface to permit the creation of tools and
applications that use runtime code patching.

For our dynamic page migration algorithm, instrumen-
tation code is inserted at the entry of the main func-
tion, exit point(s) of thr_create function, and the entry
of exithandle function. The instrumentation code that
is inserted at main loads a shared library that creates
additional helper threads for gathering profiling in-
formation and migrating memory pages. The instru-
mentation code inserted at the exit point(s) of
thr_create calls the processor_bind system call to ex-
plicitly bind the newly created application threads to
available processors in a round robin fashion. The
helper threads are bound to dedicated processors and
the remaining processors are used to bind the other
threads in the application. The instrumentation code
inserted at the entry to exithandle detects the applica-
tion termination and cleans up the hardware counters
and software libraries.

Our dynamic page migration algorithm is a two-phase
algorithm. It creates two helper threads, one for profil-
ing and another for page migration. The profiling
thread samples the interconnect transactions and up-
dates the access frequencies of the memory pages for
each system board. The migration thread stops the
execution of all other application threads at fixed time
intervals and triggers page migration based on the pro-
filing information gathered. In addition, to prevent
memory pages ping ponging between memory boards,
we freeze memory pages that have been migrated re-
cently for a fixed number of page migration iterations

 4

(We currently freeze a page if it migrated during the
last 3 consecutive intervals). Thus, the memory pages
are migrated at fixed time intervals and a page may be
migrated more than once throughout the execution of
the application.
Our migration algorithm does not currently use any
minimum access frequency threshold for the migration
of a page. At every migration interval, regardless of
the number of accesses, each page is considered as
candidate for migration. Alternatively, we could limit
migration to the pages with a minimum number of ac-
cesses or cache misses and thus migration overhead
would potentially be eliminated for pages with little
contribution to the application's memory time.

4. Preliminary Experiments
In this section we will discuss the results of our pre-
liminary experiments to ensure that we could accu-
rately sample interconnect transactions in the applica-
tions being analyzed, and that placing pages local to
the same board as the processor can have a significant
impact on the memory performance of an application.

4.1 Interconnect Transaction Sampling
We sample the interconnect transactions using the Sun
Fire Link hardware monitors and approximate the ac-
cess frequencies for the memory pages. However, for
sampling to be effective, the sampling technique has
to be representative of all transactions that occurred
during the execution of the application being analyzed.

One approach to sample interconnect transactions us-
ing the Sun Fire Link bus analyzer is to continuously
sample at the maximum speed of interconnect instru-
mentation software. We refer to this sampling scheme
as maximum-rate sampling. (Note that maximum-rate
sampling does not capture a compete set of transac-
tions, but it tries to sample as many transactions as
possible). Alternatively, transactions can be sampled
at fixed time intervals or at every Nth transaction oc-
currence, where N is a constant that defines the inter-
val of sampling [3]. In this paper, we refer to sampling
at every Nth transaction occurrence as interval sam-
pling.

We conducted a series of experiments to compare how
representative the maximum-rate and interval sam-
pling techniques are of all transactions. To objectively
compare the two sampling techniques we designed a
distance metric D that given a set of transactions and a
set of samples from the set, measures the percent dif-
ference between the values of a property P for these
sets. The property we used in our experiments is the
ratio of transactions requested by a specific processor

to the total number of transactions in a given time in-
terval. The closer the value of our distance metric is to
0, the more representative the set of sampled transac-
tions is of the set of all transactions. Since the Sun Fire
Link counters can accurately count the number of
transactions as well as the number of transactions from
a given processor, we counted both of these values and
compared them with samples taken via Sun Fire Link
bus analyzer.

During each experiment, we configured one of the two
counters in the Sun Fire Link hardware monitors to
count the number of transactions requested by a se-
lected processor N, denoted CN. The other counter is
configured to count all transactions, CA. Using the Sun
Fire Link bus analyzer we also sampled interconnect
transactions and recorded the number of transactions
sampled, denoted SA. In the set of sampled transac-
tions, we count the number of transactions that are re-
quested by processor N, denoted SN. We calculate the
ratios for the set of sampled transactions and the set of
all transactions as PSample = SN/SA and PAll = CN/CA, re-
spectively. We define the distance as D=ABS(PSample -
PAll)/PAll. That is, the distance metric gives an insight
as to how far the set of sampled transactions deviate
from the set of all transactions with respect to the
property P.
We conducted a series of experiments for a set of
processors while running OpenMP version of the CG4
benchmark from NAS Parallel benchmark suite[16].
We repeated the experiments with different sampling
intervals in which samples taken at every 64, 256,
1024 and 4096 transactions.

Table 1 presents the results of the experiments con-
ducted to compare how representative the sampled
transactions are of all transactions. In Table 1, the sec-
ond column gives the distance values for maximum-
rate sampling. The third to sixth columns give results
for interval sampling with different interval values. In
Table 1, the rows that are labeled with processor iden-
tifiers give the distance between the set of all transac-
tions and the set of sampled transactions with respect
to that processor. The second from the last row aver-
ages the distance values of all experiments.

Table 1 shows that maximum-rate sampling can sam-
ple about 18% of all transactions. Table 1 also shows
that for maximum-rate sampling, for each processor,
the distance metric is significantly higher compared to

4 We have also conducted same set of experiments for the other
applications in the NAS Parallel benchmark suite and observed
similar results as application CG. We chose to present the results
for only CG due to the space limitations.

 5

interval sampling. Moreover, for maximum-rate sam-
pling, the average distance over all processors is 0.56,
which shows that the set of sampled transactions is
quite different from the set of all transactions (Recall a
value of 0 for distance D is perfect sampling correla-
tion).

 Interval Sampling

Maximum-rate
Sampling 4K 1K 256 64

Proc 0 0.51 0.03 0.03 0.03 0.09
Proc 1 0.61 0.04 0.04 0.04 0.09
Proc 2 0.47 0.01 0.02 0.02 0.23
Proc 3 0.58 0.00 0.01 0.01 0.02
Proc 4 0.65 0.02 0.02 0.02 0.12
Proc 5 0.57 0.03 0.02 0.03 0.15
Average Dist. 0.56 0.02 0.02 0.02 0.11
% Sampled 17.56 0.19 0.78 3.07 9.75

Table 1 Comparison of distance values for maxi-
mum-rate sampling and interval sampling
During maximum-rate sampling, the maximum num-
ber of transactions the instrumentation software can
record bounds the number of samples that can be
taken for a processor. Thus, if a processor requests
transactions faster than the maximum rate the instru-
mentation software can read, many transactions for the
processor will not be recorded. Similarly, if a proces-
sor requests transactions slower than the rate of in-
strumentation software, almost all of its transactions
will be recorded as samples. Thus, maximum-rate
sampling results in a skewed distribution of sampled
transactions with respect to the level of memory sys-
tem activity on processors and the sample set does not
accurately represent all transactions.

Table 1 also shows that for interval sampling, the dis-
tance values depend on the sampling rate. The dis-
tance values are low and similar to each other except
for the experiments where transactions are sampled at
every 64 transactions. In particular, if the samples are
taken at every 256 transactions or more, the set of
sampled transactions is fairly representative of all
transactions. Table 1 also suggests that for interval
sampling, if the rate that samples are taken exceeds
5% of all transactions, the set of sampled transactions
becomes less representative.
Since transaction sampling competes for bus band-
width with the application being measured, it is also
necessary to quantify the bus load due to the sampling
technique used. To quantify the bus load of each sam-
pling technique, we conducted an experiment where
we counted the number of address transactions due to

accessing the hardware monitor. From this, we calcu-
lated the additional bandwidth consumed.

Our experiments showed that both maximum-rate and
interval sampling produce the same bus load of around
0.5MB/sec (0.005% of the maximum data bandwidth).
This is due to the fact that the dominant part of the bus
load is produced by sampling the counter contents to
determine whether it is time to take a sample rather
than getting the sample. If the counters had an inter-
rupt on overflow feature (common in current CPU
counters), we could eliminate much of this bus load.

4.2 Impact of Local Page Placement
Before testing the effectiveness of our page migration
scheme on multithreaded applications, we wanted to
assess the impact of page placement on the memory
performance of a single threaded application. We de-
signed a simple application that sequentially traverses
over the elements of an array repeatedly. Before each
array element is accessed, the cache line containing
the element is invalidated and the access is satisfied by
the memory in which the array pages are placed. Note
that this application is designed to exercise memory
heavily and real applications would not have as many
cache misses.
We conducted experiments running the single
threaded application under local and non-local page
placement, and we measured the total time spent to
access array elements. Moreover, to eliminate factors
such as pre-fetching or speculative loads, we also im-
plemented a variant of this benchmark that uses a ran-
dom number generator to decide on the next element
to be accessed.

Table 2 presents the memory access times for our test
programs. In Table 2, the first column lists the appli-
cations, where each row is labeled by the pattern in
which the array elements are traversed. The second
and third columns give the memory access times for
local and non-local placements of the array pages, re-
spectively. The fourth column lists the slowdown ra-
tios when array pages are placed non-locally com-
pared to being placed locally on the processor running
the application.

Array Page Placement Array Access
Pattern Local Non-Local

Slowdown

Sequential 546.6 685.8 1.25
Strided 659.7 810.1 1.23
Random 512.5 606.0 1.18

Table 2 Array access times for local and non-local
page placement

 6

For each program, Table 2 shows a significant slow-
down in array access times when array pages are
placed non-local to the processor running the applica-
tion compared to placing array pages locally. The
slowdown ratios for array access times range from
1.18 to 1.25. More importantly, Table 2 shows that the
slowdown due to non-local page placement is directly
proportional to the back-to-back latencies measured by
the pointer-chasing latency benchmark listed in Sec-
tion 1.
We noticed a form of intra-board locality in the Sun
Fire servers. That is, although the array pages are lo-
cal, the choice of the processor from the group of
processors on the same system board also has an im-
pact on the array access times. Table 3 presents the ar-
ray access times for each application when different
processors in the same system board are used to exe-
cute the application. In each execution, array pages are
placed identically. In Table 3, the second column pre-
sents array access times when the test programs run on
the first processor in a system board where the third
column presents array access times when they run on
the second processor.

Processor on
Local System Board Array Access

Pattern
CPU 0 CPU 1

Slowdown

Sequential 546.6 604.3 1.11
Strided 659.7 715.4 1.08
Random 512.5 546.0 1.07

Table 3 Intra-board variation in array access times
Table 3 shows that the programs spent 7-11% more
time traversing the array elements when they are
bound to the second processor of the system board
compared to when they are bound to the first proces-
sor even though the array pages are placed local to the
processors. We believe intra-boards variations in array
access times are to due to whether the array pages are
placed on the memory banks controlled by the proces-
sor running the application or on the memory banks
controlled by another processor in the same system
board. We also believe increasing the number of
memory banks controlled by each processor will re-
duce the intra-board variations.

5. Page Migration Experiments
To investigate the effectiveness of our dynamic page
migration approach on the performance of real appli-
cations, we conducted experiments using the OpenMP
C implementation of the NAS Parallel Benchmark
suite[16]. We chose applications with different sizes
ranging from B to C such that each application would

have a similar memory footprint. We compiled the ap-
plications using Sun’s native compiler, Sun C 5.5
EA2, with optimizations(-O3) on to support parallel-
ized code.

We conducted all of our experiments on a 24-
processor Sun Fire 6800 with 24GB of main memory.
The system clock frequency is 150MHz. The proces-
sors are 750MHz UltraSPARC III. The memory in
each system board is 8-way interleaved where each
processor controls two banks of memory. The Sun
Fire Link hardware is plugged into an I/O drawer in
this system. The Sun Fire Link instrumentation has
full visibility into all transactions on Fireplane inter-
connect.
To quantify the benefits of our dynamic page migra-
tion approach, we conducted a series of experiments
with and without page migration. For all applications,
we measured both the original execution times and the
execution times when memory pages are migrated us-
ing our dynamic page migration approach. For each
application, we also measured the percentage reduc-
tion in the number of non-local memory accesses
when memory pages are dynamically migrated com-
pared to its original execution.

We ran all applications with 12 threads on 6 system
boards of the Sun Fire 6800 server. To eliminate any
possible contention due to resource sharing among
processors, we scheduled two threads on each system
board. We sampled interconnect transactions at every
1024 transactions.

For the experiments with page migration, we triggered
page migration at every 5 seconds. To choose the mi-
gration interval, we conducted a sensitivity analysis in
which we considered different migration interval val-
ues ranging from 1 second to 50 seconds. The sensitiv-
ity analysis showed that the migration interval does
not have a major impact on the performance of the ap-
plications when page migration is used.

As explained in Section 3, we insert instrumentation
code into the application using the Dyninst library. For
each application, the instrumentation overhead is a
one-time overhead since the Dyninst library has a ca-
pability of saving instrumented executables for later
reuse. Moreover, the instrumentation overhead for our
page migration approach is independent from the exe-
cution times of the applications we analyzed. We
measured the instrumentation overhead for all applica-
tions for our dynamic page migration approach and it
is typically around 2 seconds.

 7

5.1 Reduction in Non-Local Memory Accesses
To quantify the benefits of our dynamic page migra-
tion approach, we counted the total number of non-
local memory accesses for all applications with and
without using dynamic page migration. We used the
Sun Fire Link hardware monitors to measure the total
number of non-local memory accesses in the applica-
tions.

Due to limitations in the number of counters in the
Sun Fire Link hardware monitor, we were not able to
count the per board number of non-local memory ac-
cesses in an application during a single run. Instead,
we ran each application once for each system board
and counted the number of non-local memory accesses
requested by the group of processors in that system
board. We later calculated the total number of non-
local memory accesses for an application as the sum
of the non-local memory accesses for all system
boards.
Table 4 presents the percentage reduction in the total
number of non-local memory accesses when dynamic
page migration is used compared to when memory
pages are not migrated. In the second column, we give
the total number of address transactions requested by
each application during its execution. The third col-
umn gives the percentage of non-local memory ac-
cesses without our page migration approach and the
fourth column shows the percentage of non-local
memory accesses when memory pages in the applica-
tion are migrated using our dynamic page migration
approach. The fifth column lists the percentage reduc-
tion in the total number of non-local memory accesses
when dynamic page migration is used.
Table 4 shows that for all applications, our dynamic
page migration approach was able to reduce the num-
ber of non-local memory accesses by 19.7-89.6% (The
average is 58.3%).
Table 4 also shows that for MG, a significant number
of non-local memory accesses were eliminated when
memory pages were migrated. However, for LU our
dynamic page migration approach was not able to re-
duce the number of non-local memory accesses sig-
nificantly. In LU, all system boards uniformly access
most of the memory pages that our dynamic approach
was able to migrate. That is, while migrating those
pages to a system board reduces the number of non-
local memory accesses requested by the processors in
that system board, the number of non-local memory
accesses by the processors in all other system boards
increases. Our dynamic page migration approach cur-
rently uses a simple decision mechanism that identi-

fies the preferred location of a memory page as the
system board that accesses it most. It does not take the
access frequencies by other system boards into con-
sideration. The access frequencies by other system
boards might be useful to better decide whether a page
should be migrated.

Percentage of
Non-local Memory

Accesses
Memory
Accesses
(Million) w/o Page

Migration
Page

Migration

%
Reduction

BT (B) 38,507 40.9 25.3 38.0
CG (C) 15,721 80.9 15.3 81.0
EP (C) 42 85.4 28.2 67.0
FT (B) 2,329 64.2 29.6 54.0
LU (C) 48,682 41.2 33.1 19.7
MG (B) 841 80.5 8.3 89.6
SP (C) 116,116 55.0 22.7 58.8

Table 4 Reduction in non-local memory accesses
when memory pages are dynamically migrated
5.2 Impact of Page Migration on Cache Usage
The UltraSPARC III processors in the Sun Fire servers
use physical addresses to index their external caches.
Since page migration changes the physical addresses
of the memory pages in an application, it is also nec-
essary to ensure that our page migration approach does
not have a significant impact on the external cache us-
age of the applications. To quantify the external cache
usage of the applications, we counted the number of
conflict and capacity misses during the execution of
the applications with and without dynamic page mi-
gration. We counted the number of conflict and capac-
ity misses in the applications using Sun Fire Link
counters by measuring the number of write-back (WB)
transactions requested. A WB transaction is requested
when a dirty cache line is evicted from the external
cache due to a capacity or conflict miss.

Table 5 presents the number of WB transactions with
and without our page migration approach. Table 5
shows that our dynamic page migration approach does
not significantly affect the number of conflict and ca-
pacity cache misses. It also shows that our dynamic
page migration approach has a higher impact on EP
compared to other applications. However, EP does not
allocate a significant number of memory pages during
its execution and thus the absolute number of cache
misses is more than a factor of 20 lower than any other
application we measured. Moreover, the total number
of address transactions requested by EP is not signifi-

 8

cant due its effective use of local caches. The increase
in cache misses in EP is mainly due to the invalidation
of data in processor caches caused by migration of
memory pages.

Number of WB
Transactions (Millions)

w/o Page

Migration
Page

Migration

%
Change

BT (B) 14,948.8 14,900.1 -0.33
CG (C) 270.6 268.7 -0.67
EP (C) 12.3 12.6 2.38
FT (B) 855.0 851.8 -0.37
LU (C) 18,252.8 18,171.6 -0.44
MG (B) 217.4 218.0 0.28
SP (C) 39,223.3 39,139.9 -0.21

Table 5 Percent change in the number of write-
back transactions
5.3 Execution Times
While reducing the number of non-local memory ac-
cesses in an application is important, what matters is
the impact of this reduction on application’s runtime.
In this section, we look at the impact of our page mi-
gration approach on the execution times of the appli-
cations. For each application, we conducted three dif-
ferent experiments and measured the total execution
time of the application in each experiment.

First, we ran each application using our dynamic page
migration approach and measured the total execution
time including overhead due to the creation of the
helper threads and triggering memory page migra-
tions. Even though the migration thread runs in paral-
lel with other threads of the application, it suspends all
application threads to trigger the actual page migra-
tions and later resumes their executions. During the
second set of experiments, we measured the original
execution times of the applications with no interven-
tion. Lastly, we conducted a third set of experiments
to investigate the impact of binding application
threads to fixed processors, and therefore the impact
of dynamic page migration in isolation. During these
experiments, we ran each application with page migra-
tion disabled but bound the threads to the processors
in the system.
For each application and experiment, we repeated the
experiment seven times and recorded the minimum of
the execution times among all runs. We used the
minimum execution time since we noticed higher
variation in the original execution times for some ap-
plications. We suspect the higher variation in the

original execution times of those applications is due to
differences in the initial page placements and thread
scheduling by the operating system.

Table 6 presents the execution times of the applica-
tions we analyzed. The second column lists the origi-
nal execution times of the applications. In the third
column, we present the execution times when the ap-
plication threads are bound to the processors through-
out the executions. The fourth column lists the execu-
tion times of the applications when we migrate mem-
ory pages using our dynamic page migration approach.
The fifth column presents the number of page migra-
tions triggered. Lastly, the sixth column presents the
overhead due to page migrations.
Table 6 shows that for all applications except LU and
MG, when the application threads are bound to proc-
essors the applications run faster by 0.16-1.76% com-
pared to their original executions. However, LU slows
down by 0.6% where MG slows down by 2.2% when
their threads are bound to the processors. Table 6
shows that binding application threads to the proces-
sors is almost always beneficial even though the per-
formance gain is not significant.

Execution Times (sec)

 Origi-
nal

Bound
Thread

Page
Migra-

tion

Number
of

Migra-
tions

Over-
head
(sec)

BT (B) 996 992 966 112,310 11.8
CG C) 625 613 534 47,213 4.4
EP (C) 293 292 292 2,071 0.3
FT (B) 113 112 118 177,602 15.1
LU (C) 1981 1994 1978 132,696 13.1
MG (B) 31 32 26 49,884 2.7
SP (C) 3901 3854 3347 138,943 17.1

Table 6 Execution times of the applications for
their original execution, for the execution where
application threads are bound to processors, and
for our dynamic page migration approach. Migra-
tion overhead is also included in the listed times for
page migration column.
Table 6 also shows that the overhead due to page mi-
gration is mainly proportional to the number of page
migrations requested and it ranges up to 12.8% com-
pared to the original execution times of the applica-
tions. To guarantee that the migration thread touches
the page next before all other threads, all other threads
have to be suspended. If the operating system instead
provided a system call that would allow applications
to indicate the target locations of the memory pages, it

 9

would permit migration of pages to their target loca-
tions during the next available opportunity, and thus
reduce the page migration overhead.

Figure 2 presents the performance improvement when
our page migration approach is used compared to both
the original execution time and the execution time
when the threads of the applications are bound to
processors. Under the label of each application on the
x-axis, Figure 2 also presents the migration overhead
percentage with respect to the original execution time
of the application. Figure 2 shows that our dynamic
page migration approach was able to improve the exe-
cution performance of the applications except FT by
up to 15.9% compared to their original executions.
However, FT runs slower under our dynamic page mi-
gration approach.

Our dynamic page migration approach improved the
performance of CG and SP by 14.5% and 14.2%, re-
spectively, compared to their original execution times.
CG and SP request many memory accesses and our
dynamic page migration approach was able to elimi-
nate many of the non-local memory accesses (see
Table 4). In addition, dynamic page migration im-
proved the execution performance of CG and SP by

12.8% and 13.2% respectively, compared to the exe-
cutions where application threads are bound.

Like CG and SP, our dynamic page migration ap-
proach was also able to improve the performance of
MG by 15.9% compared to its original execution time.
Even though MG does not request many memory ac-
cesses, our page migration approach was still able to
reduce the number of non-local memory accesses sig-
nificantly (see Table 4). Compared to the execution of
MG when its threads are bound to the processors, dy-
namically migrating memory pages in MG improved
the execution performance by 18.1%.

Figure 2 also shows that our dynamic page migration
approach improved the execution performance of BT
by 2.9% compared to its original execution. Dynami-
cally migrating memory pages in isolation for BT im-
proves the execution performance by 2.6%. Figure 2
also shows that our page migration approach is not as
effective for BT as for CG, MG, and SP, which is par-
tially due to fact that the reduction in the number of
non-local memory accesses in BT is not as high. Simi-
larly, our page migration approach improved the per-
formance of LU by 0.8%, which is also mainly due the
small amount of reduction in number of non-local
memory accesses in LU.

Improvement due Page Migration

-10%

-5%

0%

5%

10%

15%

20%

bt(B)
1.2%

cg(C)
0.8%

ep(C)
0.1%

ft(B)
12.8%

lu(C)
0.7%

mg(B)
10.2%

sp(C)
0.5%

Compared to Original

Compared to Bound Threads

Figure 2 Performance gain for the applications using our dynamic page migration approach compared to
original execution time and to the execution time when threads are bound to processors. Percentage value

below each application label corresponds to page migration overhead introduced

 10

Figure 2 also shows that our dynamic page migration
approach was not as effective in improving the execu-
tion performance of EP even though it reduced the
number of non-local memory accesses by 67.0%. This
due to fact that EP reuses data in the local caches of
the processors, and the majority of its memory ac-
cesses are requested at the beginning of its execution,
before the memory pages are migrated.

Figure 2 shows that our dynamic page migration ap-
proach was not able to improve the execution per-
formance of FT even though it reduced the number of
non-local memory accesses in FT by 54.0% (Table 4).
Instead, our page migration approach slowed down the
execution of FT by around 4.2% compared to its
original execution. However, Figure 2 also shows that
the slowdown for FT is mainly due to the overhead in-
troduced by page migration, which is 12.8% of the
original execution time for FT. That is, the reduction
in the number of non-local memory accesses did not
overcome the overhead introduced by migrating many
pages that are initially placed poorly. Moreover, the
page migration overhead for FT would be reduced
significantly if the operating system did not require
suspending application threads to trigger the actual
migrations by touching pages and instead provided a
mechanism to directly request migration.

6. Related Work
Noordergraaf and Zak[15] describe a set of embedded
hardware instrumentation mechanisms implemented
for monitoring the system interconnect on Sun Fire
servers. The instrumentation supports sophisticated
programmable filtering of event counters. Their im-
plementation results in a very small hardware footprint
making it appropriate for inclusion in commodity
hardware. In our page migration scheme, we heavily
used these instrumentation mechanisms to sample in-
terconnect transactions.

Many prior page migration policies[1,11] have been in
the context of non-cache-coherent NUMA multiproc-
essor systems. These kernel-level policies were based
on page fault mechanisms and studied different page
placement and migration policies for NUMA multi-
processors with large remote to local latency ratios.
Bolosky et al[1] used memory reference traces to drive
simulations of NUMA page placement policies. La-
Rowe et al[11] modified OS memory management
modules to decide whether a page will be migrated. In
contrast, our research introduces page migration poli-
cies for cache-coherent shared memory multiprocessor
systems with small remote to local latency ratios.
Moreover, our approach implements the migration

policy at the user level and uses access frequencies
gathered from the plug-in hardware counters.

Chandra et al[5] investigated the effects of different
OS scheduling and page migration policies for cache-
coherent shared-memory multiprocessors using the
Stanford DASH multiprocessor. Although they mainly
focused on OS scheduling policies, they also investi-
gated page migration policies based on TLB misses.
Chandra et al. reported that page migration did not
improve the response time for the workloads used due
to overhead incurred by the operating system. They
also performed a trace-driven study to explore the pos-
sible benefits of memory page migrations. Compared
to their approach, our page migration approach is
more effective partially due to elimination of most of
the operating system overhead by using a slower mi-
gration rate.

Verghese et al.[19] studied operating system support
for page migration, and replication in cache-coherent
shared-memory multiprocessors. They introduced a
decision tree to select the action to be taken on mem-
ory pages upon cache misses. The actions taken for a
page include replication, migration and freeze, de-
pending on the threshold values used in the decision
tree. Using the thresholds that gave the best results,
they evaluated the approach using a machine simulator
for SGI Origin2000 multiprocessors. The multiproces-
sor system they used also had a large remote to local
memory latency ratio of 4:1. They reported that dy-
namic page placements did not yield performance
gains due to the overhead introduced by the operating
system. They also reported that the primary sources of
overhead were processor synchronization and TLB
flushing. Unlike their approach, our page migration
approach eliminates most of the operating system
overhead due to using a slower migration rate. More-
over, the Sun Fire servers we used in our research in-
cur a lower overhead due to TLB flushing since TLB
misses are serviced by hardware.

Kernel-level dynamic page placement schemes are
also extensively studied in the Sun(TM) WildFire sys-
tems[4,8,14]. The Sun WildFire system is a prototype
cache coherent NUMA architecture, built from small
number of large standard SMP nodes and has large
remote to local latency ratios. Hagersten and Koster[8]
evaluated the impact of coherent page replication and
hierarchical affinity scheduling on TPC-C execution.
They used excess-remote-cache-miss counts to guide
page placement. Noordergraaf and vander Pas[14] also
evaluated kernel-level page migration and replication
using a simple HPC application in a large Sun Wild-

 11

Fire system. To identify memory pages for migration,
they used excess misses that indicate conflict and ca-
pacity misses in a local node’s cache. They reported
that using a replication-only policy yielded much bet-
ter performance than policies that included migration.
Recently, Bull and Johnson[4] studied the interactions
between data distribution, migration and replication
for the OpenMP applications. Although they primarily
focused on a data distribution extension for OpenMP,
they also studied the impact of page migration and
replication. Their study also showed that page replica-
tion is more beneficial than migration. This is mainly
due to higher overhead in page migration from copy-
ing a memory page from its local node to a remote
node. In comparison, our page migration approach
also has a slower migration rate, which partly explains
the reduction in page migration overhead.

Recent work has used dynamic page placements to
improve the locality for TPC-C in cc-NUMA servers.
Wilson and Aglietti[20] used Verghese’s dynamic
page placement algorithm to tune TPC-C execution on
Sybase. They used a one-second trace of TPC-C exe-
cution and a simulator for a 4-node multiprocessor
system to study the performance, bandwidth and local-
ity of TPC-C. They used hand-tuned threshold values
for dynamic page placements in their simulations.
Wilson and Aglietti showed that dynamic page place-
ment could be effective if operating system overhead
is hidden within the idle CPU cycles.

7. Conclusions
In this paper, we introduced an automatic profile-
driven page migration scheme and investigated the
impact of our page migration scheme on the memory
performance of multithreaded programs. We used
commercially available plug-in hardware monitors to
profile the applications. We tested our dynamic page
migration approach using the OpenMP C implementa-
tion of the NAS Parallel Benchmark suite.
Our dynamic page migration approach always reduced
the total number of non-local memory accesses in the
applications we analyzed compared to their original
executions, by up to 90%. Our page migration ap-
proach was also able to improve the execution time of
the applications up to 16% compared to their original
execution time.

We conducted our experiments on a Sun Fire 6800
server which has only small differences between local
and non-local memory access times (225ns vs. 300ns).
We believe our page migration approach will be even
more effective in improving the performance of the

applications running on larger cc-NUMA servers such
as the Sun Fire 15K. In these larger cc-NUMA serv-
ers, the data transfer times differ significantly among
local and non-local memory accesses (225ns vs.
400ns). For our page migration approach to work on
these larger cc-NUMA servers, however, separate
plug-in hardware counters for each coherency domain
would be required.

More importantly, the effectiveness of our page migra-
tion approach shows the importance of inexpensive
hardware counters in automatic performance tuning of
the applications. In this paper, our page migration ap-
proach depends on accurate interconnect transaction
samples gathered from hardware counters. We believe
this type of hardware counters and tools like our page
migration approach will be of increasing utility as
memory systems become more complex.

We believe the effectiveness of our page migration
approach also shows the advantage of putting the page
migration policy at the user level while only relying
on the operating system kernel to provide the actual
migration mechanism.

We also believe that for page migration mechanism to
be more beneficial, underlying operating system
should provide means to trigger page migration with-
out stopping the application. That is, if the user could
simply request migration of a page and the underlying
operating system could migrate the page during avail-
able idle cycles, most of the migration overhead would
be hidden.

Acknowledgements
We thank Lisa Noordergraaf for her valuable com-
ments on this paper and help in understanding the in-
ternals of the Sun Fire servers and Sun Fire Link
hardware monitors. We also thank Jeffrey Odom who
helped configure the system used in this paper; and
Bryan Buck and Chadd Williams for their comments.
This work was supported in part by NSF awards EIA-
0080206, and DOE Grants DE-FG02-93ER25176,
DE-FG02-01ER25510 and DE-CFC02-01ER254489.
References
[1] Bolosky, W.J., Scott, M.L., Fitzgerald, R.P.,

Fowler, R.J., Cox, A.L., NUMA Policies and Their
Relation to Memory Architecture, International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems,
1991, San Jose, CA.

[2] Buck, B.B., Hollingsworth, J.K., An API for Run-
time Code Patching, The Journal of High Per-
formance Computing Applications, 2000, 14.

 12

[3] Buck, B.R., Hollingsworth, J.K., Using Hardware
Performance Monitors to Isolate Memory Bottle-
necks, SC2000, 2000, Dallas, TX.

[4] Bull, J.M., Johnson, C., Data Distribution, Migra-
tion and Replication on a cc-NUMA Architecture,
The Fourth European Workshop on OpenMP,
2002, Rome, Italy.

[5] Chandra, R., Devine, S., Verghese, B., Gupta, A.,
Rosenblum, M., Scheduling and Page Migration
for Multiprocessor Compute Servers, 6th Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Systems,
1994, San Jose, CA.

[6] Charlesworth, A., The Sun Fireplane System In-
terconnect, SC2001, Denver, CO.

[7] Gharachorloo, K., Sharma, M., Steely, S., Doren,
S.V., Architecture and Design of AlphaServer
GS320, International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, 2000, Cambridge, MA.

[8] Hagersten, E., Koster, M., WildFire: A Scalable
Path for SMPs, Fifth IEEE Symposium on High-
Performance Computer Architecture, 1999.

[9] Hewlett Packard, HP Superdome White Paper, ,
http://www.hp.com/products1/servers/scalableserv
ers/superdome/infolibrary/, 2000.

[10]IBM, The IBM pSeries 680 Technology and Archi-
tecture, 2000,
http://www.ibm.com/servers/eserver/pseries/hard
ware/ whitepapers/p680_technology.html.

[11]LaRowe, R.P., Ellis, C.S., Kaplan, L.S., The Ro-
bustness of NUMA Memory Management, Sympo-
sium on Operating Systems Principles, 1991.

[12]Laudon, J., Lenoski, D., The SGI Origin: A
ccNUMA Highly Scalable Server, International
Symposium on Computer Architecture, 1997.

[13]Laudon, J., Lenoski, D., System Overview of the
SGI Origin 200/2OOO Product Line, IEEE Com-
puter Society International Conference, 1997, San
Jose, CA.

[14]Noordergraaf, L., Pas, R.v.d., Performance Ex-
periences on Sun's WildFire Prototype, SC1999,
Portland, OR.

[15]Noordergraaf, L., Zak, R., SMP System Intercon-
nect Instrumentation for Performance Analysis,
SC2002, Baltimore, MD.

[16]Omni OpenMP Compiler Project, NAS Parallel
Benchmarks OpenMP C Versions,
http://phase.hpcc.jp/Omni/benchmarks/NPB.

[17]Squillante, M.S., Lazowska, E.D., Using Proces-
sor-cache Affinity in Shared Memory Multiproces-

sor scheduling, IEEE Transactions on Parallel and
Distributed Systems, 1993, 4(2).

[18]Sun Microsystems, UltraSPARC III Cu User's
Manual (version 1.0), 2002,

[19]Verghese, B., Devine, S., Gupta, A., Rosenblum,
M., Operating System Support for Improving Data
Locality on CC-NUMA Compute Servers, Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Systems,
1996, Cambridge, MA.

[20]Wilson, K.M., Aglietti, B.B., Dynamic Page
Placement to Improve Locality in CC-NUMA Mul-
tiprocessors for TPC-C, SC2001, Denver, CO.

